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1 Introduction

The fractional Brownian motion (fBm) of Hurst parameter H € (0,1) is a
centered Gaussian process B = {By,t > 0} with the covariance function

(see [13])

1
E(B/B,) = 5 (s*H 427 — |t — 5?H).
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There has been a recent development in the stochastic calculus with respect
to this process. Different approaches have been used to define stochastic
integrals and to establish change-of-variable formulas (see, among others,
[1, 2, 4, 5, 6, 7, 10, 12, 19]). The purpose of this paper is to establish the
following version of Tanaka’s formula for the fractional Brownian motion,
assuming H > %:

t
|B — a| = |al +/ sign(Bs — a)dBs + LY. (2)
0

The stochastic integral appearing in this formula coincides the divergence
operator with respect to the fBm, and L{ is the density of the occupation
measure I' — 2H f(f 11 (B,)s?~1ds. This result extends the classical Tana-
ka’s formula for the Wiener process (H = 1), where L{ is the local time of
the Brownian motion, and the stochastic integral is an It6 integral.

The paper is organized as follows. Section 2 contains some preliminaries
about the stochastic calculus with respect to the fractional Brownian motion.

In Section 3 we show that the local time, defined formally as
t
L} = 2H/ 6a(By)s*1ds,
0

exists in L?(f2), and we compute its Wiener chaos expansion. Section 4 is
devoted to establish Tanaka’s formula and its application to a generalization
of It6’s formula to convex functions.

2 Preliminaries

Let B = {By,t € [0,T]} be the fractional Brownian motion (fBm) with Hurst
parameter H € (0,1), that is, B is a zero mean Gaussian process with the
covariance function

R(t,s) = % (7 + 27 — o — 7).

We know that B admits an integral representation of the form

t
B = / K(t, 5)dW,,
0



where W = {W;,t € [0,T]} is a Wiener process, and K(t,s) is the kernel
(see [2, 6])

K(t,s)=cy(t—s)f24+s03F ( ) (3)

cy being a constant and

Fi(2) = cu (% —H) /OZ_IOH“ (1-@+1" ) a.

This kernel satisfies the condition (see [13]):

O (t5) = en(H — ()t — )", (@

It is possible to construct a stochastic calculus of variations with respect
to the Gaussian process B, which will be related to the Malliavin calculus
with respect to the Wiener process W. We refer to [2] for a complete expo-
sition of this subject. We recall here the basic definitions and results of this
calculus.

Let I,,(fy) denote the multiple stochastic integral of a symmetric kernel
fn € L?([0,T]") with respect to the Wiener process W. Given a square
integrable random variable F € L?(f2) with the Wiener chaos expansion
F =32 o In(fn), we consider the Ornstein-Uhlenbeck operator

==Y nlu(fn)-
n=0

If p € (1,00) and a € R we define the Sobolev spaces D*P as the closure of
the set of polynomial random variables with respect to the norm

1 llap = (I = L)% Fl| 1o o

We denote by D the derivative operator, defined on multiple integrals
as Dy(I,(fn)) = nlu—1(fn(-,t)). The operator D is continuous from D*?
into D* 1P (L2([0,T])). The adjoint of D is called the divergence operator,
denoted by 4, and it is continuous from D*P(L2([0,7T])) into D*~1P. We
denote by Domd the domain of the divergence in L?(2). The operator §
defined in Domd coincides with an extension of the It6 stochastic integral to



anticipating processes introduced by Skorohod in [18]. For this reason, the
operator ¢ is also called the Skorohod integral, and denoted by

T
d(u) :/ usdWs.
0

We can also develop a stochastic calculus for the fBm B. Now the basic
Hilbert space L?([0,T]) will be replaced by the Reproducing Kernel Hilbert
Space (RKHS) #H of the fBm, defined as the closure of the linear span of
the indicator functions {1jo ,,% € [0, 7]} with respect to the scalar product

(Lo, 1[0,5]) 4 = R(t,5)-
We denote by £ the set of step functions on [0,7]. Consider the linear
operator K from € to L?([0,T]) defined by

T
x oK
(K1) (s) = @(s) K(T, 5) +/ [o(2) = @(s)] (2, s)dt.
S
In the case H > %, this operator can be simply written as

T
(Kp)(s) = / o2 1, )

This operator satisfies the duality relationship (see Lemma 1 in [2])

T T
/ (K ) (6)h(t)dt = / (1) (Kh)(dt),
0 0

for all ¢ € £ and h € L2([0,T]), where (Kh)(t) = fJK(t,s)h(s)ds.
As a consequence, the RKHS H can be represented as the closure of £
with respect to the norm ||¢[|,, = ||K}<p||L2([O 77)> and the operator K7, is

an isometry between H and a closed subspace of L2([0,T]), that is,
H = (K7) " (L*([0,T7))- (5)

This isometry allows us to establish relationships among the derivative and
divergence operators with respect to the processes W and B. We will add
a superindex (or subindex) B to denote the spaces and operators for the
process B. More precisely, we have:

(i) D*? =D%?, and K5 DBF = DF, for any F € D*P.

(ii) Domdé? = (K})*1 (Domd), and 68(u) = §(Kju) for any H-valued
random variable u in Dom §%.



We will make use of the notation 62 (v) = fOT vsdB; for any v €Dom §5.
Hence, if v €Dom 67, then

T T
/ wedB, = / (Ku), dW,. (6)
0 0

The random variable 6% (v) can be interpreted as a stochastic integral
defined as the limit of Riemann sums constructed using Wick products (see
(2, 10]).

We recall the following basic lemma, on the divergence operator:

Lemma 1 Let u, be a sequence of elements in Dom 68 which converges
to u in L*>(Q;H). Suppose that 6B (u,,) converges in L2(Q) to some square
integrable random variable G. Then u belongs to the domain of 6% and

68 (u) = G.

We will denote by ¢ a generic constant that may be different from one
formula to another one. Moreover, by convention K(¢,s) =0 if s > ¢.

3 The local time of the fBm

Let B = {By,t € [0,T]} be the fBm with Hurst parameter H € (0,1). We
define the local time L{ of the the process B as the density of the occupation
measure

t
my(T) = 2H /O 1p(By)s*H ~ds.

It is well-known (see Berman [3] and Geman and Horowitz [9]) that
the occupation measure I' — fg 1r(BH)ds has a density A\¢ which has a
continuous version in the variables a and ¢ . More precisely (see Table 2

in [9]), A¢ has Holder continuous paths of order § < 1 — H in time, and

of order v < % in the space variable, provided H > % Moreover, A¢

1
3
H< é, and its smoothness in the space variable increase when H decreases.

is absolutely continuous in q if H < it is continuously differentiable if

The local time L{ appearing in formula (2) is related with A¢ by the equality
L¢ = 2H [} s?"~1)\%(ds) , and the Holder continuity properties of A¢ can be
transferred to L{. In fact, integrating by parts we can write

t
L¢ = 2HE?H 1N — 2H(2H — 1) / s2H=2)\4s.
0



Moreover, being the density of the occupation measure, L{ is a nonde-
creasing function of ¢, and the measure L?(dt) is concentrated on the level
set {s: By = a}.

Let

Pe(7) = e 2 (7)

be the heat kernel with variance € > 0. We denote by H,, the nth Hermite
polynomial defined for n > 1 by

M)

(=)™ &2 d" a2
Hyla) = e 2o ),

and Hy(z) = 1. Following the arguments of [16], in this section we will show
the following result:

Proposition 2 For each a € R, and t € [0,T], the random variables

t
ZH/ pe(Bs — a)s*1ds
0

converge to LY in L?(Q)) as € tends to zero. Furthermore the local time L§
has the following Wiener chaos expansion

0
rp=2my / SO o @) o) (K (s,) ") ds. (8)
n=0"0

Proof: Let us first compute the Wiener chaos expansion of p.(Bs — a), for
any s > 0. Stroock’s formula (see [15]) says that any random variable F’
belonging to the space (>4 *2 has the chaos expansion

F=Y" Ly, [E(D"F)], (9)

n™"
where D™ denotes the nth iteration of the derivative operator D. We have
D" [p.(B; — a)] = p{™ (B, — a)K (s,-)*". (10)
By the semigroup property of the heat kernel,

E (pe(Bs — a)) = pser . (a). (11)



As a consequence, using the reccurence formula for the Gaussian kernel

x

() () = (=1)™nle 2 p(z n(—),
p(z) = (—=1)"n! p()H(ﬁ)

we obtain
B(p(B, ) = (-1 F (B, ~a)

= (-1)"p%h, (a)

_n a
= 7’1,' (32H + 6) 2 pS2H+E(a)Hn(ﬁ). (12)
Hence, applying (9) to F' = p(Bs — a) and using (10) and (12) yields
o
pe(Bs - a) = Zﬁn,s(s)In(K(sa _)®n)’ (13)
n=0
where
_n a
Bng(s) = (s*7 +¢) 2 ps2H+€(a)Hn(ﬁ). (14)

From (13) we deduce the Wiener chaos expansion

©
/tpE(BS — a)SQH—ldS = Z/ Bre(8)In, (K(s, _)®n) 2H-1 4
0 n=0"0

We will prove that this expression multiplied by the factor 2H converges in
L?(9), as ¢ tends to zero to the right-hand side of (8). It is clear that for
any n > 0, the multiple stochastic integral in the above expression converges
in L2(Q), as ¢ tends to zero, to

t
/ S_anSZH (a)Hn(siH)In (K(s, -)®") s2H—1(s.
0

Set

t 2
ane =F (/ Bre(8)I, (K (s,)%™) 32H_1ds> .
0
Then, it suffices to show that

li =0. 15
Jimsup 3 one o

n>N



We have

t t
Ope = T n u’_®n n 'U>'®n
o= [ [ B @K R E )
X P () B (v) (uv) "~ dvdu
t u
= 2n! U, V)" B (1) Br.e (v) (wv) 2 L dvdu.
= 20t [ [ RO B () () ) v (16)

0

We recall that
—2/2 _ ( 1\[2] nﬂi © n —g2
Hy(y)e ¥ /%= (-1)2/2 ”L!\/7_T/0 s"e g(ysx/ﬁ)ds,

where g(r) = cosr for n even, and g(r) = sinr for n odd. Majorizing |g| by
1, we obtain the estimate

3 2%—}—1 oo 3
] = 2 [
< c
~ nn—2)(n-—4)
< ¢
—22[3]!

Substituting this estimate in (14) yields

C  —(n+V)H
Bnel)] < gz 7,

and from (16) we can estimate the term «, . as follows

vl

t U
ane<en [ [ Rl @) dud,
0 JO

cn!
2([51)°

By the scaling property of the fBm we have R(u,v) = R(1,2)u
Hence, making the change of variables 7 = z yields

t pu t ol
/ / R(u,v)" (uv)(l_")H_1 dvdu = / / R(1,2)" w10 H =1 g gy,
0 Jo 0 Jo

t2H 1

- n (1-n)H-1
o J, R(1,2)" z dz.

where ¢, =



Suppose H < % We claim that

R(1,z) (14 22H —(1—2)*H <
2H 2zH =E

Indeed, the function f(z) = 1 — 227 — (1 — 2)?# is nonpositive in [0, 1],
because f(1) = f(0) = 0 and f is increasing in [1/2,1] and decreasing in
[0,1/2]. Hence,
Cn
< — -
e =+ )H’

and (15) holds because, by the Stirling formula, ¢, behaves as ﬁ

Suppose now H > 1/2. In order to show (15) it suffices to check that

— 1 ! (1—n)H-1
— | R(1,2)" 2" 7 dz < oo 17
> ) R0 (1)

Notice that for any positive numbers a < 1 and 1 < p < 2

00 1 [ee) 1/p 1
—a" <c a™ <cp—m—.
> <o (S) <o

Hence,

n _(1—n)H—1
nE_I\/ﬁ/o R(1,2)" z dz

' TN A vt A
< ¢ [1 — (R(1,2)2~") ] 277 dz < 00,
0
provided p > 2H, because in a neighbourhood of 1 the function
-1/
[1 - (R(l,z)z_H)p] 8

behaves as p(1 — z)~2#/? | and (17) holds.

Finally we have to show that the limit of 2H f(f pe(Bs — a)s*H~1ds, de-
noted by A is the local time L{. The above estimates are uniform in a € R.
Therefore, we can conclude that the convergence of 2H fg pe(Bs—a)s?H1ds
to A¢ holds in L2(Q x R, P x p), for any finite measure u. As a consequence,
for any continuous function g in R with compact support we have that

217-1/]R (/Otps(Bs - a)SZHlds) g(a)da

10



converges in L*(Q) to [ Afg(a)da. But, this expression also converges to

t
2H / g(Bs)s*T1ds.
0

Hence,

t
/A?g(a)dazQH/ g(By)s*1~1ds,
R 0

which implies that A} = L{.0O0
Remark 1
In the particular case a = 0, we obtain the Wiener chaos expansion

0 — (1—2k)yg—1 V2H(-1)" -
b kz_%/o i /m2kk! Lo, (K(Sa ) ) ds.

Remark 2

As in the paper [16] we can introduce the composition d,(Bs), which is
a distribution on the Wiener space in the sense of Watanabe. Actually it
belongs to the negative Sobolev space D™52, and it has the Wiener chaos
expansion

o0

6.(Bs) =Y s ™ ppon (a)Hn(siH)In (K (s,)®").

n=0

Then, the local time can be formally written as
t
LY = 2H/ 64(Bs)s*Tds.
0

Remark 3
If H < 3, the proof of Proposition 1.1 shows that f(f 8a(Bs)s*1ds
belongs to the space D2, for any a < 1/2.

4 Tanaka formula for the fractional Brownian mo-
tion

Using the stochastic calculus for the fractional Brownian motion developed
in the paper [2] we are able to deduce a Tanaka formula. We will consider
first the case where the Hurst parameter is larger than %

11



4.1 Case H > 3

Theorem 3 Let B = {By,t € [0,T]} a fBm with parameter H > 5. Then
t
|B; — a| = |a| +/ sign(Bs — a)dB; + L. (18)
0
Proof: Consider the heat kernel p.(z) introduced in (7) and define

F(z) = 2/$ pe(y)dy — 1,

—0o0

and

Fo) = [ " y)dy.

Notice that

o0 ZQ
Fl(z) = (1 — 2/ v \/12_71—6_sz> signz. (19)

Then F!(z) converges to sign(z), and F.(z) converges to |z| as ¢ tends to
zero. By Itd’s formula of [2] we can write, for any fixed a € R

t
F.(B;—a) = F.—a) +/ K; [Fé(Bs — a)] dW,
0
t
+2H / pe(Bs — a)s*171ds, (20)
0
where

¢
K/ [F/(Bs —a)] = / F!(B, — a)aa—lf(r,s)dr.

S

Clearly F.(B; — a) converges to |B; — a| as € tends to zero in L?(Q). We
claim that

{K} [F{(Bs —a)] s €0,1]}

converges in L2([0,t] x Q) to {K; [sign(Bs — a)],s € [0,]}. In fact, for all
a € R, and for all ¢ > s we have, by Jensen’s inequality and the estimate (4)

12



E/Ot (/St |F!(B, — a) — sign(B, — a)| ‘%—If(r, s)
< cE/Ot (/: |F!(B, — a) — sign(B, — )|’ (r - s)H—idr> ds

t
< cE’/ |F!(B; — a) — sign(B, — a)|2 dr,
0

which clearly converges to zero as ¢ tends to zero.

2
dr) ds

The proof follows taking the limit in L?(Q) as ¢ — 0 in the equation

(20), and using Lemma 1 and Proposition 2. O

In the same way we can prove the following additional versions of Tana-

ka’s formula:

t
1
(Bi-a)t = (=0 + [ oo (BB, + 5T,

t
1
(Bi-a) = (-0~ [ Lo (BB, + 3L
0

4.2 Case ; < H <3

We begin with the following technical estimation.

Lemma 4 Fiz 0 <s<t<T and a € R. Then

P(B; < a,Bs > a) < Crg(t — )7 s72H,

where Ctq = (\T[Tb; + \[2—‘7:_”) .

Proof: We will make use of the decomposition

R(t,s)

B, =
R(s, s)

X +0Y,

(21)

(22)



Notice that X and Y are independent N (0, 1) random variables. As a con-
sequence,

2+2

1
P(Bt <a,B; > a’) 271. /]R? {V/R(s,5)x>a} {0y+jﬂ$<a} dody.

We make the change of variables

a
z=rcosf + ———,
38, 8)
. a R(s,t)
= 0+ —(1- ’
v=rnd 2 (1= 7525)
and we obtain
argtan — —~or2l R(S £)

P(B: < a,Bs > a) =5 / r dT/ TVRG) e 2P0 gp, (24)
7r

where

ety = (rewo Y 4 (ramo 2 (1 HeB))”

Let

s
2

1 1 R(s,1)\?
2: . 1_ 7
g R(s,s>+o2( ) ’

and consider a 9 € (7, 7) such that

pcosy =

s = (8.

With this notation we can write

P(r,0) = 1*+ad*p* + 2arpcos(6 — )
> (’I" - |(1|p)2’

14



and we obtain

/ re~ 3P0 gp
0

Substituting (25) into (24) yields

P(B,

< a,Bs>a)

o0 1
< / re~2(r=lale)* g
0

S 67%(‘a|p)2 + |a|p\/27r —

R(s,t)

c
<2 argtan —————— +
T 2w ( & o/ R(s,s)
2w\ 2 o+/R(s,s)

Taking into account that for any z > 0 we have

1
—argtan — < z,
T

we can deduce the following estimate:

P(B; < a,Bs >

0 < c,0y/R(s,s)

27 R(s,t)

¢ [R(t,t)R(s;s
27 R(s,t)?

We have, using the decomposition B; = B; + By — B;

R(t,t)R(s,

and

Hence,

s)

— R(s,t)* = E(BE)E( 9 - (E( ))2
— B ((Bi- B)) BB
< E((B:—B)*)E(B
R(s,t) > %SZH.
R(t,t)R(s,s) _
\/W—lﬁ\/ﬁ(t—s)}[s H

15

) 1.

E((B:

™

2

(25)

(26)
- BS)BS))2

(27)



On the other hand, a simple computation yields

5 E ((B; — Bs)?)
P = R({t,0)R(s,5) — R(s,8)2’

and, consequently,

\/R(t’ t)R(Sa 3) 1= E ((Bt - BS)2) < Q(t B S)HS—2H (28)

R(s,t)? B R(s,t) -

Substituting (27) and (28) into (26) we get

TH 2
+ \/_\a|> (t — S)HS—QH’

Ver o T

which completes the proof of the lemma. [

P(B; < a,Bs >a) < (

Remark 4
In the case a = 0 the proof of the above lemma yields the explicit
expression

1 R(s,t)
P(B, < 0,B, >0) = | VR OR(s,5) — R4, 5)2

arg tan

27

Proposition 5 Suppose that % <H< % Then, the process

{/: [F!(B, —a) — F/(Bs — a)] %—K(r, s)dr,0 < s < t}

(A

converges in L2([0,t] x Q) to the process

¢ 0K
{/ [sign(B, — a) — sign(B; — a)] W(r,s)dr,O <s< t}
S
as € tends to zero.

Proof: Notice first that

B /0 t ( / ' sign(B, — a) — sign(B, — a) ‘%—f(r, 5) dr>2ds <oo. (29)

Indeed, using the relationship

sign(B, — a) — sign(B; — a) = 2 (1{B,>a,Bs<a} — 1{B,<a,Bs>a}) ,

16



we obtain that the expectation in (29) is bounded by

t s ot
4/ (/ P(B, < a,B; > a)'/? oK
0 s

2
W(T’S) dr) ds
t t 0K
+4/ (/ P(B, >a,Bs; < a)l/2
0 s

dr>2 ds,  (30)

E(Ta 3)

and applying the estimates (23) and (4), and using that —B has the same
distribution than B, we get that (30) is bounded by

t t 3H 3 2
cT,a/ (/ (r—s)2 251 dr) ds,
0 s

which is finite because H > £. Thus (29) holds.
Using equation (19) we can write on the set {B, < a, B; > a}

o 1 22
F!/(B, — a) —sign(B, —a)| = 2/ e 2dz,
[F(B, —a) —sign(B )] = 2
© 1 22
F!(B; — a) — sign(B,; — a = —2/ e 2dz
[ =(Bs ) gn(Bs )] \Bs—a|/\/5\/2_7r

Similarly, on the set {B, > a, B; < a} we have

o 1 22
F!(B, —a) —sign(B, —a)| = —2/ e~ 2 dz,
[F.(By — a) — sign(B; — a)] Byl e V2T

° 1 22
F!(Bs — a) —sign(Bs —a)] = 2/ e zdz.
[Fe(B: -~ a) (B: — ) By —al/vE V2T

Finally, on the set {B, < a, Bs < a}U{B, > a, Bs > a} the difference sign(B, —
a) — sign(Bs — a) cancels and we have by equation (19)

(Br—a)
|F!(B, —a) — F/(B, - a)) < —— / Y e dy.
€ € = \/2—7_(_ (Bs—a)
Ve
Notice that in the set {B, < a,B; < a} U {B, > a,B; > a} the quantities
B, — a and Bs — a have the same sign. As a consequence, to complete the
proof of the proposition it suffices to show that the following expressions

17



converge to zero as € tends to zero:

t t [e o] 22
/ / 1{BT<a,Bs>a.} e 2dz
0 s min(|Br—al,| Bs—al)/v¢e 9
oK 2
X W(r,s) dT) ds, (31)
" : (Br—a) ) 2
Ve 22 oK
/0 (/S 14B,>a,B,>a} e © 7 dz ‘E(r, s) dr) ds. (32)
Ve 2

The convergence to zero of (31) follows from the dominated convergence
theorem. In order to show the convergence to zero of the term (32), we can
write

¢ (Br\;a) 5
€ _zZ H—3
/ L{B,>a,B,>a} (Boa) © 2dz|| (r—s)""2dr
8 Ve 2

t 22
< / (/ P(a < By < z\/e + a,B;s > max(z\/g—l—a,a))lﬂe_?dz)
s R
x(r — s)Hﬁ%dr.
Clearly, for every z € R and every s < r, the probability
P(a < B, < 2/ + a, By > max(zv/e + a,a))/? (33)

converges to zero as ¢ tends to zero. By the dominated convergence theo-
2

rem the integral of this probability with respect to the measure eJT(r —
3

s)=2drdz tends to zero as e tends to zero. Indeed, from the estimate (23)

we obtain that (33) is bounded by

er (1+|al + |z|\/§)1/2 (r—s)zs " |

A further application of the dominated convergence theorem yields the con-
vergence to zero of (32) as ¢ tends to zero. The proof of the proposition is
complete. [

The next theorem provides a Tanaka formula in the case for 1/3 < H <
1/2.

Theorem 6 Let B ={B,;,0 <t < T} be a fBm with parameter + < H < 3.
Then

t
B — a| = |a| + / sign(B, — a)dB, + L2 (34)
0

18



Proof: By the Ité formula established in [2] when H > %, we deduce that
(20) holds for each € > 0, where here
K/ [F/(Bs—a)] = K(t,s)F.(Bs;—a)

£

t
[ 55— - )

Then the result follows by taking the limit as € tends to zero in L?(2), using
Lemma 1 and Proposition 2. [
As in the case H > 3, we can also establish the formulas (21) and (22).

4.3 It6 formula for convex functions

We will assume in this section that & 3 < H < 1. We recall that if a func-
tion f is convex, its second derlvatlve f" in the sense of distributions is a
positive measure. Tanaka’s formula for the fBm can be applied to derive a
generalization of It6’s formula to a convex function f.

Proposition 7 Suppose that f is a conver function such that the right
derwative f! is uniformly bounded. Then,

f(B / FLBAB.+ 5 [ T3"(da). (35)

Proof: By our assumption on the derivative, the measure f” has support
contained in a compact interval J. We will use the following decomposition

fa)=as-+p+3 [ lo—al"(da), (36)

where a and 8 are real numbers. This implies, for all  out of a countable
set in R

fi(z)=a+ % /Jsign(:v —a) f"(da). (37)

Applying formula (36) to the fractional Brownian motion yields

f(Bt) = aBt + ,3 + % /J |Bt - a|f”(da).
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Then we apply now the Tanaka formula, obtaining

f(By) = aBi+p

+ % /R (|a|+ /OtSIgn( ~ a)dB, +L“) 1" (da)
= aB;+ f(0)

t
+ %/R (/0 sign(Bs —a)st) f"(da)
vl /R L2 f"(da)

Using Fubini’s theorem for the Skorohod integral (see exercice 3.2.8 of [15])
and the relation (37), the equation becomes

f(B /f s)dBs + = /L?f"(da).

[l

It is possible to extend formula (35) to any convex function by means of a
localization argument. In fact, for any & > 0 define Gy = {supy<,<1 |Bs| <
k} and let f*) be a convex function such that f*) = f on [k, k], and such
that f(*)” vanishes outside [—k,k]. By the above proposition we know that

F®&(By) = / F¥(BYdB, + = / Lef " (dg),

which gives the desired formula on the set Gy, provided we define the s-
tochastic integral fg f1(Bs)dBs on this set as fg f&k)l(Bs)st. Letting k
tend to infinity we deduce the It6 formula for a general convex function
f. However, notice that the stochastic integral fot fL(Bs)dBs may change
if we use a different localization procedure, because we only know that the
processes fgk)'(Bs) belong to the domain of the divergence operator 6%, and
the local property for this operator is known only on ]]])}3’2.
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