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1 Introduction

In the It6 construction of stochastic integration, adaptedness conditions are imposed
on the integrand. In the anticipative case there exists several extensions of the
stochastic integral. Among these extensions the ones that seems to be the most
closely related to concrete situations are the pathwise Stratonovich and forward
integral, cf. e.g. [17] and the references therein. However these integrals do not
retain certain natural properties of the It0 integral, for example they do not have
expectation zero in the anticipative case. On the other hand, the Skorokhod integral,
cf. [18] is an extension of the stochastic integral that possesses the latter property,
and acts on stochastic processes without adaptedness requirement. It can be defined
as the dual of a gradient operator, which makes it useful in the analysis on Wiener
space and the Malliavin calculus, cf. [11]. See for example [6] for a discussion on the
connection of the Skorokhod integral on the Wiener space to engineering problems.
On the Poisson space, as in most non-gaussian settings, cf. [4], [12], [14], there
exists two different Skorokhod integral operators defined as the adjoints of different
gradient operators. Their common property is to coincide with the It integral on
adapted integrands.

The aim of this paper is to show that on the Poisson space one of the constructions

of the Skorokhod integral can be connected via hypothesis testing to an engineering
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We proceed as follows. Sect. 2 consists in a description of a queuing problem in which
jobs are processed by a server. At time zero a prediction of expected completion times
is made, and has a Poisson distribution over R . The processing speed of the server
changes over time, and its increase or decrease at time ¢ is governed by a function that
may depend on all of the processing times, including predicted completion times. In
this way a flow of transformations of Poisson trajectories is constructed, and this flow
is naturally anticipating with respect to the Poisson filtration since it acts on whole
Poisson trajectories. The construction of this flow is formalised in Sect. 3. In Sect. 4
we devise statistical procedures for testing and estimation using the Radon-Nikodym
density function of the flow as a likelihood ratio, see Th. 4.0.1. Given a sample
trajectory made of completion times that are predicted or have been measured at time
t, we test the hypothesis “the sample is Poisson distributed” at time ¢. The main tool
is an anticipative Girsanov theorem on Poisson space, which is presented in Sect. 5.
In Sect. 6 the queuing problem is formulated in a more abstract way, and a Girsanov
theorem for anticipating flows on Poisson space is proved. We refer to [2], [3], for the
analog of this result on the Wiener space, to [9] for the anticipative Girsanov theorem
on the Wiener space and to [19] for its extension to non-invertible shifts. Whereas in
the adapted case the equation satisfied by the process of Radon-Nikodym densities is
a well-known linear stochastic differential equation, in our case the equation remains
formally the same except that the It6 integral has to be replaced by the Skorokhod
integral. This shows the relation between anticipative stochastic integration in the
Skorokhod sense and the queuing problem considered above. Anticipating stochastic
differential equations on the Poisson space have been studied in [10], [13] using the

Skorokhod integral of [12] and in [16] using the integral of [4].

2 An anticipating queuing problem

The aim of this section is to state the considered queuing problem. For simplicity of
exposition we adopt an intuitive approach that will be formalized in the next section.

Let B be the vector space of sequences

B:{(wk)k21 s wkER, k‘Zl},



||w||p = sup M
k1 k

Let H = [*(IN*), and let (e )x>1 denote the canonical basis of H. Let P be the prob-

ability measure on the Borel o-algebra of B under which the coordinate functionals

w:B — R, kE>1,
w (W) = wg

are independent identically distributed exponential random variables, cf. [14]. We
i=k

let Tp = 0 and define the family (Tj)x>1 as T = ZT.L', k >1,1ie. (Ty)r>1 represents
i=1

the jump times of the standard Poisson process

Ny = g e((t), t€[0,1].
k=1

We consider that the sequence (7;)z> represents an estimation (7,°)x>; made at
time ¢t = 0 of processing times of a given countable sequence of jobs. While the k-th
job is being processed, the server is able to modify its speed by taking into account
the processing times of all jobs in the sequence, whether they are completed or not,
i.e. predicted completion times may also be taken into account. For ¢ € [0, 1] we
denote by T,? " the estimation or measure at time ¢ > 0 of the completion time of job

n°k, where 79 =Ty, k > 1, and
e 1<t T,S’fl means job k is not yet processed,
o T)' <t < T means job k is being processed,
° T,?’t <t means job k is already completed.

We also let T,S’t = T,S’t — T,S’_tl, k >1,t € [0,1]. The processing speed is controlled by
a function o : [0,1] x B — R which depends on time as well as on all processing
times (measured or predicted), and satisfies the following hypothesis.

Hypothesis (H) We assume that ess sup o < 1 and that for any k > 1 there is a

random variable Gy which is o(1; : i # k) measurable with

jo1(w) — 0w + zer)| < [2]Gr(w), T € R, t€[0,1], we B, k> 1.
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follows. Let T(? =0 and let t — T,Sfl be the solution, for ¢ > T,g > of the ordinary

differential equation

d o4 0 0,00 0t 0 0
%Tk;l =0(T%, T T Thyae---), E2 T, k>0, (2.0.1)

Hypothesis (H) ensures the existence and uniqueness of a solution to (2.0.1).
One lets

0,00 __ : . 0,00 0t 0,00 __ 0,00 0,00
T =inf{te Ry : T +12 =t}, 7.0 =T.07 —T,%,

and
T,S’t-i—T,SH for 0 <t < TP,

0t _ 0,t 0,t 0,00 0,00
T, = TIB +7  for Ty Ogthk+1,
00 ,O0
Ty for t > T}37,

The expected remaining time until completion of job & is T,? ' _ t. This definition of

the flow can be summarized as

d o4 0 0 0,

e ]_[T,(c),_tl,Tl(c),t[(t)O't(Tl’oo, T T TR --2), kK >1, € 0,1],

with the initial condition T,S’O = 1%, k > 1. Hypothesis (H) also implies that
limg o0 T,S " = +o00. The condition ess sup ¢ < 1, ensures that all jobs can ter-

minate in finite time. Fig. 1 gives a typical graphic representation of ¢ — (7)) k>1-

Figure 1: Sample trajectory of the flow ¢ — (T,?’t)kzl.

Remark 1 The statements T,?’_Sl <5< T,?’s and T,S’_tl <5< T,?’t are equivalent,

0<s<t<1,k>1.



In this section we formalise the definition of the flow as a differential equation in the

Banach space B. Let i : H — L?([0, 1]) be the random mapping defined as
i(f) = fF(N, + 1) Zf lr, ,m((t), teo1]. (3.0.1)
Let (js)scpo,1] denote the H-valued process defined as
Js = (is(ex))k>1, s €0,1],
ie. js=e, € Hifand only if s € [Ty_1,Tx[, k > 1.
Proposition 3.0.1 Let 0 :[0,1] x B — R satisfy (H).

e The equation in B
Gsqw = w + /t (jrow) (Pspw)dr, we B, 0<s,t<1, (3.0.2)
has a unique solution jﬁhat defines ¢s4 : B — B.
o We have j; = jso ¢rs, 0 < s < t, and (3.0.2) is equivalent to
Gpsw = w — /thJT(qﬁt,Tw)dr, weB, 0<s<t<I1. (3.0.3)
o The family (¢s, 1 B — B)o<s<: satisfies the flow property
¢s,t o ¢u,s = ¢u,t, u,s,t >0, (3-0-4)

and ¢s; : B — B, s invertible with inverse ¢y 5, 0 < 5,1 < 1.

Proof. Existence and uniqueness of the solution of (3.0.2) follow from the Lipschitz

hypothesis (H) on o. The flow property (3.0.4) follows from

t
¢s,t o ¢u,sw = ¢u,sw + / (jrar)(¢s,r © gbu,sw)dr

s t
= w-+ / (jrar)(¢u,rw)dr +/ (jrar)(¢s,r o Cbu,tw)dT-
From Remark 1 we have j, 0 ¢o, = j, 0 @o hence j, o ¢y, = j,, r < ¢, by composition
with ¢, o, and (3.0.2) is equivalent to (3.0.3). -

Note that (3.0.3) is wrong if s > ¢, this point will be important in the calculations

of Sect. 6, Lemma 5. The notation

Tt =" ¢aali), 0<s,t<1,

is consistent with that of the preceding section.
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Statistical testing for point processes, cf. e.g. [8], often aims to test an hypothe-
sis on the intensity of a Poisson process. The central tool of this approach is the
computation of the Radon-Nikodym derivative Lo, = dP%!/dP where P%! is a prob-
ability under which (T");>; is Poisson distributed. Let ¢ € [0,1]. We will test the
hypothesis

Hy: (T,S’t)kzl is not exponentially i.i.d.
against the hypothesis
H;: (Tlg’t)k21 is exponentially i.i.d.,

i.e. the sample (T");>1 is Poisson distributed, e.g. (7,"")g>1 does not result of
a perturbation of (7j)x>1 driven by the function o. The following decision rule is
justified from the fact that if E is an event such that P(E) < 8 then P%(Ly; >
o) > PY(E), cf. [1], [8].

Decision rule Let o € R and 5 > 0 such that P(Lo; > o) = . Then the hypothesis
H, is accepted at the level B whenever Ly, > «.

The Likelihood ratio Lo, is usually computed via the Girsanov theorem for point
processes, cf. [1], [7]. However this theorem relies on the adaptedness assumptions
of the Ito stochastic calculus, hence it is not applicable to our problem. For this
reason we use an anticipative Girsanov theorem on Poisson space, cf. [15], in order
to find a probability P%* under which (T,S ’t) k>1 is exponentially i.i.d. and to compute

dP% /dP. We define a space of smooth random variables
S={fu(r, ..., 7) : fa€CC(RL), n>1},

and an operator D : § — L%(B x [0,1]) by

o0

DF = — Z ]-[Tk,l,Tk[akfn(Tla ey Tn), (401)

k=1

where F' € S is of the form f,(71,...,7,). A discrete-time gradient D : § —»
L?(B x N*) is also defined by

DF = (DyF)is1 = (O fu(m, ..., ™), F €S (4.0.2)
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able and ID; 5 denotes the domain of the closed extension of D. They are linked by
the relation D = —i o D, where i : H — L?([0,1]) is the random mapping defined
in (3.0.1). The closable adjoint ¢ : L%(B x [0,1]) — L2(B) of D corresponds to
one of two notions of Skorokhod integral on the Poisson space, cf. [4] and [14]. Its
interpretation as an extension of the stochastic integral with respect to the compen-
sated Poisson process comes from the fact that 4 (u) coincides with the It6 stochastic

integral of u if u is adapted and square-integrable.

Definition 4.0.1 We call ID, o the subspace of ID1 2 made of the random variables
F such that
1FD, . = lFllec + [[[1DF|glec < oo

We also let IL1 o, = L*([0,1], D1,), and L1 5 = L*([0,1], D1 5).
If T : B — B is measurable we denote by 7P the image measure of P by 7. We
say that 7 is absolutely continuous if 7 P is absolutely continuous with respect to

P. The following is the main result of this paper, and will be proved in Sect. 6.

For clarity we may denote oy(w) by o(t,w). In particular, O'(T,?’t,QSO’T’?,t) denotes
(O’r o QSO’TIS,t)

Theorem 4.0.1 Let 0 € IL, . We assume that o has a version with continuous

_m0,t”
|r=T,

trajectories and supo < 1. Then the equation in B

¢
G = w +/ (Jroy) (syw)dr, we B, 0<s,t<1,

has a unique solution. Moreover, ¢s.P is absolutely continuous, 0 < s,t < 1, and

for 0 < s <t<1 we have

d¢t,sP . t D d t d k=N, 1 Ts,t a 0 3
dP =exXp |\ — , |: 'ro-ri| O QSS,T T — \ or O st,r T g ( — U( k ’¢S,T;’t))( ,U. )
and
dos P tr. t k=N,
Lﬁﬂi = exp (/s [Drgr] 0 ¢y dr + /S o e qbt,rdr> kli[l (1 —o(Tk, b11,))- (4.0.4)

Note that hypothesis (H) is not assumed here in order to obtain the existence and

uniqueness of ¢,;. Also, the process (DTUT)TE[O,I] is well-defined since t — Dtar is
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Jr O @sy = Jro sy, 0<s<r<t<1, and (4.0.3) can be rewritten using D as
k=N¢

s,t
d¢t sP /t > /t/\Tk 1
: =€exXp | — 0, 0 (bs,rdr + [Dkar] o (bs,rdr S ;
dP ( ] Zk:1 ’ ,[[1 1-— J(Tk’t,¢syTz,t))

8,t
AT

0 < s<t<1. In the adapted case, D,o, = 0, cf. [14], hence the terms fot [Dror] o

¢s dr and f(f [f),aT] 0 ¢y dr vanish in (4.0.3) and (4.0.4) and we obtain the classical
expression of the Radon-Nikodym density function. Denoting by (NP),cjo,1 the

point process whose jump times are given by (T,? ’t)kzlz

NP = " 1goe y(s), s €[0,1].

k
k>1

We have Lo = dqgﬁp and the log-likelihood ratio becomes

t ¢ t
ot = —/ [f)rar] o ¢ dr — / oy 0 ¢ dr — / log(1 — o, o ¢, )dN".
0 0 0

From Remark 1 we have explicitly

00 atATP!
Z/ [Dko'r] @] (b(),rdr.

0,t
k=1 t/\Tk—l

t t
oy = — / 0y © o pdr — / log(1 — 0, © go, )AN)* +
0 0

The evaluation of /p; is made according to measures or estimations between time 0

and time ¢ of completion times.

5 Anticipating Girsanov theorem

We now introduce a formalism which is helpful for the proof of the anticipating Gir-
sanov theorem Th. 6.0.3. Given a real separable Hilbert space X with orthonormal

basis (hi)iZIa let

S(X):{ZFihi . F,...,F, €8, n21},
1=1

with § = S(R). Let H ® X denote the completed Hilbert-Schmidt tensor product
of H with X. Any v € S(H ® X), is written as

u= Zukek, up € S(X), k> 1.

k=1



UX)= {iﬂcukek D u € S(H®X)}.

It is known that S(X) is dense in L?(B, P; X), and that U(X) is dense in L*(B x
IN*; X), cf. [14]. We extend the definition of D to S(X) as

(DF, )y = lim F(“’“’? —FW - pe s,

We call ID;5(X) the completion of S(X) with respect to the norm

1D, ,x) = IIFlxll2 + [ DF|aex|l2;

We define § : S(H ® X) — L?*(B; X) by

d(u) = Zuk — Dyug, u€S(H®X). (5.0.1)
k=1

The operators D : S(X) — L*(B x N*; X) and ¢ : U(X) — L*(B; X) are closable

and mutually adjoint:
E[(DF,u)nex] = E[(6(u), F)x], uwelU(X),F e S(X).

With this notation the anticipating Girsanov theorem (Th. 1 of [15]) can be formu-

lated as follows.
Theorem 5.0.2 Let F': B — H be a measurable mapping such that

e h — F(w+ h) is continuously differentiable on H in the completed tensor
product H® H, for any w € B,

Fk:OOH{TkZO},kZL

Ig + F leaves invariant the cone {(wg)k>1 € B @ wg >0, k> 1} of strictly

positive sequences,

deto(Iy + DF) # 0, a.s., and

Ig + F 1is a.s. bijective.

Then
E[fl=E[fo(Is+ F)|Arl], feCy(B).

10



Ap =deto(Iy + DF) exp(—d(F)), F € ID,2(H)NDom(d), (5.0.2)

where deto (/g + K) is the Carleman-Fredholm determinant of Iy + K:

o0

dety(Ir + K) = [[(1 + M) exp(=Xy),

i=1
(Ak)k>1 being the eigenvalues of the Hilbert-Schmidt operator K, counted with their
multiplicities, cf. [5], Th. 26. If F € Dom(d) N ID1(H) and DF is a trace class

o

operator, then ZFk is summable, a.s., and Ap admits from (5.0.1) the simpler
k=1

factorization

Ap = det(Ig + DF) exp (— > Fk> , (5.0.3)
k=1

where det is the limit of finite-dimensional classical determinants. We note that
Th. 5.0.2 is not directly applicable in the present situation where the transformation
Ip + F = ¢y, is given by a flow which is solution of a differential equation. In
particular the differentiability hypothesis of Th. 5.0.2 are not directly verified and the
Carleman-Fredholm determinant dets(Iy + DF') remains to be explicitly computed

in terms of o. For this reason we use Th. 4.0.1.

6 Proofs

We now prove Th. 4.0.1, using the formalism of Sect. 5.

Definition 6.0.2 Let V denote the class of processes of the form v(-,71,...,T),
where v € C([0,1] x R™) satisfies v(t, z1,...,2,) =0 ift > x1 + -+ 1z, n > 1.

We will need the following Lemmas, which are adapted from [3]. They do not rely
on the nature of the underlying (Poisson or Wiener) measure, hence their proofs are

similar to that of [3], see also [16].

Lemma 1 Let F € IDy5. For any ¢ > 0, there is a sequence (Fy)nen C S that

converges to F' in ID 5 and such that
e essinf F' < F,, <esssup F, n € N.

o [[| DE, [alloo<|l| DF [lloo +& , n € N.

11
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o There is a sequence (0" )nen C V, uniformly bounded in IL, o, that converges

to o in ILy 9, with sup o} (w) < 1.

n,t,w
e If 0 has a version (also denoted by o) with continuous trajectories, then the

sequence (0™)pen can be chosen such that (0, )nenx converges in L*(B) to or,,

k> 1.

Lemma 3 Let 7T, R be two absolutely continuous transformations, respectively de-

fined by X
T(w) =w+ / i+ (@)U (w)ds,
0
and

R(w) =w +/0 Js(w)Vs(w)ds,

w € B, with U,V € L*(B) ® L*([0,1]). Let F € ID1 . We have
FoT = FoR| < |IDFlalloll — Vi, as.

and
F(w) — Fw+h)| < [[|IDF|gllwllbllz, h€H, as. (6.0.1)

Lemma 4 Let (T,)nen be a sequence of absolutely continuous transformations with
1
Tow = w +/ Ul (w)ds,
0

defined by a sequence (U™)pen C L?(B) ® L?([0,1]; H) of processes that converges to
U € L*(B)®L?*([0,1]; H), such that the sequence of densities (L")pen = (AT P/dP), o
is uniformly integrable. If (F,,)nen converges to F in probability, then (F, o Tp)nen
converges to F o T in probability, where T : B — B is defined by

1
Tw=w —|—/ Us(w)ds.
0
Moreover, T : B — B is absolutely continuous.

The proofs of Lemma 1, 2, 3 and 4 are postponed to the end of this section.

12
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k=N¢

t t
Ap = exp <_/ [Drar] ° ¢s,rd7‘ - / Or O ¢s,rdr> H (1 - U(Tl:’ta ¢5,Tlf’t))717

k=1
and for F' = ¢54 — Ip:
t o t k=N
AF = €Xp (/ |:D7'O-'I'j| o qss,rdr +/ Or O ¢t,rdr) H (1 - U(Tka ¢t,Tk))-
s s kel

Proof of Lemma 5. We use the expression (5.0.2) of Ap. We have for 0 < s <t <1,
using (3.0.3):

( _U(Tl: ¢t T1)1{5<Tl<t} + J(Tl—la ¢t,T171)1{s<Tl_1<t}

- [ it ZDm” [Dio] 0 gy, 1<k<i<n,

1—o(Tq, ¢ Tl)l{k<l}1{s<Tl<t}

Dyds(l) = 4 —/z,« e ZDmr [Djo,] © gy pdr, 1<k=I1<n,
- [ it ZDMM [Dio] o gy, 1<i<k<n,
\ 1{lc:l}a k > n.

Let M;, € M,(R) be the n x n matrix
Mis = (Drdps(l))1<ki<n, 0<s<t <1
The above computation can be rewritten as
M= A+ /t M, Qupdr, 0<s<t<1, (6.0.2)
s

where A; ;, € M, (R) is the n x n matrix

—0 (T, e )V s<ry<ty + 0 (Tj1, b ) sctyi<ty, 1 <0< j <,

Aps(i,7) = ¢ 1= 0(Tj, bury) Ls<r; <ty 1<i=j<n,
0, 1<j<i<n,

and Q;, € M,(R) is the n x n matrix Qy, = (i,(e;) [Dxoy] 0 ¢t,r)1<k,z<n' We have
from (3.0.4):

D¢t,u = D (¢s,u o ¢t,s) = [D¢t,s] [D¢s,u] o ¢t,5a 0 S u S S S t S 1,

13



Mt,u - [Mt,s] [Ms,u o qst,s] 3 0 S U S S S t S 1.

We will show that for fixed w € B,
det M, s = exp (— /t trace Qt,rdr) , Tho1<s<t<Ty k>1. (6.0.3)
Let ¢ > 0. We have
det My, — det M, ,_. = det My, — det (M s My 5_. 0 Py 5)
= (1 —det M. 0 ¢y s)det M,
= (det My,) <1 — det (As,s_g 0 Prs — /s M, 0 ¢t sQrr 0 ¢t,5dr>> .

Moreover,
s
det (As,s—s o ¢t,s - / Mt,r o ¢t,th,r o ¢t,sdr)

is equivalent to 1 — etrace Q550 ¢ s as € goes to zero since for T, ; < s < s+¢e <
t < T}, we have A; . = Ig» and M,;, — Ig» as r | s. Moreover, from Remark 1

we have (s 5 0 ¢y s = @5, hence for Ty < s <t < Ty,

d
£(det M, ) = trace (Q:s) det M, s, (6.0.4)
which proves (6.0.3). Since Q;s(i,j) may be nonzero only if T} ; < s < T}, i =
1,...,n, we obtain
trace (Que) = Y 1m ,m(s) [Deos] 0 dus = Y _is(ex) [Dros] o drs
k=1 k=1

[M]#

is(ek) o ¢t,s [Dko-s] o ¢t,s = - [Dso-s} o ¢t,s>

B
Il

1

hence for T;_; < s <t < 1Tj:

TiAt
det(Mys) = exp </ [D,«a,«} o gbt,rdr) det Myinr,, €N,

and

AT,
det(Mt,Tl—l) = (]' - J(ﬂ—la ¢t,Tz—1)) eXp (/ |:DT'O-'I‘:| o ¢t,7'dT> det Mt,t/\Tl-

Hence for 0 < s <t <1,

det(Ddy,) = exp ( / t [DTJT} o %dr) [T Q-0 éin)- (6.0.5)

s<Tp<t

14



Hence Irom (0.0.5), (0.0.9) and » I} = L/ O, © Qrar, We obtain
k=1 k=1 " " Tk—1
dQSs tP = /t/\Tk
—X— = exp o 0 ¢ pdr | det Doy g
dP (; tATy,—1 ' '
to t k=N
= e ([ [Dio] otnsar+ [ vosar) TT (- olTes o))
S S k=1

Moreover, we have ¢, 1, o ¢, = ¢S,TI‘:,£, T < t, since

t
Gr1, © Ps g = sy — </ Or O ¢t,rd7'> 0 Py W

T

t
= ¢s,tw - / . Or (¢t,r o (bs,tw)dr

S,
Tk

¢ t
= w+ / O'T(st,rw)dr - / . O-T((lstﬂ" © ¢s’tw)dr
s Ty

8,t
Tk

= w +/ oy (¢s w)dr = qﬁs,le,tw, w € B.
S
Hence for 0 < s <t <1,

d¢t,sP (d¢s,tP> o
= o ¢s,t

dP dP
t ~ t k:Nt
= €xp (_/ [Drar] © ¢s,rdr - / Or © ¢s,rdr> H (1 - U(Tka ¢t,Tk) © ¢s,t)_1
s s k=1
to t k=N
= exp (—/ [DTUT] 0 ¢ dr — / lo e gf)s’rdT) H (1- U(Tks’t’ ¢5,T§’t))71' O
s s k=1

Proof of Th. 4.0.1. We start by assuming that ¢ € V. In this case the assumptions
of Th. 5.0.2 are satisfied by F' = ¢, — Ip:

E[f°¢t,s] :E[fAF]a E[f] :E[f°¢s,tAF]a / GC;_(B)a

where the expression of Ap = d¢;s/dP is given by Lemma 5, 0 < s < ¢ < 1, this
statement is in fact finite dimensional. It remains to extend this result to o € IL; .
For this we follow [16] which uses ideas applied in the Wiener case by [3]. From
(6.0.1), 0 € Ly satisfies (H). From Lemma 2 we choose a sequence (0"),en C V
that converges to o in IL; 5, with || log(1—0")||e < C and ||6"||ec + ||| D™ #|le0 < C,

n € N, for some C' > 0. The sequence (0™),en defines a sequence of transformations
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We have

E[L?,logL} || = E [|log L%, 0 ¢7,

< [/ || log(1 — o7 ||oodN] / ||D U”||ood7“+/ lloy || o dr

< [ 1ogt~ o)l + [ 11Dl + [ ot < 3
0 0 0

hence the sequence (L} ;)nen is uniformly integrable. We now have that (@7, —Ip)nen

converges in L?(B) ® H since

t
1) < B | [ o) - oriom ]
's t t
< 28 | [ o —opPridr+ [ lor(e,) - o :';)\%zr]
- St ’ t T
< 28| [ ot - opPLL,dr +C? / [ oo - ;';)qudr}

-t
< 2FE / oy — 0;”|2L’;Tdr] exp (|t — s|C?)

E|g3,

n,m € N, 0 < s,t < 1, by the Gronwall lemma and Lemma 3. As n and m
go to infinity, F [\qb?’t — o7 2] converges to 0 by uniform integrability of (L% )nen,
and from Lemma 4, the sequence (07(¢7,))nen converges to o,(¢,,) in L*(B), for
r € [0, 1], hence by boundedness of o the limit of (¢7;)nen solves (3.0.2) and coincides
with ¢, ;. The uniqueness of ¢, follows from Lemma 3 and its absolute continuity
from Lemma 4. The above argument also shows that (gbZTk -1 B)nEN converges in
L*(B)®L*([0,1], H) to ¢¢r, — I which is absolutely continuous, k > 1 (welet 0 =0
outside of [0, 1] x B). Consequently, (o"™(T, ¢ 7,)) and (o™ (Tk, ¢}, )) © ¢, converge
respectively to o (Tk, ¢y 7,) and o (Ty, ¢r1,)0ds: = o (T, ¢, re+) in probability as n —
oo, from Lemma 2 and Lemma 4, £ > 1. Moreover, ([f).o,"] o QS’;) e converges to
[D.a_] o ¢, in L(B x [0,1]):

Al o

r 1 1
<25 | [ 1D o o, ~ (Do) o g, Fydr + [ 1[Doy]o z,r—[Do,«]ocbs,r@dr]
LJ O 0

2d7':|,

which converges to 0 as n goes to infinity since | Do, (8} ,) |z < |||Dov|ulleo, 7 € [0, 1].

-Dro'?i| o ?,7- - |:[)r0-7'i| O¢s,7‘

-l 1

<28 | [ D7 - ofiLidr+ [ |[Da]o g, - (Do
Lo 0

Finally, a subsequence of (LY ;)nen, resp. (L, )nen, also denoted by (L7 ;)nen, resp.
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uniform 1ntegrab111ty of {L : n € N} we have for f € C;(B):
Elf] = hm E|[fo ¢y Ly J=E[fodsLlsy]. 0<s,t<1. O

For completeness we state the proofs of Lemmas 1, 2, 3 and 4. They are the respective
analogs of Props. 2.5, 2.6, 2.7 and 2.10 in [3], see also Props. 2,3,4 and 5 in [16].
Proof of Lemma 1. Let F, denote the o-algebra generated by 7,...,7, and let
F, = (1= 2)E[F|F)], n > 1. We have essinf F < F, < esssup F, n > 1.
We have |||DFy,|ullo < |||DF|ulloo, and (Fy,)n>1 converges to F' in ID;,. Hence
it suffices to prove the result for F' = f(r,...,7,) € ID12. Assume first that f
has a compact support in R%, let ¥ € C*(R"}) with fR” z)dz =1, ¥ > 0, and

fRn fly+z)dz, k> 0,y € R}. With F}, = fk(ﬁ, ..., Tn), we have
ess 1nf F < Fy S esssup F, k > 1, and |||DFilullco < |||DF|g||lco- If f does not
have a compact support, let & € C>°(R", [0, 1]) such that ®(x) =1 for |z| < 1. Let
Fy = E[F|F,|®(m1/k,...,Tn/k). Then (Fy)r>1 converges to F' in ID; 5 and

=n

[|1DFelrllo < |DF [l + Hﬂkﬂm§:8¢ < IDFlullo + ¢
=0

for k£ great enough.

Proof of Lemma 2. For m = {A4,...,A,} a partition of [0, 1], let

B =n 1
o —Z|A|1A/ o.dr.

Let (7, )nen be a sequence of partitions of [0, 1], mutually increasing with max; <;<,, |A7|
converging to 0 as n goes to infinity. We have that (6™ ),en converges to o in Ly o
with 07| < ||o]|e and ess sup 0™ < ess sup 0 < 1. We apply Lemma 1 to con-
struct a sequence (6™™),,en C V, bounded in IL; , such that o;™™ converges a.s.
to o™, t € [0,1], as m — oo. If o has a version with continuous trajectories, then
o7r converges a.s. to og,, and a subsequence of (07"™)nen converges a.s. to o7

te[0,1], k> 1, as m — oo. -

Proof of Lemma 3. Let 6 > 0 and € > 0. If F' € ID , then from Lemma 1 there is
a sequence (F),),en C S that converges to F' in ID; » and
< ([IDFlulloc +€)|U = Vlrzqoap, a-s.
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P(|F,oR—FoR|> 5)rrconverge to 0 as n goes to co. Hence
[FoT —FoR|<([[DFlallo +€) U = Vo), as. O
Proof of Lemma 4. Let € > 0. By uniform integrability there is M, > 0 such that
:16111\)IE [L”l{Ln>ME}] <eg/2.

There is ny € N such that

P(IF(Tn) = Fa(Ta)| = 6)

E [1yr pzaL"]
E [Losay L] + M.P(|F = F,| > 0)

IN

< ¢/24+ M.P(|F—-F,] >0)<e, n>np

Let (Gn)nen C S be a sequence that converges to F in L?*(B). There is ko € IN such
that

P(FoT,—GoTa| >08) +P([FoT — Gy oT|>d)
< E[1{|F_Gk0‘25}(L"+L) <%, n>k.

From Lemma 3, there is n; € N such that
1
P(|Gk0 OT— Gko O 7;L| 2 (S) S 5”|DGk0|H||oo|O- - O'n|L2([0,1]) S g, n 2 ng.

Hence
P(|FoT —FoT,|3>0) <3¢, n >max(ng,koni).

The transformation 7 is absolutely continuous because its density is obtained as the

weak limit of (L™),ex in the weak topology o(L'(B), L*(B)).
O

Finally we mention a result that shows the link between the queuing problem exposed

in Sect. 2 and the anticipative Skorokhod integral 8, cf. [16].

Theorem 6.0.3 Let o € ILy o have a version with continuous trajectories, such that
ess inf o < 1. Let b € L?*([0,1], L>(B)) and n € L*(B). The anticipating stochastic

differential equation

t
Xt =n-—- ) (1[0,t]UX) +/ bsXSdS t e [0, ].] (606)
0
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t doo.P
Xy = modypexp (/ bs o ¢t,sd8> bo
0

dP
t 5 t t
= 7no (bt,o exp (/ [Dsas] o qﬁt,sds +/ Og 0 (bt,sds + / b, o ¢t,3d8>

0 0 0

k=N,
< [ (1= o(Tk, 1)), telo,1].
k=1
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