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Abstract

We study a subspace of the Fock space, called Boolean Fock space, and its
associated non-commutative processes obtained by combinations of annihila-
tors and creators. These processes include the Boolean Brownian and Poisson
processes obtained by replacing the classical convolution by its Boolean coun-
terpart, and a family of Bernoulli processes. Using a quantum stochastic cal-
culus constructed by time changes, we complete the existing non-commutative
relations between basic probability laws. In particular the uniform distribu-
tion has the role played by the exponential law in the classical setting of tensor
independence.
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1 Introduction

The Brownian and Poisson processes can be realized as operator processes on the
symmetric Fock space, the classical notion of independence of increments being ex-
pressed in Fock space using tensor products. In non-commutative probability, two
other definitions of independence and convolution are available, namely the free and
Boolean independence, cf. [2], [3], [13], [15], [16]. Each definition yields another
notion of Brownian motion and Poisson process, which can be realized on different
forms of the Fock space, namely the full Fock space in the case of free convolution,
cf. [14]. The interest in the Boolean convolution is to provide a simple model to
illustrate the free case, and the Boolean analogs of Brownian motion and the Poisson
processes can be used to approximate their classical counterparts. The aim of this
paper is twofold. (i) We realize the Boolean Brownian motion and Poisson process
on a subspace of the symmetric Fock space, which will be called Boolean Fock space.
Such processes have no classical versions, however we show that the Boolean Fock
space can be identified to the L? space of a classical Bernoulli process, obtained itself
by combinations of creation and annihilation operators.

(ii) Poisson random variables can be constructed non-commutatively by addition of

the conservation (or number) operator to Gaussian random variables. On the other



way from the exponential law, using a construction of quantum stochastic calculus
based on time changes. We show that in the Boolean setting, the uniform density
plays the role of exponential density, i.e. the Gaussian, exponential and uniform laws
can be respectively linked to the Poisson, geometric and Bernoulli laws in a unified
non-commutative framework.

We proceed with a more detailed description of the main results. Let p be one of the

probability densities

1 19 _ 1
p(x) = \/ﬂe 27, plz) = e lpeof(z), plr) = 51[—1,1](33%

x € R. The Gram-Schmidt orthogonalization procedure defines three families of or-
thogonal polynomials, respectively the Hermite, Laguerre and Legendre polynomials,

which satisfy the differential equation
o(z)y"(z) + 7(2)y'(z) + Ay(z) =0, AEN, (1.0.1)

with respectively (o(z),7(z)) = (1, —z), (o(z),7(z)) = (2,1 — z), (o(z),7(x)) =
(1 —z?,—2x), cf. [8].

For each choice of the probability density p, we can form a Banach space of sequences
B = R* with a measure P denoted formally by dP = dp®* which is the completion
of a measure defined on cylinder sets. Denote by 6, : B — R, k € IN, the coordinate
functionals, which are independent random variables distributed according to dp,
and by D : L?*(B) — L?*(B) ® [*(IN) the densely defined and closable gradient
operator defined as

Df(00:79n) = (8kf(90:"'70n))kENa n e N.

For each density function p, a gradient operator D : L?>(B) — L*(B) ® L*(R.)
is defined by composition of D with a random injection i : L*(B) ® I*(N) —
L*(B) ® L*(R.), see Relation (5.0.2) below. This operator is closable and admits

a closable adjoint 4, ¢f. [10], [11]. A family {a;,a:,a; } of unbounded operators on
L?(B) is defined as

i; F = (DF,u)y, afF =04(uF), aF =d(uDF),

u

u € L?(B) ® L*(R,; C), for F in a dense domain. These operators complement the
usual triple {a; ,a5,a; }, h € L*(R4;C), of annihilation, creation and number (or
conservation) operators on the symmetric Fock space, cf. [7], [9]. We recall below
the interpretation of these operators in the tensor case, this paper being concerned
with the second part, cf. Sect. 3 and 4, i.e. with the Boolean case which will be

shown to correspond to p uniform on [—1, 1].



probabilistic interpretations.
- Wiener interpretation. This corresponds to the choice p(x) =
this case, a, = a,, and a} = a;, and

- + - ~t
Qo4 + Qi = Clpo + U0,

is identified to the classical Brownian motion, and
- Poisson interpretation. The classical Poisson process is constructed as ¢t +

1 +af[ +ay, - Here, pis the exponential density p(x) =€ *1jf(z) and

0,t]
- + 0 _ ~— | ~+
a, +a, +a, =a, +a,,

hence the Poisson process is also given by df{o,t] + &f[o,t].

2. Boolean independence. In this case we will use a strict subspace I'y(L*(R))
of the symmetric Fock space I'(L?(R.)). The Boolean Brownian and Poisson
=+ o
0,¢] + Q10,4 + L
is the vacuum state, but they have no classical interpretation, cf. Prop. 3.0.3
1

in Sect. 3. However, with p the uniform density p(z) = ;1[_1,3(7),

processes are still given by Ay T af[o q and tp + ay, where ¢

+ o
a(l[o’t]_t) + a(l[O,t]_t) + U(119,9—t)> te Ry,
can be identified to a classical Bernoulli process, cf. Prop. 4.0.1 of Sect. 4.

The following properties 1-4 hold for p Gaussian, and from [10] for p exponential.

Their proof in the uniform case is the other goal of this paper, cf. Sects. 4 and 5.

1. The sum (&f[o g oy, ﬂ) can be identified to the classical process (Brown-
: 1/ teRry
ian, compensated Poisson or Bernoulli) associated to the sequence (7x)ren, see

Cor. 5.0.1. In the uniform case we obtain in particular the identity

+ ° _ = =+
a(l[o,t]—t) + a(l[o,t]_t) + U(1p0,9-t) = Q1 + 1190 teRy.

2. The sum &;Eek) + @, equals the classical random variable 7(0k) of Eq. 1.0.1,

which has respectively a Gaussian, exponential or uniform distribution, cf.
Relation (5.0.4).

3. Let & = v/=1. The operator &, +3sa;,,—~3sdy,,,+s°0(0), s € R\{0}, has
a discrete probability law u, namely a Poisson or geometric law, respectively
for p Gaussian and exponential. If p is the uniform density, we show in Sect. 5
that this distribution p is given as
2n+1
p{nn+1)}) = — —7(Ta1pa(s))’, neN, (1.0.2)

J, being the Bessel function of the first kind, v € R, cf. Prop. 5.0.2 of Sect. 5.
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dom variable o(6y) of (1.0.1), cf. Lemma 2.

In Sect. 2 we recall the definitions of Boolean independence and convolution accord-
ing to [3], [13], [15]. In Sect. 3 we construct the Boolean Brownian motion and
Poisson process. In Sect. 4 we show that a classical Bernoulli process can be also
constructed by combining the annihilation and creation operators. In this interpre-
tation, the Boolean Fock space is identified to the L? space of a countable product
of copies of the uniform density. In Sect. 5 we introduce the operators a,, a5, a;,
defined by infinitesimal perturbations of jump times, and we link the uniform density
to the discrete distribution of Relation (1.0.2). In Sect. 6, we study the correspond-
ing continuous time construction of quantum stochastic calculus, in which iterated

integrals of adapted integrands turn out to be anticipating.

2 Boolean independence and convolution

In this section we recall the basic definitions of Fock space and Boolean independence.
Let L*(Ry) = L?*(R;C), let (-,-)2 and | - |, denote the Hermitian product and
norm on L?(R.), while |z| denote the modulus of z € C. Let I'(L*(R,)) denote
the symmetric Fock space over L?(R.), with its gradient and divergence operators
V™ :I'(L*(Ry)) — I(L*(R,)) ® L*(R,) and

VT iT(L(Ry) ® L*(Ry) — T(L*(R4))

defined by linearity and polarization and density as

v_(hlo...ohn): (hlo...oilko...ohn)®hk7

k=n

k=1

where “h;,” denotes the omission of Ay in the product, and
Vi(frio--0ofa®g)=fio---0fnog,

fl;--'afnag € LQ(]R"F)

Definition 2.0.1 Let S denote the linear space, dense in I'(L*(R.)), generated by
vectors of the form hyo---ohy, hy,..., h, € L*(R;), n € IN.

u

U E L2(R+):

The annihilation, creation and conservation operators a u>

on I'(L?(R,)) are defined as

o
a, and a

0, F=(V Fu), o F=V'(FQu), aF =V (uV F), FeS&.



ant, and admit an adjoint denoted by X* on S.

Let (-,-) denote the Hermitian product on T'(L*(IR;)), and let Q denotes the unit
vector in T'(L?(R,)). We consider the non-commutative probability space (A, ¢),
where A is the algebra of operators on I'(L?(Ry)) and ¢ : A — C is the linear
functional defined as

o(X) = (XQ,Q), XedA

Self-adjoint elements of A are called non-commutative random variables. We recall
the following definition, cf. [15].

Definition 2.0.3 Two non-commutative random variables X,Y are said to be Boolean

independent if
PXRYRXEYR ) = o(XP)p(YE)p(XH) (V) -,
and
p(YRXPYy R XE ) = (V) p(XP)p(YR)p(XH) -,
forany ki >1, ko >1,k3>1, ks >1,....
The distribution px of X € A is the linear functional P +— ¢(P(X)) defined on the

algebra C[X] of complex polynomials in one variable.

Definition 2.0.4 Let X and Y be Boolean independent, of distributions pux and iy .
The Boolean convolution of px and py is defined to be the distribution of X +Y,

and is denoted as px & fy .

The Boolean Gauss law with variance 02 and the Boolean Poisson distribution with
intensity A > 0 are the probability measures

1 1 1

55,0- + 550- and )\——{—1 ((5() + )\(5,\4_1) y
cf. [15].

3 Boolean Fock space, Brownian motion and Pois-
SON process

We now introduce a Boolean Fock space I',(L?(R;)) with parameter v > 0 as a
subspace of the symmetric Fock space I'(L?(R.)). To this end we define a Boolean
symmetric tensor product. Let
n li il ., .
ZY =3 (tr,...,tpy) eRY = || #|=|, i# ¢,
Y Y

where [z] denotes the integral part of z € R,.
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(froT--o"fu)(tr, - tn) =1 (b, .. tn) fro---0 fulty, ..., tn).

We denote by L%(R,)°™ the subspace of L?(IR,)®" which is the completion of the

vector space generated by

{fl 07“.0’7']0” : fl:---afn € LQ(]R+)}a

with respect to the norm
” ) ”%2 R4 )™ — n! ” ) ||%2(R)®"a n € N,
(Ry)

and denote by I',(L?(R;)) the Boolean Fock space defined as

L(L(Ry)) =P L (Ry)™

neN

For u € L?(R, ), the exponential vector £7(u) is defined as

| R
Eu) =Y EUO "

neN

Let S, =T, (L*(R+)) NS, and let U denote the set of processes of the form

k=n
u:ZFk®hk, F,....F, €S8, hl,...,thL2(R+).
k=1
Let 77 : T'(L*(R;)) — I, (L?(R.)) denote the orthogonal projection on I'.,(L*(R.)),
which can be viewed as a conditional expectation.

Definition 3.0.2 We define the operators V=, al~, al™, al°, resp. V' on S,

u u
resp. U, as
V'™ =V on?, V*t=xg"oVt
and
T — o) 0t — Y oat 37 — 7 6 a° o
a)” =a,on’, alm=n"oa,, a)=7"o0a,on’.

The operator V7" : T'(L?*(Ry)) ® L?*(R;) — I'(L*(Ry)) is closable and adjoint of
VI T(L2(Ry)) = D(LA(R4)) ® L*(Ry):

(V" Fu)reem, yerzmy) = (V" (W)raaw,), FeS, uwel

The operators V7~ and V77 satisfy

k=n
V77 (hy 070" hy) = Z (h,1 Ve SV hy - <>7hn> 7 hy,
k=1
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fis- s fn,9g € L*(Ry), and ), a)° and a)", u € L*(R, ) satisfy
ay” F = (V7" Fu)yree)er®sy): G F=V'T(FQu), aF=V""(uV'"F),

F € S,. The next proposition shows in particular that a]~ + @} has the Boolean

Gaussian distribution %5,||u|| + %5||u||
Proposition 3.0.1 Let h,u € L*([0,7]) and a € C with
lulo =1 and |a*+|h2=1.

The law of a)~ + a)* in the state a2 + h has support {—1,0,1}, with respective
probabilities

1 1
§|Oé - (u’h)2|2= |h|g - |(u, h)2|2’ §|Oj+ (u’h)2|2'

Proof. We determine the action of the Weyl operator exp(z3(a)* +a]~)), by showing
that

exp(2S(a)™ + a) 7)) (a2 + h)
= h—u(u,h)s + (€2 + u(u, h)z) cos(z) + I (au + (u, h)28)sin(z), z € R.

For this we compute by induction:

h, n =20,
(aZJr + az_)n h=14 u(u,h)y, n=2k>0,
(u,h)e, n=2k+12>1,
and

Q, n=2k>0,

v+ \"0O —
CAREAY Q_{u, n=2%+1>1, keN.

Hence the Fourier transform of o)t + @]}~ in the pure state af) + h is given by
(exp(Sz(a)™ + a) ™)) (aQ + h),aQ + h)
= [h5 = [(u, h)2|* + (Ja|* + |(u, h)2|?) cos(z) + S((h, u)ocx + (u, h)2@) sin(z),

z € R. 0

The operators 77, a]~, al™, a]°, acting on the two-dimensional space span(f2, u) can

be respectively represented by the matrices

ool [oo] [Vo] [09]

Hence a)™ + a)~, S(a)™ — al™) and [a) ™, a)t] give a representation of the Pauli

matrices o, 0y, 0.
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Lebesgue measure o > 0. Then
ar’ +al” +alt +a)°
has the Boolean Poisson distribution with parameter o, i.e. a%q (0o + dpt1)-

Proof. Let X, = arn” +a)l~ + alt + al°. We have X,Q = u + o) and X,h =
hu + a(h, u)282, hence (X,)*Q = (a+ 1)FL(u+ a), (Xu)*u = (o + 1) 1 (u + af),
k > 1, which implies

IX - (21)® = )k X Sz(at1)
z\s u Sz(a
Z %l p(Xy) =a Z k! atr1’ )
k=0 k=0
which is the characteristic function of — (50 + aday1)-

We define the processes (4} )icr,, (4] )ier,, (a{°)er, by

T 1 T+ _ 0t o _ 0
ap =0y, G =0, G =07, te R;.

The following result, combined to Props. 3.0.1 and 3.0.2, shows that (a]~ —i—aﬁ)te[on]
is the Boolean analog of Brownian motion, and that (t77 +a]~ + a]™ + a]°)se[o,4] i

a realization of the Boolean Poisson process.
Proposition 3.0.3 let u,v € L2([0,7]).
i) If u,v are orthogonal, then o)~ 4+ a)* is Boolean independent of a)~ + a™.

i) If u,v are indicator functions with disjoint supports, then ar? + al” +alt 4+ al°
and ar"+a]” +a)T +a)°, with o = [;° u(s)ds and 8 = [;° v(s)ds, are Boolean

independent.

Proof. i) This property follows from the facts that

Q, k,l even

k odd, [ even
(u,v)2u k even, [ odd
(u,v)22 k odd, [ odd,

(a)” +a}")*(a)” +a]")' Q=

and
(v, h)o(u,v)ou, k,leven
e ik 1 i ) (0 h)2(u,v)2Q K odd, I even
(ag” + @) (ay + a7 h =9, 1)0 k even, [ odd
(v, h)su k odd, [ odd,
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1 kl, kQ, ... even,

y— YNk (Y~ YH\k2 (,,V— Y+\ks (Y~ YH\ka |, =
e((al” +al)* (a)” +al™)*(a)” +al")?(a)” +a)™) ) {0 otherwise. 0O

ii) The relation uv = 0 implies in the notation of the proof of Prop. 3.0.2:

¢(X51X52X53X54 .. ) = CM(CV + 1)k171ﬁ(6 + 1)]62710{(& + 1)k371ﬁ(ﬁ 4 1)10471 _

= o(X)e(X)e(X2)e(XH) -, ki =Lk 21,
hence the Boolean independence of X, and X,,. .
i1
Remark 1 The sequence (at" + at“+) converges to a; + aj pointwise on S,,
n>1

hence in distribution, as n goes to co. Similarly, the sequence

1 1_ 1, 1,
(twn +a +af +af )
n>1
converges to tI;+a; +ai +ag, pointwise on S, asn goes to co. Hence the Brownian
motion and Poisson process are limits of their Boolean counterparts in the sense of

pointwise convergence on S,.

Due to the non-commutativity of the Boolean independence property, the Boolean
Brownian Poisson processes obtained in this way do not have classical realizations.
Nevertheless, we show in the next section (Prop. 4.0.1) that a)° 4+ a)* 4+ a]~ can be

identified to a multiplication operator by a classical random variable.

4 Probabilistic interpretation of T'y(L*(IR.))

1» In

In the remaining of this paper we set v = 1 and write “¢” instead of “¢
this section we construct a probabilistic interpretation for the Boolean subspace
[ (L*(Ry)) of T(L*(R,)). We show that in this interpretation, a classical Bernoulli
process can be constructed from al~ + alt 4 al°. Consider the space B = RY with

the metric

d(ma y) = sup |$n - yn‘a
neN

and the probability measure defined on cylinder sets as

1

P({o  (onsoon) €)= gg [ dtieedta ki # e dEN.
EN[-1,1]d

The coordinate functionals

0,:B—>R, keN,

10



T,=k+(1+6)/2, keN,
be the kth jump time of the point process (Y (¢))icr, defined as

Y(t) =) g eolt), te€R,. (4.0.1)
keN

For bounded A € B(R,), let
FA:U(Zlo(Tk) : OCA, OEB(R+)),
k=1

and F; = Floy, t € Ry. We define the filtration (ft)teR+ as F, = Fo, t € Ry,
where [t] denotes the integral part of t € R. The compensator (4)tcr, of (Y (t))icr.,

with respect to its natural filtration (F;)er, is

1
Z 71[19,Tk[(t)dta
550 k+1—t
cf. [6], and (Y () — ¢);>0 is not a (F;)-martingale. For f, € L*(R;)°", denote by
I,(f.) the (F)-adapted iterated stochastic integral with respect to the compensated
process (Y (t) — t)ier,:

[tn] [t2]
£) = n'// Fult, oo b d(Ye — 1)« d(Yi, — t).

Let
k+1

:{feLZ(R+) : f(t)dt =0, keN},

k
let K" = L*(R.,)°" N K®" equipped with the L?(IR,)°" norm, and let ®(K) be the
subspace of I';(L?*(R.)) defined as

®(K) =P K™
n>0
For f, € K°™ we have
in(fn) = Z fn(Tku-- Tkn Z In Tkl""JTkn)7
k1% Fkn k1<--<kp

and

E I:jn(fn)im(gm)} = 1{n:m}n!(fnagm)L2(R+)®na fn € Kon’ Im € K™,

11



¥ : ®(K) — L*(B)
fo = Lu(fa)

is bijective since the set of multiple stochastic integrals is total in L?(B). The
exponential vector £1(u), u € K, is here identified to

Ew=Y —h@) =1+ Y i) ulli,) = [[0+u(T),

neN n>1l ki<-<kp neEN

Under this identification, any square-integrable (F;)-adapted process u € L*(B) ®
L?(R.) belongs to Dom(V!*), and

Vi (u) = /OOO u(t)d(Y (t) — t), (4.0.2)

cf. Corollary 1 of [11]. Let mx : L*(Ry) — K denote the orthogonal projection on

K. The following proposition shows that the process (am{l[0 q +a71r:1[0 q +a7rK1[0 t])teRJr

is identified to the classical compensated process (Y (¢) — t);cr,. This result corre-
sponds to the fact that the linear combination zo, + yo, + 20, + t can yield all

S(alt — al7) and

Bernoulli probability laws for z,y,2,t € R, when a't + al~

[ai~, al™] are identified with the Pauli matrices o,, 0y, 0, acting on span($, u).

u I

Proposition 4.0.1 Let u € K. The operator al™ + al™ + a.° is identified to the
multiplication operator on ®(K) NS, by the single stochastic integral I (u).

Proof. The proof follows by application of the following Lemma. -

Lemma 1 Let u, f € K such that uf € L?>(R,). The multiplication formula for the
multiple stochastic integral I,(f") and I(u) can be stated for n > 1 as

L(f") () = i (f" o u) + nlp((uf) o FOO) + nly 1 (f (%, ), u())a)-
Proof. We have

L(f™)h(u) = Yo F(T) - f(T)ulTh,,)

k17 Fkn k1

= Z f(Tkl) s f(Tkn)u(Tkn+1)

ki#-Fknt1 -
i X @) ) (AT - [ faut)
1Ak Fon
kn+1
w0 S (@) f(T ) / FOu®dt. O
k1o hn kn

12
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In this section we link the uniform distribution to a discrete law (Prop. 5.0.2) by
addition of a number operator defined via a discrete-time quantum stochastic cal-
culus. We start by considering a different approach to non-commutative stochastic
calculus, allowing to write the multiplication operator [;° u(t)d(Y (¢) —t) as a sum

of a gradient operator and its adjoint.

Definition 5.0.1 Let P be the set of functionals of the form f(fq,...,0,_1), f poly-

nomial, n > 1, and let V be the set of processes u of the form

k=n
U:ZFk@)uk, F,...,F,€P, uy,...,u, € L*(R;), neN.
k=1
The sets P and V are respectively dense in L?(B) and in L?*(B) ® L?(R;). We
now define a gradient operator by perturbation of the jump times of (Y'(¢))cr., cf.
(4.0.1), i.e. by differentiation with respect to the coordinate functionals (6)xen-
Define

D: I*(B) — L*(B) ® L*(R,)

with
n

Df(@os---0n) = > (6 — Dz (6) + (O + Dl ) (1) 0f (Go, - - 6), ¢ € Rey,

k=1

cf. Def. 2 and Def. 3 of [11]. The operator D is closable and admits an adjoint
6 : L*(B) ® L*(Ry) — L*(B).

Proposition 5.0.1 We have the identity

5(v) = /0 T o(s)d(Y(s) — 5) — /0 " Du(s)ds, vev. (5.0.1)

Proof. cf. Prop. 5 of [11]. -

Consequently, if v € L?(B) ® L*(R..) is (F,)-adapted, then v € Dom(4) N Dom(V'+)
and 6(v), V'*(v) both coincide with the stochastic integral of v with respect to
(Y'(t))ter,, compensated with dt:

5(v) = V' (v) = / oY (1) - 1).
0
We can now state the definition of the three basic operators.
Definition 5.0.2 For h € L*(R.,), define the closable operators a, , a5, a, on P as

iy F = (DF,h)y, @F =26 (h(-)D_F) , @ F=58h®F), FeP.

13
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tER+,5:—,O,+.

Corollary 5.0.1 The operator a; + a; is the multiplication operator by Y (t) —

te Ry, and (a; + df)terw is identified to the classical process (Y (t) — t)er,, -

Proof. This follows from Prop. 5.0.1.

O
We define the mapping i : L?(B) ® I*(N) — L*(B) ® L*(Ry) as
i(u) =3 g (06 — D (t) + 0k + 1)jp ke (1), t € Ry (5.0.2)
k=1

With this notation we have D = i o D, where D : L?(B) — L?*(B) ® L?*(N) is the

discrete-time gradient densely defined as

Df(bo,...,0n) = (Def(Oos---,00))ken = (Ocf(Bos---,0n))pen» T € R4
The definitions of a;', a, , a; can be extended by letting h equal the random process
i(er) :== ((Ok — 1)Lz + (0 + Dl k1)), k€N,
where (e )ren denotes the canonical basis of 2(IN).
Proposition 5.0.2 Let s € R\ {0}. The non-commutative random variable
A5,y + S50, ) — S5d;,,) + 5°(1 — 67)

has a discrete distribution p carried by {n(n+1) : n € N} and given by

n+1/2
p (4 D) =72 (g @), nen (5.0.3
Here [J,, p > 0, denotes the Bessel function of the first kind, defined as
2/4
R.
( ) Zk'Fp—i—k-l—l) ve

For the proof of Prop. 5.0.2 we will need the following Lemmas.

Lemma 1 The operators Ezi’(e’c), a EL;E%) satisfy

;?(ek)’

Gy S () = (1 = 00)0F (Ok), G5,y = —(1 — 05)0" F (Ok) + 2040 (00,

and

Uy = —(1 = 07)0f (0x) + 261, f (O)-
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D as D =io D. Using the duality between D and ¢, a one-dimensional integration
by parts on [—1,1] gives az(e y = —(1—07)0% f(6k) + 26,0f (0x). The last relation is

obtained from a Uj(er) = Z(ek Dk, k> 0.
O

Consequently, &Z‘.&k) + &i(ek) is identified to a multiplication operator:

o)t Uioy) = 20k, k€N, (5.0.4)

i(ex

and @} ) + G, has a uniform distribution on [-2,2]. Defining the Hermitian

i(ek

operators Q = d, +a;,, Py = 3(a, —ay), Pr= Py, Qi = Q1 t € Ry, we have

Qite) S (Ok) = 205 f (), Py f(O) = —S(=2(1 — 63)0f (0x) + 201 (%))

Lemma 2 For s € R,
S o S o
exp (%§Qi(ek)) Uj(ey) €XP (_%EQ“E’“)> = Gj(ey) — \ssaz(e )+ Sy, + s2(1—62),

and the following commutation relations hold:

|:~Z_(€k)7~z(el):| —2(1 — 07)1 =13, (5.0.5)
[ i(eg) anzek ] S§(1 ) (5.0.6)
[a’i(ek)7 Qiter)] = SPiey); k,l € N. (5.0.7)

Proof. We omit the index k£ and use Lemma 1. We have

@ exp (~330) £(0) = (—(1 — 67)3 +209y) (£ () exp(~Ss0))
= —(1—0%)(-2Ssf'(0) exp(—Ssh) + f"(0) exp(—Is8) — s> f(0) exp(—Is0))
+2(—Ssf(0) + 01 (0)) exp(—Ssh),
hence
exp (Isf) @ exp (—Js8) = (—(1 — 6%)0; + 200) f(0) + Is((1 — 62)9y — 20) £(6)
+3s((1 = 0%)3) £ (0) + s°(1 = 6°) f(0)
= a°f(0) — Ssa" f(0) + Isaf(0) + 5°(1 - 6%) £ (0).
On the other hand,
[@,at] = (1-6%)0(-(1—6%09)+20(1—6%)0+ (1 —6%)0((1 — 6%)0 — 20)
= —(1-6%%0*+20(1 —6*)0+20(1 — 6*)0 + (1 — 6*)°0°
—20(1 —6%)0 — 20(1 — 0*)0 — 2(1 — 6%) = —2(1 — 6?),

15



(—(1 —6%)05 + 2009)(0£(0)) — 0(—(1 — 6°)05 + 2605) f (6)
= —(1—0°)(2f'(0) + 01"(0)) +20(f(0) + 05" (8)) + O((1 — 6%)9; — 200,) f (6)
= 2(1—-0%f'(0)+20f(0) =IPf(H). O
Proof of Prop. 5.0.2. Let R,, n > 0, be the Legendre polynomial of degree n, which

satisfies the differential equation

(1 —2*)R!(z) — 2zR. (v) + n(n + 1)R,(z) = 0, (5.0.8)
and the orthogonality relation

1

1
2= 1= N.
/_1 Rn(ﬂi)Rm(SE)d.’L'/ om+ 1 {n=m}, T, M €
We have
50 R (0) = 0D R, (6x) = n(n + 1) R (6x), k,n € N. (5.0.9)

From Lemma 2, the law of @, ) + Ssdy, \ — Isa,,, ) + s*(1 — 67) in the vacuum
state €2 is the same as the law of Ogle,) in the state exp (%%Qi(ek)) Q, cf. [1]. From
(5.0.9), the spectrum of @° is {n(n+1) : n € N} and the Legendre polynomial R,
is eigenvector for a° of even eigenvalue n(n + 1) € IN. In order to determine the law
of @° in the state exp(Qisz), it is sufficient to decompose exp(Ssz) into a series of

Legendre polynomials. From [12], p. 194, we have

1
dz m!
"R, (x)— = )
/_1 (@) 2 (m=-n)lllm+n+1)!
if m — n is even and m > n, with
pll = H (2k), p even, and pl! = H (2k + 1), p odd.
0<2k<p 0<2k+1<p

For other values of m, n, the integral is equal to zero. Using Legendre’s duplication
formula (cf. [4], p. 64):

T@T(a+1/2) 7

r2ay e € Bs
where I' is the Gamma function, it follows:
LS dy (3s)%* = s)%*(k + n)!
Ssyp A fo WY n
/16 n(v)3 (3s) Z(2k)”(2k+2n+1 T k:()k 2n—|—2k+1)
0 (\ss)%

= /m(32s)" Z 22n+2k+1k!r(n +k+3/2)!
. 1H-1/2 2/4
- [( ) Zk'Pn+/€+3/2 [Jn+l/2
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Ser O Yo d
e s = Z <\/2n +1 /_1 e"san(y)?y> V2n + 1R, (x)

n=0
gives (5.0.3), since

2

dy

— O
2

i+ D) = [VEFT [ R,

6 Quantum stochastic calculus by time changes

In this section, ®(K) = @,y K°" is identified to L*(B) and we use the decompo-
sition
G+ = aq,10,F Oreipy T Oy = V() = Diery

Tr 1ot Tk 10, Tk 10,

of (Y (t) — t)ier, in annihilation parts to construct a non-commutative Itd calculus.
For f € [?(N) with finite support, define the exponential functional

CHf) = exp (Z flcelc) ;

kEN

and denote by = the vector space generated by such random variables, which is
dense in L?(B, P). Let A € B(R). Denote by ¥4 the set of operators in A4 with
P|JE C Dom(X), that can be written as X ® Iy on I'(L?*(A)) ® T'(L?(A°)).

Definition 6.0.1 A process (X (t))ier, of operators is said to be (F;)-adapted if
X(t) € \II[O,[t]]; teR,.

We start by defining quantum stochastic integrals of simple adapted processes.

Definition 6.0.2 If (X (t))wcr, is a simple adapted process of operators of the form
X(t) = ZXil[i,i—f—l[(t): teRy, nel,
i=0
where X; € Yo, 1 =0,...,n, let

t i=n
/0 X(s)da; = ZXidi[i/\t,(i+l)/\t[’ E=ot (6.0.1)
=0

The following proposition extends this definition to non-adapted processes, provided

smoothness conditions are satisfied, see also [5].

17
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/X )da, F = /X(S)DSFdS, /OOX(s)da;F:S(X(-)D.F), (6.0.2)

/Ooo dif X (s)F = 6(X(-)F), /OOO da; X (s / D,X(s)Fds,  (6.0.3)

provided XF = (X (t)F)wer, satisfies respectively X DF € L*(B)® L*(R,), XDF €
Dom(3), XF = (X(t)F)ier, € Dom(d), DXF € L*(B) ® L*(R,), F € L*(B).

These definitions coincide with Def. 6.0.2 on simple adapted processes.

Proof. We have D; = D; ® I on T'(L*([0,1])) ® T'(L?([z, 00])), hence X (s) commutes
with D; for s € [i,i+1[, i € N, and

X (s)DyF = i,(X(s)DF) = D, X(s)F, a.s., F€Z, s€ Ry, (6.0.4)

hence X DF satisfies the conditions of Def. 6.0.1, and (6.0.1) is equivalent to (6.0.2)
and (6.0.3) on simple (F;)-adapted processes, from Def. 5.0.2.
O

The integral [;° X (t)da; is defined by duality from [;° da, X (z)*. Conditions for the
existence of the stochastic integral of adapted operator processes as an unbounded
operator on the vector space = of exponential vectors can be obtained from the next

proposition:
Proposition 6.0.2 Let (X(t))icr, be a simple adapted process in A. We have
o [ X = €. [ hX ),
C(f),¢(g) €E, e =—, 0,4+, with
hy =i(g), h-=1i(f), ho=1i(f79). (6.0.5)
This shows that if (X (t))er, s an (F;)-adapted process of operators such that

(X(OC())iery € L*(B)® L*(Ry), VY ((f) €E,

then fo s)da, is uniquely densely defined. We have

gLAmX@MfC /‘X'*~“<><U» ¢, Clo) €5,

if (X(1))ier, and its adjoint (X (t)*)ier, are simple adapted processes that satisfy

the above conditions, with e = +,0, — respectively if ¢ = —, 0, +.

18
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i(f)C(f)- The last relation is a consequence of the duality relations between a,” and

a,

and of the self-adjointness of ag, cf. [1], [10] for the analog statements for p

respectively Gaussian and exponential.
O

Proposition 6.0.3 Let X, Z be simple (]:"t)—adapted processes in A such that = C
Dom(X(s)Z(s)), s € R;. We have the equality

/0 X (s)da /0 Z(s)dan — /0 dazX () ( /0 s Z(u)dag> + /0 t ( /0 S Xuddi> 2(s)da?
" /otX(S)Z(S)d&E - dag, (6.0.6)

where the composition of operators holds in the weak sense and the product da:, - da’!

1 given by the multiplication table

: da; | da;
da; | 0 0
day [dY(t)| O

Proof. The statement of (6.0.6) in the weak sense means the following identities,

which will be proved using the duality between 6 and D:

( /0 ' 2(s)daG, /0 X (s)"da- F)

= /0t</08 Z(u)dagG,X(s)*DsF)dH/Ot<Z(s)G, D, /OSX(U)*da;Fms,

( /0 ' 2(s)diG, /0 X (s)"dat F)

_ / DG, /0  Z(uy'dat X (s) Fds + /0 (D, /0 X, di= Z(s)G, F)ds,

(/ s)dal G, / X (s)*da] F)

— /(D X(s )/SZ(u)da;G, F)ds+/0t(Z(s)G, /0 D, X (u)*da;} F)ds,
/ X (5)2(s)GdX (s), F),

( / §)di=G, / X (s)*di- F)

_ /0 ( /0 Z(u)di= G, X (s)" Dy F)ds + /0 ' Z(5)DAG /0 ' X (u)da=F)ds,
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for X = Z = 1pp5. We have
t B t B
@ G.a F) = ( / DuGdu, / D, Fds)
0 0
t s t u
= / / (DG, D,F)duds + / / (DG, D,F)duds
0 0 0 0
-G (1[O,t](-) / Dquu),F>+<G,S(1[O,t](-) / Duqu>>
0 0
t t
= (/ d&j&;G,F)Jr(G,/ dala; F)
0 0

t t
= (G, (/ ajd&s+/ d&sas) F), F,GeP,
0 0

(@ FaG) — /0 G F, D.GYds + (F /0 GGV (s) — 5)) /0 (D.F.6-G)ds

and

= / t(de, D,G)ds + (F, / t data; G)
’ t t O,.,
+(F,/0 da;a;&*)-/ﬂ (DsF,a;G)ds
= /0 t(&jF, D,G)ds + (F, /0 t da; a; G)
= (F, /Ota;da;G>+(F,/0tda;a;G), F.GeP.
Finally,
(@HF.arG) = /0 GTFA(Y (s) — ). G) - /O (@ F. D,G)ds
+(F, /O "G GA(Y(s) — 5)) /0 (DF.atGyis + (Y()F.G)
_ /0 GG E G+ /0 CdiitE.G) /0 Gt F, D,G)ds
+(F, /0 4Gt atG) + (F /O dGTarG) /0 (DJF. 6 G)ds + (Y (1)F.G)
— /0 "diatF.G) + (F /0 diSaG) + (Y (), G)
_ (/Otda;ajF,G)—i-(/()ta;d&jF,G)—i-(Y(t)F,G}, FGeP. O
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