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Abstract

The aim of this paper is to decide whether a linear differential equation with
polynomial coefficients depending on parameters has got polynomial solutions. More
precisely we want to construct a finite set T of necessary and sufficient algebraic
and arithmetic conditions such that there is a polynomial solution if and only if
the parameters belong to T. The presence of Diophantine equations makes the
general problem undecidable. We get such a set T when the recurrence relation
associated to the equation (in an appropriate basis) has got two terms. Using
hypergeometric sequences we also succeed in constructing sufficient conditions for
a family of equations.

1 Introduction

Let L = a,(7)0" + ay_1(x)0™" ! + - - - + ag(z) be a linear differential operator with coeffi-
cients in K|z|.

Let us assume first that K is . The main problem in differential Galois theory is to
determine the differential Galois group of the linear differential homogeneous equation
L(y) = 0 that is to say the algebraic relations between the solutions of the equation. No
algorithm exists to handle this general problem ([22]). However one can characterize the
liouvillian solutions, that is to say solutions that are built up using integration, expo-
nentiations, algebraic functions and composition ([22]). The question of deciding when
the equation L(y) = 0 has such solutions has been particularly discussed for a long time
([21], [25], [13]). M.F. Singer has proved that one can decide whether or not the equation
L(y) = 0 has got liouvillian solutions ([21]). When the order of the equation is equal to
two, Kovacic effectively computes them ([14]). Their computation is reduced to the com-
putation of polynomial, rational or exponential solutions of differential linear equations
([26]). Many algorithms have been constructed to perform the computation of these three
types of solutions ([1], [2], [18], [24], [10], ... ) .

Let us assume now that K is Q(Ml, ..., M) where My, ..., M, are parameters lying in
C. The main question is to find which parameters lead to a liouvillian solution.

In 1992, A. Duval and M. Loday-Richaud have studied the liouvillian solutions of some



particular families of equations of order two depending upon some parameters (Schwarz
and Heun equations, [5]). At first sight, one could think that the computation of the
polynomial solutions would be easy and that the main difficulties would be encountered
within the computation of the exponential solutions. One can show that the presence of
the parameters does not modify the method used in the computation of the exponential
parts ([3]). So the problem of describing the liouvillian solutions can be algorithmical-
ly reduced to describing the values of the parameters such that some linear differential
equations have polynomial solutions. It is this last problem that A. Duval and M. Loday-
Richaud have encountered while describing the liouvillian solutions (of the Schwarz and
Heun equations) and that we focus on in this article.

In section 2, we prove that there is no algorithm which decides for which values
of the parameters any given linear differential equation depending on the parameters has
polynomial solutions. We note that if we fix a nonnegative integer d then the set of
the parameters leading to a polynomial solution of degree less than or equal to d is a
constructible set. The main difficulty is when the degree of the polynomial solution actu-
ally depends upon the parameters. Our aim is to construct a finite set of necessary and
sufficient algebraic and arithmetic conditions on the parameters leading to a polynomial
solution whose degree may not be numerically fixed. This last problem remains open in
full generality, so we propose a ’tool box’ that can solve many cases. The key to our ap-
proach is the link between polynomial solutions to linear differential equations and finite
solutions to linear recurrence relations.

In section 3, we consider two terms recurrence relations. We construct a finite set of
necessary and sufficient conditions on the parameters leading to a finite solution to such
a recurrence relation.

In section 4, we study three terms recurrence relations of order two. We prove that,
under some hypotheses, for all nonnegative integer d, the set of the parameters leading
to a polynomial solution of degree less than or equal to d is a non empty constructible
set. Then we generalize Hautot’s method ([7], [8], [9]) and give a finite set of sufficient
conditions on the parameters leading to a finite solution (whose degree may depend on
the parameters) to the recurrence relation.

Lastly, in section 5, we adapt Petkovsek’s method ([17]) to find finite hypergeometric
solutions to any parameterized recurrence relation. We detail the case of a family of re-
currence relations for which we construct finite non empty sets of arithmetic or algebraic
sufficient conditions on the parameters leading to finite hypergeometric solutions (whose
degree may yet depend on the parameters).

With this approach (and with Hautot’s method), I show how to handle one of the un-
solved equations met in [5].

Acknowledgments I would like to thank Jacques-Arthur Weil for his fruitful help
during the preparation of this article. I also thank the referees for giving a simpler proof
of theorem 2.

2 Necessary conditions and undecidability

Let M = (M, ..., M;) denote a tuple of parameters and let Ky = Q(M). Let Ly =
an(2)0" + ay_1 ()01 + - - - + ag(x) be a linear differential operator with coefficients in



Ky[7] where 0 = &

This paper is conce(ﬁled with effectively finding all the values m = (my, ... ,m;) in C° such
that L,,(y) = 0 has polynomial solutions. In the sequel of the paper, L both designates
L, and Ly;.
+oo
Let y = Zyixi be a formal series. It satisfies L(y) = 0 if and only if its coefficients y;
i=0

satisfy a recurrence relation (see [1] for more details) :

where b is a fixed nonnegative integer,
Vj € {0: S ab},aj(t) € KM[t]’ Vi <0,y; = 0.
We call the recurrence relation (2.0.1) the recurrence relation associated to the operator
L in the basis (7*);en-

Note that we can write y in any other basis (P;) provided the polynomials P; satisfy
some additional properties (see [1]).

Definition 1 The number b is called the order of the recurrence relation.

Definition 2 A sequence (y;)icz satisfying a recurrence relation and such that :
ddeN,ve NNieZ,(i<vori>d) =y =0

is called a finite solution to the recurrence relation.

The aim is to find a finite set of necessary and sufficient algebraic conditions on the
parameters such that there exists a nonzero finite solution to the recurrence relation
(2.0.1), that is to say such that there exists two nonnegative integers v and d (v < d) such
that the recurrence relation (2.0.1) has a solution of the type

(e 50, Yy e e, Yay0,..2)

with y, # 0 and y, # 0.
Let us first give some necessary conditions on the degree and the valuation of the
sought polynomial solution.
Let us take ¢ = d in (2.0.1) then ag(d)ys = 0. But y4 # 0 so ag(d) = 0.
Let ng = min{j € {0,...,b}/a;(t) € Km[t] \ Kum}-
A first necessary condition is

ayp ==y, 1 =0and 3d € N/, (d —ny) = 0.

This last equation is called the ‘right indicial equation’ or ‘infinity indicial equation’ which
gives the possibilities for the degree d of the polynomial solution. We encounter the prob-
lem of deciding when a polynomial of Kj,[t] has an integer root. We see later in this
section that we do not try to solve this problem as it can be written with a finite number
of arithmetic and algebraic conditions.

In the same way one can construct the ‘left indicial equation’. Let n, = maz{j €
{0,...,b}/c;(t) € Kp(t] \ Kn}- Then a second necessary condition is :

Qpyr1 =+ = = 0and Fv € N/a,, (v —n) = 0.



Example 1 Consider the following linear differential equation :
22%y" 4+ ((3 — 2My)2® + )y’ — (P(My, My)x* + Max + M)y =0

where P is a polynomial with integer coefficients. Its associated recurrence relation in the
basis (1%);ex 48 -

—P(Ml, Mg)yz — (3 + 22)(—2 -1+ Mg)yi_H + (—M1 + 2+ ’l')’yz'_|_2 =0.

So a first necessary condition is
P(ml, m2) = 0.

Then the new recurrence relation is
(1420 —mo)yi+ (G +1—m1)y1 =0
and the necessary condition becomes
Imq, me € IN/(my < my and P(my, my) = 0).
We note that this last equation is a Diophantine one.

The presence of arithmetic conditions may lead us to solve Diophantine equations in terms
of integer solutions (like in the previous example). Furthermore, in 1970, Y. Matiyasevich
proved Hilbert’s Tenth Problem which states that there is no universal method for solving
Diophantine equations in terms of integer solutions ([15]). Using this last result one can
state the same type of theorem for linear differential equations with coeflicients in K/[x].

Theorem 1 (J.-A. Weil) There exists no algorithm that, given any linear differential ho-
mogeneous equation depending on parameters, decides for which values of the parameters
this equation has got a rational solution or not.

Proof
Let us consider the following differential linear equation :

M M,

Y —y(—— 4+ +P(My,... ,M,))=0
z—1 T —s

where Mj, ..., M are parameters and P is any polynomial in ZZ[M;, ... , M.

This equation is equivalent to :

y=clz—DM. . . (z—s)exp(P(M,...,M,)z)

So it has rational solutions if and only if there exists m = (my,...,m;) in Z° such that
P(m) = 0. However, by Matyasevich’s theorem ([15]), there is no algorithm which can
solve the latter for any P in ZZ[ X7, ..., X;]; so there is no algorithm which can determine
whether a given linear differential equation has got rational solutions or not. O

In the sequel of this paper we are looking for a finite set of necessary and sufficient
algebraic and arithmetic conditions on the parameters leading to a polynomial solution.
So we do not care neither about the possible presence of Diophantine equations, nor about
the problem of deciding when a polynomial of K,[t] has an integer root.



When we apply the recurrence relation (2.0.1) to i = —b,...,d, then we get a
system S, of d + b+ 1 linear equations with d + 1 unknowns.

If we fix a nonnegative integer d (not depending upon parameters) then the size
of the matrix My of the linear system Sy is numerically known. It suffices to decide for
which values of the parameters the rank of this matrix is less than or equal to d. We can
even compute the solutions of the linear system S; ([23]).

Lemma 1 Let d be a fired nonnegative integer. Then the set of the parameters leading
to a polynomial solution of degree less than or equal to d is an algebraic set.

If we do not fix d and if the indicial equation has a solution depending on the
parameters then the size of the matrix associated to the recurrence relation also depends
on the parameters and so it is difficult to find a finite number of conditions on the pa-
rameters leading to a nonzero solution of the linear system.

3 Two terms recurrence relations

We give here a finite set of necessary and sufficient algebraic or arithmetic conditions on
the parameters leading to a polynomial solution of L(y) = 0 when the recurrence relation
associated to it (in a suitable basis) has two terms (see [12] for a study of such recurrence
relations).

Theorem 2 Assume that the recurrence relation associated to L (in a suitable given
basis) has two terms :

ao(4)y; + (7)yiys = 0.
The equation L(y) = 0 has got a nonzero polynomial solution if and only if there exists
two nonnegative integers v and d such that v < d, v = d (mod b), ap(v — b) = 0 and
Oé()(d) =0.

Proof
d

Suppose that L(y) = 0 has a nonzero polynomial solution y = Z v’ with y4 # 0. Then
i=0

ap(d) = 0. Let jin {0,...,b— 1} and k4 in N such that d = bky + j. Suppose that
a(j + kb) # 0 for all =1 < k < kg — 1. Then one can check that y;; k1) = 0 for all
ke{-1,...,ks—1}. In particular one must have y; = y,p, = 0, which is false, so there
exists k, € {—1,...,kq— 1} such that a,(j + bk,) = 0. To conclude let v = j +b(1 + k,),
then ap(v —b) =0, v =d (mod b) and v < d.

Suppose that there exists two nonnegative integers v and d such that v < d, v = d
(mod b), o (v —b) = 0 and ay(d) = 0. Let d be the smallest integer such that v < d < d,
ao(d) =0 and d = d (mod b). We shall prove that L(y) = 0 has a polynomial solution of

degree d. For this, put y; = 1. Then y; ,,y7 9, --- , Yo can be (uniquely) determined using

ap(j+kb)
ao(j+kbd)

the recurrence relation y; 5 = — Yjt+(k+1)p- Now set y; = 0 for i ¢ {d—b,... v}

o
Then one can verify that y = Z ;2" is a nonzero polynomial solution of our equation. 0
i=0



4 Three terms recurrence relations of order two

In this section we assume that the recurrence relation associated to the operator L (in a
suitable basis) is the following one :

oo (%) ¥i + 01 (2) Yiy1 + 2() Yize = 0 (4.0.2)

where o and «» are non constant polynomials with coefficients in K»;. We have seen that
ao must have an integer root greater than or equal to —2. For notational convenience,
we assume that as(—2) = 0. The matrix associated to the recurrence relation is then a
square matrix and in this particular case one can state the following lemma which gives
a necessary and sufficient non algebraic condition :

Lemma 2 Let d be a nonnegative integer such that ap(d) = 0. For i in IN, let M; be the
square matriz associated to the recurrence (4.0.2) and let A; be its determinant :

a1(—1) ay(-1)

(') (0) (0] (0) (1/2(0)

Cko(i—?) al(i—2) Ckz(’l:—Q)

ap(t —1) ag(i —1)

Then the differential equation L(y) = 0 has got a nonzero polynomial solution of degree
less than or equal to d if and only if

Ad = 0.
Proof
d

If Z yxx" is a nonzero solution of L(y) = 0 then, by construction of M, the linear sys-

k=0
tem M;Y = 0 has a nonzero solution, so the determinant A, of the matrix M, cancels.

If Ay = 0 then the linear system M;Y = 0 has a nonzero solution Y = (yo, ... ,y4). Fur-
thermore ag(d) = ae(—2) = 0,0 (-..,0,¥0,---,%4,0,...) is a solution to the recurrence
relation. O

4.1 Existence of a polynomial solution for all degrees

In lemma 1 we show that, for any fixed d in IN, the set of the m leading to a polynomial
solution is a constructible set. In this section, we explain, on a family of equations, a

7



strategy to study whether this set is non empty for all d in IN.
We use the recurrence relation satisfied by (4A;) :

Property 1 Let (A;)ien be the sequence defined in the lemma 2. It also satisfies the
following recursion :

A() = al(—l)
Al = al(—l)al(O) — az(—l)ao(O)
Vie N \ {0, 1}, Az = O!l(i — 1)Ai_1 — Oé()(’i — 1)0,/2(2 — Q)Ai_g

Proof
This can be easily seen by developing A; along the last line. O

Proposition 4.1.1 Assume that

(i) = () MY + ai (4)
o€ IN*

H N o~ N = .
)\ (i), 1), as(i) € QM. ... ML)
Vie {-1,0,1,...}, ®(i) € Q"
Let d be a nonnegative integer. If there exists (Mo, ... ,ms) such that ag(d) = 0, then
there exists (mq,... ,ms) leading to a nonzero finite solution of degree less than or equal
to d of (4.0.2).
Proof

Using the recursion satisfied by A;, one proves by induction on 7 that

1—1 7
Ap=(J] @G)MID*+" gipfe

j=—1 k=0

where g; € Q(Ma, ..., Mj).

Let d be a nonnegative integer and let (mo,...,m,) such that oy(d) = 0. Then A, can
be seen as a polynomial in F'[M;] where F is in the algebraic closure of ®. So there exists
my cancelling A,.

Using lemma 2 one concludes that (mq, ms,... ,m;) leads to a nonzero finite solution to
(4.0.2). n

Example 2 The following linear differential operator L, comes from the proposition 14
page 240 of [5]. It is one of the equations met in [5] while studying the liowvillian solutions
of the non hypergeometric confluent Heun equation. One wants to characterize the values
of (e, B, 7, p,v) in C° such that Ly(y) = 0 has polynomial solutions where

Ly =22(1 =) + 201 =+ (~a+ B+ — 2)a +az”) L
+1-2v—-(1-8)(1+a—2)—2auz)=0.

The associated recurrence relation in the basis (x%);cn 48 the following one

ho(9)yi + hi(9)Yiv1 + h2()Yire = 0 (4.1.3)



where

ho(t) = 2a(i — )
hi(i) =—-2v—4—-3a+3v+Ba+38—-Fy+2(—a+B8+7—-2)i—2i(i +1)
ho(7) =2(i +2)(2 — 5+ 1)

We note that ho(—2) = 0. Let d be any numerically fized positive integer. A necessary
condition to get a polynomial solution of degree d is pu = d.

We wonder whether there exists parameters satisfying Ay = 0. But according to proposi-
tion 1,

Vi € {_1a s :d}7 AZ = (_QV)Z + Zgi,k(aa/6777 M)Vk
k=0

where g € Q[Oé,ﬂa% 1]
So

Ag=0& (-20) +ngk 8,7, d)

Necessarily there exists «, B,y, v satisfying Ad = 0. So for each positive integer d, there
exists values (o, B,7, 1, v) in C° of the parameters such that the equation Ly(y) = 0 has
a nonzero polynomial solution of degree d.

4.2 The sufficient conditions of A. Hautot

The following proposition is a generalization of A. Hautot’s idea that he applied to three
particular linear differential equations ([7], [8], [9]). We construct finite sets V' of algebraic
and arithmetic conditions on the parameters such that for any m in V the equation
L,,(y) = 0 has a polynomial solution whose degree may depend on the parameters.

Proposition 4.2.2 Let iy be any numerically fized integer in {—1,0,...} and V;, be the
set of the (my, ... ,ms) satisfying

012(—2) = 012(7;0) =0
Ajp+1 =0

If Vi, is non empty then for each (mq,...,my) in'V;, there is a nonzero finite solution of
degree less than or equal to d to the recurrence relation (4.0.2).

Proof
Let (my,...,ms) € V;, and let d be an integer greater than i, such that ay(d) = 0. As
as(ip) is assumed to be zero, the matrix M, can be written like a diagonal block matrix :

_ [ Mi+1 0
(M5 e

As det(Miy41) = Ajyr1 = 0, we get Ay = 0, which proves the proposition. 0



Example 3 The differential equation L, = 0 from the first example belongs to the family
studied by A. Hautot in [7].
If o 1s equal to zero then we get a two term recursion

(=20 —443v+33-By+2B+~7-2)(i—-1)—2i(i — 1)y + 2+ 1)(1 — B+ 1)y = 0

The parameters leading to a polynomial solution for L,(y) = 0 are those such that the left
indicial equation has integer solutions.
To simplify the exposition, we now assume that o is equal to 1. Then

ho(i) =i —p
x4 h(i))=—v—14+3y+28—1B8y+(y+B—4)i—i?
ho(i) = (i +2)(2 — B +1)
Let us take ig = 1, then as(ig) =0< 8 =3 and
-5 -

M, -2

I

|

=
bl ot

|

AS

1
0 —p+1 §—u+’y

Va={(8,7,1,v)/B =3, Ay =0and pp € N\{0,1}}

For each (B,v,v, p) in Vs, the differential equation has got a polynomial solution
of degree pu.

5 The hypergeometric solutions

In this section we adapt the method of Petkovsek for computing hypergeometric solutions
of linear recurrence relations ([17]) to our parameterized situation. We first describe
a general method available for any recurrence relation (section 5.1). Then we study a
particular class of equations whose recurrence relation has three terms and is of order two
(section 5.2).

5.1 A general method

Let us assume that the recurrence relation associated to L(y) = 0 (in a suitable basis) is
(2.0.1) : a(i)ys +- - -+ a(?)yirs = 0, where ag and o, are both non constant polynomials.
The idea is to construct a finite set 7" of conditions and a two terms recurrence relation
such that : for each (my,...,ms) in T this two terms recurrence relation has finite solu-
tions which also satisfy (2.0.1) and whose degrees may yet depend on the parameters.

Remark 1 If there exists a positive integer d such that
(...,0,%,..-,Y4,0,...) is a solution to the recurrence relation (2.0.1) ( where d may
depend on some parameters), then there exists a polynomial R such that

Vi€ Z, (i +1)Q(1)yir1 = (i — d) R(3)y;

10



where

[IG-5) ws#0

Q(l) = jeJ
1 if J=10
J={je{0,...,d-1}/y; =0}
deg(R) = d.

It suffices to compute the coefficients of the polynomial R(i) by interpolation in the coef-
ficients yo, ... , Yq.

Our aim is to construct a two terms recurrence relation
Bo(@)yi + Bi(1)yiy1 = 0

where (5, and (3, are both polynomials whose degrees are numerically fixed. That is what
we perform generalizing Petkovsek’s algorithm.

Theorem 3 Let us assume that ap(—b) = 0 and that there exists d in IN such that
ag(d) = 0. Let (y;)icz be a sequence such that :

Yiv1 = C%yz ifi € {0,...,d}
yi=014i¢{0,...,d}
where c 1sin K}, A, B, C are polynomials and where the following conditions are satisfied

e

C1) A(d) = B(-1) = 0,

(
(Co)Vie {~b+1,...,—1},A(G) #0
(C3) Vi € {0,...,d+b—2},B(i) #0
9 (04)Vi6{0,...,d},0(i)7é0
05 Zpk Z+/€ =0
and k—1 b—1
P, (i) = cPoy (i) HA(i +7) HB(Z’ + 7).

Then the sequence (y;)icz satisfies (2.0.1) :
ao(1)yi + -+ -+ ap(2)yiys = 0.

Proof
Let us notice first that the sequence (y;)icz is well defined according to the conditions

(Cg), (03) and (04)

As y; cancels whenever 7 is not in {0, ... ,d}, we can first notice that
b ks
Z k(1) Yirk = Z () Yi+h
k:o k:kl

11



where k7 = max (0, —i) and ky = min(b,d — 7).
b

If : < —b or i > d then zak(i)ka =0.

k=0
b
If 7 = d then Z g (1) Yire = ao(d)yqs = 0.
k=0
b
If i = —b, then Zak(i)ka = ap(—b)yo = 0.
k=0
Let i bein {—-b+1,. —1} Then0<2+k1 <i+ky<d, soVke{ky,..., ka},
k-1
Yitks
Yivk = C C’L+l€ HAZ+] HB i+7) m
j=0 i=k
ki1—1
where F(i, k) = C(i + ky)c™ H A+ j) H B(i+j) and F(i,k1) does not cancel ac-
j=0 Jj=k1

cording to the conditions (Cy), (C3) and (Cy).

So ,
Z o (1) Yirk = ywkl Z Py(3)C (i + k).
k=0

Furthermore, as B(—1) cancels, Py(i) also cancels whenever —1 — 4 is in {k,... b — 1}.
Buti> —b+1soVk e {0,...,k — 1}, P,(i) = 0. In the same way, as A(d) cancels, one
proves Vk € {ko+1,...,b}, Px(i) = 0. To conclude,

b

b
D awli)yies = s O PC(i+ k) = 0
k=0 M k=0

o
If the polynomials A, B and C satisfy the hypotheses of Gosper’s lemma ([6]) (A
and B monic; Vk € N, gcd(A(i), B(i + k)) = ged(A(i), C(i)) = ged(B(i + 1), C (7)) = 1)
then one proves that A(i) divides ap(i) and B(i) divides ap(i — b + 1) (see [17]).

in practice, we choose the polynomial A(:) (resp. B(i)) among the divisors of (%)
(resp. ap(i — b)). The computation of the polynomial C' remains. We encounter here the
same type of problem as the one of the first section : the degree N may depend on the
parameters. However if we fix a nonnegative integer N, we can construct, as in lemma 1,
a finite set of algebraic conditions on the parameters leading to a polynomial solution C'
of degree NN.

We describe below a method to find a set of sufficient conditions leading to a polynomial
solution of L(y) = 0.

1. The recurrence relation.
Compute the recurrence relation associated to the operator L in a suitable basis
(Pz')z'GN :
ao(B)yi + -+ o(8)yips = 0

Assume that you know the factorization of o and «y.
Construct the set I of the nonnegative integer roots of o (which may depend on
the parameters).

12



2. The set of the possible degrees of (A, B).
Construct the set E of the elements (d4,dg) of {0, ..., e} x{0,... ey} such that :
k1, ke € {0, ... ,b}, k1 # ko, O, = O, = 0,
where 6y = kda + (b — k)dp + ex, = deg(Py),
er = deg(ag), 6 = max{dg,0 < k < b}.
If F is empty then for each (A, B) with degree in {0, ... ,ep} x{0,... e}, there is
no polynomial C satisfying the condition (Cj).

3. The set of the possible (A4, B).
Construct the set E of the couples (A(7), B(#)) such that

A(7) divides ap(7)

dd € I/ap(d) = A(d) =0

B(i) divides oy (i + 1 — b)

B(-1)=0 _

A(da,dp) € E/(deg(A),deg(B)) = (da, dp)

4. The set of the sufficient conditions on the parameters.

N-1
For each (A(7), B(i)) in E, fix a nonnegative integer N and set C(i) = i" + Z i
k=0

Construct the set Ty of the parameters such that (Cs), (Cs), (C4) and (6’5) are
satisfied.

Remark 2 If the set E of the second step is empty then one can compute the recurrence
relation associated to L in another basis of polynomials using the tools of [20].

Example 4 Let us consider the linear differential homogeneous equation
xy" (z) + (My + Mz — 222)y' (z) + (1 + 2M1)z)y(x) = 0.
Its associated recurrence relation in the basis (2')iex 48 -
—2(i — My)y; + (M3t + 1+ M3)y;1 + (i +2)(i + 1 + Ms)yiro = 0.

The set E is empty. If you compute the recurrence relation in the basis of the Hermite
polynomials, then you get :

If mg is zero then the set E is empty else it is equal to {(0,0),(1,1)}. So the set E is
reduced to {(i—my,i+1)}. Let us choose N =1 and set C(i) =i+co. Then the condition
(Cs) is satisfied if and only if ¢ = m%’ my =1, mg = —2my; — 1, ¢g = 2m?. One easily
checks that the conditions (Cs), (C3) and (C4) are also satisfied.

Let Ty = {(my,mg, m3)/ m; € N, mg = 2my—1, my = 1, mg # 0}. For each (mq, ma, ms)
in T there is a polynomial solution of degree my (which does not have any fized value) to
the initial differential equation.

The question that one can ask is : when can we construct non empty sets T such
that the degree d of the finite hypergeometric sequence (y;) (or of the polynomial y) does
not depend on N ? We answer this question for a particular class of equations whose
recurrence relation has three terms and is of order two.

13



5.2 An application to a particular family of equations

Let us consider the recurrence relation (4.0.2) :
o (4)y; + o1 ()yit1 + 2(1)yire = 0
and the recurrence relation
Qo(1)CE) +Q1(7)C(i+1) + Q) C(1+2) =0 (5.2.4)

where
Q()(Z) = (67) (’l, — 1)
Q:(1) = con (1)
QQ(Z) = CQOlo(i + 1)

and c is in K*.
Proposition 5.2.3 Assume

o) = i — M,
as(1) is monic and without root in{—1,0,...}

Let T be the set of all the (mq,...,ms) such that there ezists a nonzero ¢ such that the
equation (5.2.4) has got a polynomial sequence solution (C(i))icz satisfying

Vi€ {0,...,mi},C() # 0.

Then for each (my, ... ,mg) in T such that my is in IN, the homogeneous linear recurrence
(4.0.2) has got a finite solution which is defined in the following way:
Yo # 0

(#): ¢ Vie{0,...,mi}, yis1 = Ca:&(—i)n C%l)yi
Vie Z/N,y; =0

Proof

It suffices to apply the previous theorem with A(i) = ay(i) and B(i) = a(i — 1) and
notice that Py(i)C (i) + PL(i)C (i + 1) + Poy(i)C(i +2) = (i) (i) (Qo(3)C(3) + Q1 (1) C (i +
1)+ Q2(?)C(i +2)) = 0. O
Remark 3 The hypothesis ‘as(i) monic’ could be avoided; it just enables a simpler expo-
sition.

Furthermore, as the polynomial da has no root in {—1,0,...}, for any integer iy in

{—1,0,...} the set V;, constructed in the section 4.1 is empty. Indeed there is no pa-
rameter satisfying as(ip) = 0.

We have constructed here a two terms recurrence relation :
ca())C (i + 1)y — ao(i — 1)C(4)yiz1 = 0.

The question that remains is : can we find a polynomial C' which satisfies (5.2.4) and whose
degree is independent of the degree m; of the possible polynomial solution of L(y) = 07
The following lemma gives an answer to this question under some new hypotheses.
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Lemma 3 Let us assume that (H,) is satisfied and let assume

QQ(Z) = 7;2 + ’11)12. -+ Wo
Ql (Z) = C(U(ﬂ;Z + Uli + UQ)

H,) : R
(H) v € Q-
V1, W1 € Q(Mz, cen ,Ms)
Let (my,...,mg) such that the recurrence relation (5.2.4) has got a nonzero polynomial
solution, then its degree does not depend upon m;.

Proof

Let C(i) = ¥ +cy 1Vt +---. Then Qu(i)C(i) + Q1())C(i + 1) + Qo(1)C(i + 2) =

(14cvg)i¥ 2+ (en_1(14+cvg) + (Nevo+ 2 +cvy +wy) )iV T4+ - - | so necessarily, cvg+1 = 0

and (cvg)N + ¢ + cvy +w; = 0.

As ug, vg, u1, v1 and ¢ do not depend upon mq, N also does not depend upon m;. n
The following proposition gives a matrix characterization of the polynomial C.

Proposition 5.2.4 Let us assume that the hypotheses (Hy) and (Hy) are satisfied. Let
N be a numerically fized integer and (my, ... ,my,c) such that (cvg)N + ¢ + cvy + w; =
1+ cvy = 0.

A polynomial C of degree N satisfies the recurrence (5.2.4) if and only if

Mc ' (C(0)---C(N)) =0

where M
_ N,N+1
Mo = ( L1 N+1 ) ’
[ Qi(-1)  @(-1) ]
Qo(0) @1(0) Q2(0)
MN,N+1 =

_ Qo(N ~2) Qui(N—2) Qu(N-2) |
£1,N+1 :[ ll lz lN_|_1 ] with

In=Qo(N—1)+Q(N-1)¢(N+1,N—1)

Ing1 =@Q1(N — 1)+ Q2(N —1)¢(N + 1, N)

N o
where ¢(i, k) = H ;:]
J=0,5#k J

15



Proof

Let C' be a polynomial of degree V.

Let us assume that C is a solution of (5.2.4). Then for 7 in {—1,... ,N — 2}, we get a
linear system which can be written

My ni1(C(0) --- C(N)) =0.
If =N —1 then

Qu(N-1)C(N-1)+Q:i(N—-1)C(N)+ Q2(N -1)C(N+1) =0

N
now C(N +1) = ZC(k)qS(N +1,k). So we get
k=0

Lin1 H(C(0) -+ C(N)) =0.
Let us assume now that
M YC(0) --- C(N)) =0.

then for each ¢ in {—1,... ,N — 1}, the relation (5.2.4) is satisfied. One can easily see
that the degree of the polynomial Qo(7) C(i) + Q1(i) C(i + 1) + Q2(i) C(i 4+ 2) is N (using
the hypothesis 1 + cvg = (cvg) N + ¢® + cv; +w; = 0 which enables to cancel the terms of
degree N + 2 and N + 1) but it has N + 1 roots so it is identically zero. To conclude

Vi € 7Z,Qo(1)C (i) + Q1 ()C(i + 1) + Q2())C(i +2) = 0

O
,From the two last propositions and the last lemma one deduces the following

proposition :

Proposition 5.2.5 Let us assume that (Hy) and (Hs) are satisfied. Let N be in N and
let T be the set of all the (mq,... ,my) such that

1+cvg = —vgN + 1 —vpv; +vjw; = 0 and det(M¢) = 0.
For (my,...,my) in Ty, let C be a polynomial of degree N such that
Mc " (C(0) -+ C(N)) =0

Then for each (my, ... ,ms) in Ty such that my is in IN and C(i) has no integer root in
{0,...,my}, there ezists a nonzero finite solution to the recurrence relation (4.0.2).

Example 5 We handle the recurrence relation defined in the third example (section 4.2)
by the conditions (x). We assume that 3 is not an integer. We notice that ¢ = 1. Let us
choose N = 2. Then

v§N+1—v0v1+v§w1 =0&v=23.

The matriz Mc 1is

1-v-1/28 — U 0
Mc = 1-8 1—v+1/28 —p+1
2—pu —2—-2+4+3u b5—v+3/2-3u

16



Let T be the set of all (8,7, u,v) such that det(Mc) = 0 and there exists a polynomial
C of degree 2 with no nonnegative root satisfying Mc*(C(0),C(1),C(2)) = 0.

Then for each (53,7, p,v) in Ty such that u is an integer, the equation Ly = 0 has got a
nonzero polynomial solution.

Note that we can find this last condition applying the method of the section 4.2 to the
recurrence relation associated to Ly, in the basis (z + 1)° :

(i — )y —1/23 420 — 3y — 4B + By + 2u + (4 — 28 — 27)i + 21 )yip
—(i+2)(i+2-)yit2 =0

Conclusion

The following problem ‘deciding for which values of the parameters a given linear dif-
ferential equation depending on parameters has got polynomial solutions’ is undecidable.
When the degree does not depend on the parameters then the problem can be solved.
Otherwise, even when we work modulo the Diophantine problems, the question is still
open. No machine can handle this problem in its generality. However, we can provide
computer tools (in maple) that can help such a study. Any two terms recursion can
be treated. During the study of the hypergeometric solutions of three terms recurrence
relations, we have provided finite sets of conditions on the parameters. Each of these
sets leads to a polynomial solution provided that the left indicial equation has integer
solutions; this last condition which was only necessary in the general case becomes then
a necessary and sufficient condition.

We have seen in this article that our tools enable to characterize some liouvillian solutions
of equations of order two given in [5]. Combined to the computation of the exponential
parts, the study of the polynomial solutions also enables to give necessary conditions for
the integrability of Hamiltonian systems([16], [4]).

The study of the scalar two terms recursions can also be partially generalized to some
matrix two terms recurrence relations. Lastly, the use of the orthogonal polynomials as
new basis of K[x] may be fruitful for the search of hypergeometric finite solutions to linear
recurrence relations.
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