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Résumé

This paper considers a one-sector OLG model with production. We observe that,
under standart assumptions on preferences and technology, the perfect-foresight
equilibrium violate positivity constraints for large sets of initial conditions. The
consideration of the positivity constraints of the consumer enable to defined degene-
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The aim of this study is to present the problem of definition of perfect-foresight equilibrium
in an overlapping generations model with production.

The model we use is the one proposed in Reichlin’s paper (Reichlin (1986)). The mo-
delling gives rise to a two-dimensional dynamical system, depending on a technological
parameter.

Reichlin proved that there exists, in the neighborhood of the non trivial economy steady
state, an attractive or repelling invariant closed curve. This result, based on the Neimark-
SUcker theorem, is local : the invariant curve lies in the neighborhood of the fixed point
and the theorem states its existence only for parameters which lie in the neighborhood of
the bifurcation value.

We provided (Augeraud and Augier (1999)) a global analysis of the same model. We gave
mathematical proofs of the variation of the initial conditions basin leading to reasonable
long term economic equilibrium under variations of the technological parameter. The phe-
nomenon that happened corresponds to blue sky catastrophe (Medio (1992)). Studying the
basin of attraction in economy is mainly done when there are multiple steady states (So-
liman (1998)).

The global analysis shows that perfect-foresight equilibrium is degenerate ; it means that
variables are null after a certain finite time.

After having defined the model (section (2)), we shall then explain in the modelling which
hypothesis is responsible for the not satisfying long-term behavior of the economy (section
(3)). Then to avoid this problem, we will propose some modifications in the modelling,
based on government fiscal policy, .

The systems we obtained are piecewise continuous dynamical systems. The mathematical
tools we use (section (4)) have been developed by Mira (1964) and are called critical
lines. These curves are useful tools to study non invertible systems or non differentiable
two-dimensional systems.

Details of the study of the dynamics are to be found in section (5).

2 The economic model

We assume that the size of the population is constant. The model is a two-period over-
lapping generations economy with production (Diamond (1965), Reichlin (1986)).

The consumers work during the first period of their lives and consume during the second.
The representative agent born at time ¢ supplies a quantity of labor [;, receives wage
income saves it when young and consumes ¢;;; when old.

We assume that the utility function of the representative agent is equal to u(cyy1) —v(l;)*.

The following standard hypothesis on utility can be made :

! This contains the following assumptions : First, utility is separable in labor and good, then disutility
of labor is directly taken into account.



~ w 1s strictly increasing and concave over R** ;
— v 18 strictly increasing and convex over IRT*.

Under perfect-foresight hypothesis, the agent’s decision problem is the following :

maXe, 4, u(ct-i-l) - U(lt)
St = wtlt (1)
subject to Crr1 = Seliiq
cy1 > 0,0 >0

where w; is the real wage and R, the real rate of return? on savings.

Under assumption (1) and with w; > 0 and R;,; > 0, the decision problem has a unique
solution satisfying c¢;1; > 0 and l; > 0. Futhermore, consumption demand and labor
supply are the unique solution of the system :

{ Ct+1UI(Ct+1) = ltv'(lt) (2)
Cry1 = Riprwily
Let us write® U(z) = zu'(z) and V(z) = zv'(x).

As in Reichlin’s paper the following hypothesis is done :
Hypothesis 2. U’ > 0 and lir% U(z) =0, ligl U(z) = +o0.
T—r T—>+00

This hypothesis enables to consider the function h(z) = U~ 'oV (), and to rewrite system
(2) as

Cey1 = Ryprwily

{ crer = h(ly) .

We can take the following CRRA utility function as an example :

et = 250 1 @
t+1, 0t) — 1 — ")/
with 0 < @ < 1 and > 1. Hypotheses (1) and (2) are verified.
Let § be — .
l-«o

We write Y; the quantity produced at time ¢. The technology is described by a Leontief
production function. The two production inputs K; (stock of capital) and L; (labor) are
used in fixed proportions in the following way :

L; K,

Y; = min(—
Qo a1

(5)

We assume that capital depreciate, so that the profit function of producers rewrites Y; —
Rth - tht-

2Riy1 = 1+ 7441 where ryy is the interest rate.
3These notations are the one used by Reichlin (1986).
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The market clearing assumptions are given by hypothesis (3) :
Hypothesis 3. K; =s;_1 and L; = 1;

A consequence is that capital stock is the only asset in the model and labor demand and
supply are equals.

3 The problem

We assume that perfect foresight hypothesis is done. Benhabib and Laroque (1988) give
the definition of an intertemporal perfect-foresight equilibrium. Perfect foresight expecta-
tions are such that agent’s expectation should be the actuel future sequence predicted by
the model (Kehoe and Levine (1985)).

Property 3.1. In Reichlin’s model, the perfect-foresight equilibrium is associated with a
sequence (st)¢ satisfying

1 ag
= — — h —S+_ 6
St+1 a St (Ch St 1) ( )

Zf St+1 > 0.
If there exists t1 such that sy 1 <0, then s, =0 for all t > t;.

Proof :
The definition of intertemporal equilibrium gives Y;.1 = ¢;41 + s¢11. The equation
(5) and market clearing conditions give Y;,; = ést and L; = Z—fst,l. The resolution
of consumer program, in case constraints are not saturated, enables one to prove the
property.
If s;11 is negative, we have to come back to expectation formation and take into account
the positivity constraints of the consumer program.
The presentation of (Bdhm and Wenzelburger (1999)) enables one to express the
dynamics according to expectations (ﬁ;l)t. The economic law is the solution of
consumer and firm programs and market’s constraints.
Lemma 3.1. The economic law, for Ry 1 > 0 is given by

o = h(Z—(l)st_l)
t — —
Rit1 7
() (™)
a1 Riyi1st—1

Proof : The resolution of the consumer program gives that R/t:lst = h(l;). As the

producer’s maximization and market’s constraints give [; = —Ost_l, we obtain the
Gy
first equation of the system (7).



Y, = Ry K; + w:L;. As the technology is Leontief’s, the result is :

R, =—— @wt. The following condition (Et:lwtlt = h(l;)) obtained according to
ay aq

the consumer program enables one to prove lemma (3.1).00

Lemma 3.2. When perfect-foresight hypothesis is done, expectation is given by

Rt+1 = 4

w St-1 h(z—fé’tﬁ)

Proof : The economic law (7) gives
Ry =

h(z—(l)st_g)

So R, = . Then the second equation of system (7) gives R;.

St—1
As f%\t = R; under the perfect expectation hypothesis, we can then conclude.[]
Remark 3.1. Note, here, that the expectation function is characterized by a memory
of order 2 with variables s;_1 and s;_s. This order two memory can give rise to an
indetermination problem (Hahn (1966), Laitner (1982)).
Lemma 3.3. If there exists t; such that sy, =0, then for allt > t1, sy = 0.

Proof: If the expression of s; given by equation (6) is negative, it means, according
to lemma (3.2) that Et:l < 0. As this has no economic meaning as R = 1+ r, the
agent then expects 1?;1 = 0. Resolution of consumer program gives s; = 0. Leontief’s
technology then gives L;1; = Ky11 = Y41 = 0. Then prices Ry, and w; are null.
Then agents who are young at time ¢ have saved nothing, ¢;11 = 0, so sz 1 = 0. An
immediate recurrence enables one to conclude. [

Definition 3.1. We call a degenerate equilibrium a sequence (s;); such that
— (8¢)¢ 1s associated with a perfect-foresight equilibrium ;
— there exists ty such that for allt > t; s; = 0.

3.1 Reminder of local dynamical properties of the system

Reichlin (1986) has studied local properties of system (6). He proved that for a; < 1, the
system has two steady states. When utility is the CRRA function given by equation (4),
we have :

1
— (0,0) is a saddle with eigenvalues 0 and — ;

ai

1 ) 1 8
1 =1 (g, 51 1 =1 (g, )\ 51T
- ((— — 1) (—1) , <— — 1) (—1) ) which is an attractive focus for
ai Qo ai Qo



ka;l,é) € ika;l,é) , ka;l) — 40 ka;l—l) <0and5ka;1—1 < 1} and a repel-
ling focus for (ai,(i) € {(%,5) , (%)2—45 (%—1) <0and(5<al—1) > 1}.
1 1 1 1 1

Reichlin then considered bifurcation according to technological parameter a;.

He proved, by applying the Neimark-saker bifurcation theorem (Hale and Kocak (1991))
that there locally exists, an invariant attractive closed curve. The parameter for which

J

the bifurcation occurs is a; = ——.
0+1

3.2 Reminder of glocal dynamical properties of the system

It has been proved (Augeraud and Augier (1999)) that there exists a value a} of para-
meter a;, such that for all a; < af, there exists a value spi,(a) € IRT such that for all
S0 > Smin(a), for all s; € IRT, then (s;) is a degenerate equilibrium.

Figure (1) illustrates this situation for a peculiar value of a; .
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F1G. 1 — Invariant manifolds of the trivial fixed point for h(z) = 22, a = 1.5.
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Critical lines enable us to give a geometrical characterization of the attractors. In this sec-
tion, we describe the tools we use in a general framework. These tools were first introduced
by Gumowski and Mira in 1964.

4.1 Setting of the general framework
Let F, be a mapping from IR? to IR? defined by

Fa : ($nayn) € IR2 — ($n+1>yn+1) S ]R2

Just notice that notation F, indicates that the mapping depends on a parameter a. When
we are not interested with this dependence, the mapping would only be written F'.
Hypothesis 4. F is proper (that is if the inverse image of a compact is compact). This
hypothesis is done so that each point in IR? has a finite number of preimages.

The systems on which we would apply the critical lines method have the following form :
— Type 1,

F { Tpt1 = f(xna yn)
¢ Yn+1 = g(xna yn)

where f and g are C* functions (k > 1)
— Type 2, A piecewise dynamical system for which each part is defined with systems of
type 1

4.2 Definition of critical lines

Properties using the topological nature of the system :
Definition 4.1. 1. Let Z; be the set of points having i preimages of order 1

2. Let say that Xy satisfies the property P iff
There exist a neighborhood U of Xy and a neighborhood V of F(Xy), such that F is
a biyection from U to V

3. We call set of critical points the curve LC_1 defined by
LC 1 = {Xy, which do not satisfy the property P}
4. Let LC' be

F(chl) == LC
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LC' may intersect Z;’s interior. Let us consider f such that :
fio—z(x®—1)? (8)

The system which is defined by f has a set Z; which is defined by :

ZI:]—oo,—\@(%)[u] é(;—g),oo[andasetZg,:]— é(g) é(%)[

The critical lines are as follows : LC_; = {~1} U {—\/g} U {\g} U {1}, and
LC = {—\/% (%)}U{O}u {\/g (;—9}

Properties based on the differentiability of the system :
Property 4.1.

LC_, C Jy

where Jo = {(x,y), |Jac(F)(x,y)| = 0}

The proof of this property is based on the local inversion theorem.

Just notice that the previous relation can be a strict inclusion ; by analogy with what can
be done in dimension 1, we have to eliminate from J; all points corresponding to inflection
points.

When F' is of type 2, we have
Property 4.2.

LC_y C JyUND

where ND = {(x,y), F(x,y)is not differentiable}

Properties using the algebraic nature of the system :
Remark 4.2. Points in LC' have preimages whose multiplicity is strictly superior to 1.

5 Redistribution of resources

We have showed that if positivity constraints are not satisfied at time ¢, the quantities
chosen by consumers after time ¢ are trivial. The economic interpretation of this result is
clear : a young agent’s savings are insufficient to keep the economy on a feasible growth
path. It follows that the government levies a tax on the older generation and uses the

4The following example is defined on IR for simplicity reasons. If we considered F, for which f is the
one given in example (8) and g is such that g(z,y) = y, we can show that the result we have remains
true in IR2.



consumption (resp. the saving) at time ¢ shall be written ¢/ (resp. s¢/7/), where ef f
stands for effective.

We assume that the government policy is continuous according to the set of economic
variables. Such an hypothesis eliminates peculiar cases where the fiscal policy is imple-
mented through lump-sum tax schemes or taxation on one state variable. An example of
such a case is given by a proportionnal tax policy on consumption.

We shall study several tax schemes : a tax scheme in a function of s;_; and another tax
scheme depending on s;_s.

S¢ Ct

sl =, 4+Tax okl

The government distributes wealth as it would have been distributed in a competitive
market. The fiscal policy appears as an alternative adjustment mechanism.

In the models we present here, the government levies tax at different times ¢. This action
has to be isolated, because of problems of time inconsistency (Kydland and Prescott
(1977)). Indeed, individual consumers are not able to predict government action.

5.1 Tax producing a system depending on s;_; only

Government levies a tax T'(s; 1, $; 2) at time ¢, such that
asi—1 — h(s¢—2) + T (541, St—2) = WSt

where w is given a priori.
Remark 5.1. Tax 7" could be interpreted as a way of creating minimum wages w.

We assume that the government applies this fiscal policy when
asi—1 — h(si—2) < $4—1W

This tax policy’s conditions imply that the economic dynamical system is defined by
piecewise countinuous functions.
Remark 5.2. The government has to take into account the following wealth constraint :

T(st-1,5t-2) < h(si—2)

This last inequality means that the government cannot levy a tax higher than the older
generation’s income.

It implies that w must be inferior to a.

10



Let z; = s; and y; = s;_1
The dymanics (S) is given by map F,z from IR% to IR? such that :

(1f eme=hlen) s o,
Tyo1

{ Ty = aT¢1 — h(yt—l)

Fow : (T-1,Y1-1) — 4 If reihlye) g Y=
! { Ty = WTt_1
. Yt = Tg-1
Map F,z is continuous and piecewise differentiable.
Let
Fl:]RfL — IR? et F’Q:]RfL —>]R3_

)~ () () - ()

Let (S1) (resp. (S2)) be the dynamical system defined by F; (resp. F3).

Description of critical lines We can consider the following sets :
1. ND set of points on which Fj 3 is not differentiable

ND = {(z,y), (a — w)x — h(y) = 0}

Notations : ND partitions R? into S; (resp. S»), defined by :

S ={(z,y), “29D > %} (resp. S, = {(x,y), “2W < w})

’ T

on which (S;) (resp. (S2)) is defined.
ND is the border between S; and S,.

2. and Jy where the jacobian of F, 5 is defined and vanishes.
Jo={(z,y) e R} x R%, K (y) =0} U S;

As utility is CRRA, y = 0 is the unique solution of A'(y) = 0.
Let LC? be the image of ND and LC" the image of Jy. Let LC be LC' U LC?.
Calculation gives LC' and LC? :

LC? = {(z,y),r = wy}
LC" = {(z,y),z = ay}

Ilustration (2) presents these curves.

11
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Lcr1

F1G. 2 — Critical lines for h(z) = 222, a = 1.5 and w = 0.13

Remark 5.3. The image of S, by F} is line LC?.
Remark 5.4. Let M be a point of ND and U be a neighborhood of M. Let V be the image
of U by F. Then Fly : U — V is not a bijection.

We can use the following property :
Property 5.1. FEach half-line given by y = ax (with o > 0 and x > 0) intersects ND in
two points : The trivial point and one belonging to R x IRY.

Proof : Let ¢ : z — (a — W)z — h(ax). The solutions of equation ¢(z) = 0 give the
abscissa of intersection points between N D and the half-line.

As utility is given by a CRRA-function, we have h(0) = 0 and lim h(z) = co.
T—00

¢'(z) = (a — w) — ah'(ax)

As B/ is strictly increasing from [0, co[ to [0, 0o[ and unbounded, there exists a unique v
such that ¢'(vg) = 0. The graph of ¢ is the following :

T ‘0 Vo o0

ox)| N N

0 —00
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Remark 5.5. The line wy = z intersects ND in (0,0) and another point in IR* x IR*;
we call ap = (2*, y*).

The study of the order-1 images of &; and S, gives the following property :

Property 5.2. Zy = {(z,y),wy > z,z € R"} has no preimage.

Proof Just consider the images by F; (resp. Fy) of S; (resp. Ss).

— F, maps &, on the line wy = x. Points belonging to Z;, have no preimages by F,.

— Moreover, let (z,y) € S;. By definition of S, we have ax > wx+h(y). The image (z1, y;)
of (z,y) satisfies (x; > wWx,y; = x). So 1 > Wy;. This means that (z1,y1) ¢ Z;. O

Remark 5.6. If there exist attractors, they do not belong to Zj.

5.2.1 Remarks on parameters

Remark (5.2) says that parameters belong to set {(a,w), (a, W) €]1, 0] x [0, a]}.
Property 5.3. The steady state P of (S1) belongs to the domain of definition of (S1) if
and only if w < 1.

Proof It is very easy to prove this property; We just have to notice that P belongs to
y=x,z € R" and to find conditions of intersection of this half-line and ND. [
Property 5.4. Ifw > 1, for all (zg,y0) € IR x R, trajectories are unbounded.

Proof
— If z; € Sy, then azy — f(y;) > Wxy. But x40 = axy — f(ye)-
SO xpr1 > Wxy.
— Ifxy € S, 111 = Wy
So, for all t > 0, we have x;,1 > Wx;.
Then (x;); is strictly increasing and goes to infinite.[]
Remark 5.7. The study of the case W > 1 shows that the economy has a growth rate
equal to w from a given date ty. The tax then becomes predictable, this invalidating so
the model we have chosen.

The previous remark leads us to consider parameter w < 1. We must restrict the domain
of the parameter a more, by using the following hypothesis :

Hypothesis 5. We assume there exists t such that a, (image of order t of ag by F,z)
that does not belong to Ss.

This hypothesis is observed numerically.

So the domain of the parameters which we shall take into account is :

{(aaw)a (a’aw) E]ala a3[><[0, 1[}

13



v B - - .

The methodology which we are going to use in order to describe the dynamics is based
on the study of the critical lines.
Lemma 5.1. There exists a set globally invariant whose dimension is at least 1.

Proof : We are going to prove this lemma by building this set.

— Let us consider ay = (z*,y*) (which is the non trivial intersection of ND and its image

by F,w). Such an intersection exists and is unique, according to property (5.1).

— Let a; be the point such that a; = F*(ao) and a;a;+, the image of order i, of the part
of LC? between ay and a.

As w < 1, a; belongs to S.

— We map F; until there exists ¢ such that a; ¢ S; (such a ¢ exists according to
hypothesis (5)). Let by be the first intersection point between a;,_ja; and ND. Let b,
be the image of by by F'.

Only two cases can occur :
— Either a;11 € {(z,y),wy = z,x > 2*};
— Or a1 € {(z,y), 0y =z, wz* <z < z*}.

Remark 5.8. a;y; cannot belong to {(z,y),wy = 2,0 < x < wx*}, which would mean

that a; belongs to S N Zj.

— Consider the case where ayy1 € {(z,y), Wy = z,z > x*}. The two following situations
can occur :

— Either b1 € [al, (Lt+1];
There exists n > 0 such that F'(a;11) € agar. Indeed, as w < 1 the abscissa of
FJ(a4y1) decrease with n. Furthermore, if one considers three points of abscissas
decreassing strictly, the abscissas of their images are in the same order.
So curve C; defined by Uizo,,tm U m is globally invariant.

— Or a1 € [ay, by]. As previously, there exists n > 0 such as FJ'(at41) € agay. So
curve C! defined by Uj—g 430541 U [a44101] U as41aq is globally invariant.

— Let us consider the case where a;y1 € {(z,y),wz" <z < z*}.

— Either by € [a1, a;11] or by € [a11, agl;

curve C, being defined by U;_1_;—1a;a541 U Grayss U [as11, ap] is globally invariant.
— Or by > ag;

curve Ch being defined by Uj—1_s_1Gia:31 U ayar41 U [ae41, b1] is globally invariant.

We shall call C the constructed curve. [J

Remark 5.9. We should now consider the conditional character of the intervention of the
government. We should reject, and consider as not acceptable, the situations for which the
government has to intervene over two consecutive periods, because then the tax becomes
predictable by the agents. This remark in parallel to remark (5.7)

Remark 5.10. C = U'_ F"(aga,).

Property 5.5. C is an attracting set.

Preuve We have to show that there exists an open set U of C such that, for all M € U,
lim F*"(M) — C.

n—0Q

Let V be a neigbourhood of a;a;1. Let us consider Vy = Up—o F~(V)R* x Rt U

14
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such that F™(y) € Sy \ Zp. So there exists m > n such that F"(y) € C.00

Dynamics on the attractor We won’t take into account dynamics on the curve C. De
Vilder (1995) shows with an example of the same nature that various behaviors can be
envisaged according to the nature of C :

— If C is homeomorphic to a circle (case where C is C;) then, according to the value of the
number of rotations, the dynamics can have a periodic or dense orbit; (Guckenheimer
and Holmes (1983)).

— otherwise the dynamics on C may be chaotic.

5.3 Tax producing a system depending only on s; -

We assume that the government levies a tax of amount 7T'(s;_1, $¢—2), such that

asi—1 — h(s¢—2) + T(5¢-1,50—2) = T's4—9

where T is given a priori. As previously, we assume for continuity reasons, that the go-
vernment levies the tax when

asi_1 — h(si—2) < Tsy_o

We have to take into account the wealth constraint :

T(s1-1,5t-2) < h(st—2)

This constraint can be written as :

Tsi_o < as;_1

The dynamical system in which one is interested is given by the following map F' :

((If asy 1 — h(Ly1) > TLy
(S1)Fy - { st = asi1 — h(li)
. . Ly =54
Foa (oo o) =3 pas,  — (L) < TLy,
s¢ =TLy
So) Fy
. (S2) F2 { Li=s11

Map F' is continuous, piecewise differentiable.

Description of critical lines As previously, we are interested in the two following
sets :

1. Set ND of points where Fj r is not differentiable.

ND = {(z,y),ax — h(y) = Ty}

15
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JO = {(xay)7y = 0}

The images of these sets are called LC! and LC?. They make up a partition of IR* x IR*
into three areas.

LC' and LC? are the following sets :
i

LC' ={(z,y),ay =z + h(7)}

LC? = {(x’y)aa'y = x}

If(z,y) € {(z,y),ay > 2+ h(F)} , then (z,y) has no preimage by F
If (z,y) € {(z,y),ay > v+ h(F),y > 2} , then (z,y) has more than one preimage
If(z,y) € {(z,y),y < %} , then (z, y)has exactly one preimage

In this paragraph, we can apply a method similar to the one we used in the previously.
We can work on the following example, assuming that f is defined by f(z) = 22°.

The critical lines of order 0, LC* and LC? make up a partition of IRT x IR into three
areas (Zy — Z3 — Z1).

10" = {(z.y) =z +2(Z))

LC? = {(x,y),ay = z}

If (z,y) € {(x,y),ay >z + 2 (%)2} , then(z, y) has no preimage by F’
If (z,y) € {(x,y),ay >z + 2 (%)2 ,y > 2}, then (z,y) has three preimage
If (z,y) € {(z,y),y < %} , then (z,y) has exactly one preimage

Property 5.6. LC!' cuts the curve ND into two points : the trivial point and a non
trivial we call ag.

2
+ (£
Proof: A point (z,) belonging to LC! satisfies y = w In replacing this formula

a

in the equation of ND we have :

T 1 1 . 8 !
x(“‘g)‘$2<ﬁ+ﬁ>‘x (am)“” (T

So the trivial point belongs to LC' and ND.

16
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The variation diagram of ¢ is the following :

x 0 00
"(x) -
<0
¢'() N
—00
>0
o(z) N
—00

So there is a unique solution to the equation ¢(z) = 0.0

5.3.1 Study in the phase plane

As previously, we shall construct a curve C.

The algorithm is the same than the one described previously. The only difference lies in
the fact that C is not necessarily an invariant curve.

The following property is given to Barugola (1984).

Property 5.7. C is the border of a region of the plane, called d' such that :

— d' is a compact set;

- Fa,T(dl) Q dl ;s

— for all neighborhood U of d', for all M € U\d' there exists n > 0 such that F'p(M) € d'.
This last property ensures that d' is superabsorbing (Abraham (1997)).

Such a region is called an absorbing area (Abraham (1997)).

Figure 3 illustrating the previous construction has been realized for A =1.8 , T = 0.5.

The previous example allows us to show an annular zone which looks® chaotic, in which
a hole W appears. It would be of interest to investigate the existence of an annular shape
for the attractor.

Use of critical lines for the determination of the value of bifurcation of the
parameter for which the attractor is or not annular One considers a variation of
parameter T'. One is interested in the analytical determination of the value of T for which
hole W does not exist any more. The determination of this value of bifurcation is made
by means of two theorems presented in Barugola and Cathala (Barugola (1986)).

The two theorems are as following :

Let P be a fixed point situated inside hole W.

5The presence of chaos has not been proved analitically here, but there exists certain similarities with
other situations that we know to be truly chaotic (Guckenheimer and Holmes (1983))
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Theorem 5.1. If all the preimages of P (others than P) do not belong to d', then the
hole W containing P exists.

Theorem 5.2. If at least one antecedent of P (other than P) belongs to d', then the hole
W containing P does not exist any more.

The idea of the proof of these two theorems is as follows : If hole W belongs to a zone
Z, with n # 0,1, W admits multiple preimages, in particular, there are preimages W ~!
of W not included in W. Let us assume that W contains a repelling fixed point P. W1
contains a preimage P! of the point P. Let us suppose that there is a zone W and that
P! belongs to the annular chaotic zone. Then the image of W' also belongs to the
chaotic zone, which is contradiction with the existence of hole W.

These two theorems allow us to determine the value of bifurcation for which the chaotic
zone does not contain any more repelling internal part.

Let us come back to the previous example and let us calculate the value of bifurcation for
which the chaotic attracteur is full.

As the fixed point P = (“2;1, “T_l) belongs to Z3, it has three images :
~ itgelf P = (851, =1y

2 0 2
— another preimage by Fy : P{' = (%1, —4-1)

— a preimage by F : Pyt = (41,44

Only point P; ' can meet the absorbing domain. To calculate the value of T corresponding
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5.3.2 Return on the modelling

In the study of the previous dynamical system, we did not check if the constraint of
function of the tax (tax lower than the wealth of the older people) was satisfied. We are
going to make this study a posteriori and clarify the choice of the parameters which allows

to satisfy this constraint.

Let us recall that the constraint of wealth is set

CW = {(z,y) € Rt x R", Ty < az}

2

a
Property 5.8. If T 1> 0, CW intersects LC" into two points : the trivial point and

a non trivial one that we call I.

Proof The equation of LC! is ay —z — h (%) Let (z,y) be the intersection point of

2
1 . a _p () =
LC! and CW. z satisfies z (T 1) h ( )

T
T
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If by belongs to the part of LC' contained between (0, 0) and I, then the wealth’s constraint
is satisfied, otherwise it is not and the range of parameter do not allow the government
to implement this tax.

5.4 Time inconsistency problem

As the tax does not appear in the consumer program, it means that agents can not predict
it. The character of non predictability should be verified a posteriori.

We can observe that if by is closed to ND, then the tax seems not to be predictable.

6 Conclusion

This study raises serious doubts about regarding the global stability properties of OLG
model & la Reichlin. The perfect-foresight hypothesis is not accurate enough to keep
the economy on a stable growth path. It seems that further research on the analysis
of global stability should examine alternative expectations mechanisms. This question
goes beyond the scope of our work. Nervertheless, we can give an answer through the
government stabilizing fiscal policy. The redistributive policy among generations appears
as an interesting stabilizing adjusment mechanism. Despite this stabilizing fiscal policy,
the economic dynamics is characterized by weak stability properties.

A small change of parameters induces a large variation of the qualitative behaviour of
the dynamics. This property reflects perhaps the intrinsic instability generate by spatial
and intertemporel interactions among agents. In this sense, mathematical tools are not
an obstacle to the economic anaysis (McCallum (1983)) but on the contrary they reveals
the intrinsec instability of a society based on competitive markets.

Reference

Abraham,R. H. and L. Gardini, C. Mira (1997) : Chaos in Discrete Dynamical Systems.
Springer Verlag.

Augeraud, E., and L. Augier (1999) : "Basin’s varaition in an OLG model with produc-
tion," Mimeo.

Azariadis, C. (1993) : Intertemporal Macroeconomics. Blackwell.

Barugola, A. (1984) : "Quelques propriétés des lignes critiques d’une récurrence du se-
cond ordre a inverse non unique. Détermination d’'une zone absorbante," RAIRO analyse
numérique, vol 18, 2,137-151.

Barugola, A., and J.C. Cathala (1986) : "Annular chaotic areas," Non Linear Analysis,
Theory and Application, vol 10, 11,1223-1236.

Benhabib J. and G. Laroque (1988) : "On competitive cycles in productive economies,"
Journal of Economic Theory, 45 :145-170.

20



dynamical system approach," Macroeconomic Dynanic, 3, 2, 167-186.
De Vilder, R. (1995) : "Endogenous business cycles," Ph.D thesis University of Amster-
dam.

Diamond,P. (1965) : "National Debt in a Neoclassical Growth Model," American Econo-
mic Review, 55, 1126-1150.

Gale, D. (1973) : "Pure exchange equilibrium of dynamic Economic Models," , Journal
of Economic Theory, 6, 12-36.

Guckenheimer, J. and P. Holmes (1983) : Nonlinear oscillations, dynamical systems, and
bifurcations of vector fields. Springer Verlag.

- & - Y

Gumowski I. and C. Mira (1964) : "Sur un alogorithme de dYtermination du domaine de
stabilitY d’un point double d’une rYcurrence non linYaire du deuxiUme ordre O variables
rYelles;" CRAS, sYrieA, 260 :6524-6527.

Hahn, F. H. (1966) : "Equillibrium Dynamics with Heterogeneous Capital Goods," Quar-
terly Journal of Economics, 80.

Hale J. and H. Kocak. (1991) : Dynamics and Bifurcations, volume 3 of Texts in Applied
Mathematics, New-York :Springer-Verlag.

Kehoe T. and D. Levine (1985) : "Comparative statics and perfect foresight", Econome-
trica, 53 :433-454.

Kydland, F. and E. Prescott (1977) : "Rules rather than discretion : the inconsistency of
optimal plans," Journal of Political Economy, 85.

Laitner J. (1982) :"The definition of stability in models with perfect foresight", Journal
of Economic Theory, 28 :347-353.

McCallum, B. (1983) : "On non uniqueness in rational expectations Models : An attempt
at perspective," Journal of Monetary Economics, 11, 139-168.

Medio, A. (1992) : Chaotic dynamics. Cambridge University Press.

Mira, C. and Gardini, Barugola, Cathala (1996) : "Chaotic dynamics in two dimensional
noninvertible maps," World Scientific Series on Nonlinear Science, series A, vol.20.

Reichlin, P. (1986) : "Equilibrium cycles in an overlapping generations economy with
production," Journal of Economic Theory, 40, 89-102.

Soliman, A. (1997) : "The loss of predictability of monetary policy in a macrodynamic
system : highly intertwined absolute and transient basins of attraction," International
Journal of Bifurcation and Chaos, 7, 39-70.

21



D S S

99-1 Monique Jeanblanc et Nicolas Privault. A complete market model with Poisson and
Brownian components. A paraitre dans Proceedings of the Seminar on Stochastic
Analysis, Random Fields and Applications, Ascona, 1999.

99-2 Laurence Cherfils et Alain Miranville. Generalized Cahn-Hilliard equations with a
logarithmic free energy. A paraitre dans Rewvista de la Real Academia de Ciencias.

99-3 Jean-Jacques Prat et Nicolas Privault. Explicit stochastic analysis of Brownian mo-
tion and point measures on Riemannian manifolds. Journal of Functional Analysis,
Vol. 167, pp. 201-242, 1999.

99-4 Changgui Zhang. Sur la fonction ¢-Gamma de Jackson. A paraitre dans Aequationes
Math.

99-5 Nicolas Privault. A characterization of grand canonical Gibbs measures by duality.
A paraitre dans Potential Analysis.

99-6 Guy Wallet. La variété des équations surstables. A paraitre dans Bulletin de la
Société Mathématique de France.

99-7 Nicolas Privault et Jiang-Lun Wu. Poisson stochastic integration in Hilbert spaces.
Annales Mathématiques Blaise Pascal, Vol. 6, pp. 41-61, 1999.

99-8 Augustin Fruchard et Reinhard Schifke. Sursabilité et résonance.

99-9 Nicolas Privault. Connections and curvature in the Riemannian geometry of confi-
guration spaces. C. R. Acad. Sci. Paris, Série I, t. 330, pp. 899-904, 2000.

99-10 Fabienne Marotte et Changgui Zhang. Multisommabilité des séries entiéres solu-
tions formelles d’une équation aux g-différences linéaire analytique. A paraitre dans
Annales de ’Institut Fourier, 2000.

99-11 Knut Aase, Bernt @ksendal, Nicolas Privault et Jan Ubge. White noise generali-
zations of the Clark-Haussmann-Ocone theorem with application to mathematical
finance. Finance and Stochastics, Vol. 4, pp. 465-496, 2000.

00-01 Eric Benoit. Canards en un point pseudo-singulier nceud. A paraitre dans Bulletin
de la Société Mathématique de France.

00-02 Nicolas Privault. Hypothesis testing and Skorokhod stochastic integration. Journal
of Applied Probability, Vol. 37, pp. 560-574, 2000.

00-03 Changgui Zhang. La fonction théta de Jacobi et la sommabilité des séries entiéres
g-Gevrey, I. C. R. Acad. Sci. Paris, Série I, t. 331, pp. 31-34, 2000.

00-04 Guy Wallet. Déformation topologique par changement d’échelle.

00-05 Nicolas Privault. Quantum stochastic calculus for the uniform measure and Boo-
lean convolution. A paraitre dans Séminaire de Probabilités XXXV.

00-06 Changgui Zhang. Sur les fonctions ¢-Bessel de Jackson.
00-07 Laure Coutin, David Nualart et Ciprian A. Tudor. Tanaka formula for the fractional
Brownian motion. A paraitre dans Stochastic Processes and their Applications.
00-08 Nicolas Privault. On logarithmic Sobolev inequalities for normal martingales. A
paraitre dans Annales de la Faculté des Sciences de Toulouse.

01-01 Emanuelle Augeraud-Veron et Laurent Augier. Stabilizing endogenous fluctuations
by fiscal policies; Global analysis on piecewise continuous dynamical systems. A
paraitre dans Studies in Nonlinear Dynamics and Econometrics



