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Abstract

We prove a Girsanov theorem for the combination of a Brownian motion on
R, and a Poisson random measure on R x [—1,1]? under random anticipating
transformations of paths and configurations. The factorization of the density
function via Carleman-Freholm determinants and divergence operators appears
as an extension of the martingale factorization in the adapted jump case.
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1 Introduction

The Cameron-Martin theorem [5] gives the density with respect to the Wiener mea-
sure of a deterministic shift of Brownian motion. Similarly, the Skorokhod theorem
on invariance of measures [18] gives the density with respect to Poisson measures
of deterministic shifts of configuration. These theorems have an extension (the Gir-
sanov theorem) to random shifts under adaptedness hypothesis. Given a martin-
gale (M (t))ser . on a filtered probability space (2, F, (F)er,, ) and a probability
@ absolutely continuous with respect to P, the classical Girsanov theorem, [7], [8],
gives a canonical decomposition of (M (t))icr, as a sum of a continuous martingale
(M*(t))ter, under @, a pure jump martingale (M%(t))ser, under @ and a finite vari-
ation process. Since (M(t))ier, and (M?(t))er, are obtained by shifts of the values
of (M(t))er, , the Girsanov theorem also allows to compute the density with respect
to P of a transformation of the space ). Thus there is a strong analogy between
the Girsanov theorem and change of variable formulas in the theory of integration,

the density of P with respect to ) being computed with a Jacobian determinant.



The classical Girsanov theorem relies on It6’s stochastic calculus, and in particular
on adaptedness hypothesis which are not needed in integration (change of variable
formula) techniques. The latter point of view has proved to be useful to remove the
adaptedness conditions imposed by the Girsanov theorem on transformations of tra-
jectories. In order to deal with stochastic processes, a theory of integration in infinite
dimensions is needed, and analysis on the Wiener space provides such a framework in
the case of Brownian motion. The extension of the Girsanov theorem to anticipating
shifts of Brownian motion has been carried out in [10], [17], [19], [20], see the book [21]
for more complete references. In the standard Poisson case (i.e. for Poisson random
measures based on R, ), its analog has been treated in [14], [16], using analysis for
an infinite product of exponential densities. This result relies on the interpretation
of Poisson samples on R, as sequences of independent exponentially distributed in-
terjump distances. On the other hand, a change of variable formula for the uniform
density in infinite dimensions has been established in [15].

In this paper we obtain a Girsanov type theorem for random shifts of a Poisson random
measure on R, x [—1,1]? and a Brownian motion, i.e. an anticipative Girsanov theo-
rem for Lévy processes. The main observation is that a Poisson random random mea-
sure on R, x [—1,1]¢ with flat intensity consists in randomly distributed sets of points
(configurations) that can be represented as sequences of independent d+1-dimensional
random variables whose first component is exponentially distributed, the remaining
independent d components having uniform laws on [—1, 1]. The Radon-Nikodym den-
sity function is then factorized with a divergence operator and a Carleman-Fredholm
determinant and we allow for interactions between the different components of the
process. This factorization of the density is similar to the expression of the density via
stochastic calculus, as the solution of a stochastic differential equation. Girsanov type
theorems for non-adapted shifts of Poisson random measures are completely natural
since in the Poisson case on R%™ there is no canonical notion of time or filtration.
We proceed as follows. In Sect. 2 we review different versions of the adapted Girsanov
theorem. In Sect. 3 we introduce some notation, in particular an interpretation of
the Poisson space as a space of sequences. The main results are stated in Sect. 4, for
shifts of configuration points that are expressed as perturbations of interjump times
and jump heights. In Sect. 5 and Sect. 6 we prove technical results and then our

extension of the Girsanov theorem to the anticipating case.



2 Adapted Girsanov theorem and change of vari-
able formulas

In this section we review the classical Skorokhod theorem on the absolute continuity
of Poisson measures under deterministic diffecomorphisms, cf. [1], [18], [22], and its
extension to adapted shifts, i.e. the Girsanov theorem, cf. [7], [8]. In Sect. 4 we will
present an extension of this theorem to the anticipating case.

Let T'(Ry x [—1,1]%) denote the configuration space on R, x [—1,1]%, i.e. the set of

Radon measures on R, x [—1,1]¢ of the form
k=N
D ew (@) CRy x 1,1 @y # @y, Yk #1, N € NU{oo}.
=1

A configuration v is a sum of Dirac measures €, and will be identified to the discrete
set of points that defines its support, in particular we will write (s,y) € v whenever
v({(s,4)}) = 1. Let Co(Ry) denote the space of continuous functions starting at
0. Let Q = Cy(R,) x I'(R; x [—1,1]%) and consider a filtered probability space
(Q, F, (Ft)ter,, P)- Let v be a diffuse random measure on R x [—1,1]% bounded
on compact sets, Fi-predictable under P, ie. t — fot f[71,1]d u(s,y)v(ds, dy) is Fi-
predictable for every positive bounded Fi-predictable process (u(s,y))sy)eRry x[—1,1]4-
We assume that the canonical continuous process t — w(t) defined on Cy(R;) has
an F-predictable quadratic variation (3(t)):«cr, under P, and that v is the intensity
(or Lévy measure, or dual predictable projection) of the random measure p : Q —

['(Ry x [—1,1]%) defined as u(w,7y) = v, i.e. v(ds, dy) satisfies

Bp [ / u(s,yw(ds,dy)] — By [ [ utsmias.a).
R+><[—1,1}d R+><[—1,1]d

for every positive bounded Fi-predictable process (u(s,y))sy)ery x[-1,1¢- Let ¢ :
R, x [-1,1] — R, x [~1,1]¢ be a random diffeomorphism of R x [—1,1]? whose
d + 1 components

(6" (t,Y)) (b eRs x[-1,1]> - - - » (BT, 9)) (t)eRr x (1,114

are F;-predictable processes. We assume that there exists a predictable process

(Z(5,Y))(s)eryx[-1,1]¢ > —1, P-a.s., such that

(i) Zo¢ € LRy x [~1,1]% 1), i.e.

L Ee b s ) < oo, P,
+X[=1,



(i) and

f ot Zod sy = [ oo ypids. ).
+ ’ (2.0.1)

Vg € CH(R*?), i.e. (1+ Z)7 ! is the density of ¢, with respect to v, P-a.s.

If v is a multiple of the Lebesgue measure, then 1 + Z o ¢(s,y) = [0¢(s,y)| is the
Jacobian determinant of ¢. Let ¢() denote the configuration v whose points are

shifted according to ¢, i.e. ¢(7) is identified to the set

¢(v) ={o((s,9)) : (s,9) €7}, v eT(Ry x [-1,1]9).

Let (2(s))ser, € L*() ® L*(R4,dB) be a square-integrable F-predictable process
and let 9(w) be defined as

b)) = w(t) + / 2(s)dB(s), 1€ Ry, e CoRy).

In the following result, (M¢(t))scr, is a time changed Brownian motion and p is a

Poisson random measure with deterministic intensity v.

Theorem 2.0.1 Assume that v and 3 are deterministic, and

B [exo (= ["auts) — [ Zostsumtas.tn — 5 [ 21509

< I @+ Zoqb(s,y))} =1. (2.0.2)

(5,9)€Y

Then for every bounded and measurable random variable f : @ — R we have

Belf(o] = Br 1) st ep (- [ a6duts) - [ 7065, upvtds.an)

_%/Ooof(s)dﬁ(s)) [ t+Zog(s,y)

(s,y)evy
We can also write
d<I> 1P 1 [t
= oo (= [ s+ [ Zostsmtasdn) - [ 61506
R4 2 Jo
X H 1+ Zod¢(s,y)),

(s,y)€r
where the transformation @ : @ — Qis defined as ®(w,v) = (Y (w), ¢(7)), (w,7y) € Q.
We will recall a proof of the above result using an extension of the classical Girsanov

theorem to the jump case in the martingale framework, cf. [8], [9]:
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Theorem 2.0.2 Let (M(t))icr, be a martingale on (Q, F, P), whose continuous part
(M¢(t))ser, has quadratic variation (B(t))ier, . Assume that the jump part (M%(t))er,
of (M(t))er, is given by the discrete random measure ji : Q@ — T(Ry x [~1,1]%)

with intensity U as

t t
[ [ aasay - [ [ stdsdy. teR..
0 J[-1,1¢ 0 J[-1,1)¢

(Z(Say))(s,y)ER_,_x[—l,l]d € Ll(R-I- X [_L 1]daﬁ)7 with Z > _17 P — a.s.,

Let

and (2(s))ser, € L*() @ L2(Ry,df) be predictable processes, and define the measure
Q by its density

% — exp (_/O“’ §)dM(s /R+X y)ﬂ(ds,dy)—%/00052(8)‘13(3))

x [T+ Z(s,y)Ad(s,y)), (2.0.3)
(5,9)

where AM (s,y) = a({(s,9)}), (s,9) € Ry x [-1,1]%.

If Q is a probability measure then, under @, the process (M(t))teR+ admits a unique

decomposition
M(t) = M°(t) + M%(t) + a(t), teR,,
where
(i) M<(t) = t) + fo ,t € Ry, is a continuous local martingale under Q)

with predzctable quadmtzc variation B°(t) = °(t), t € R,

(ii) M%(t) fo f[ o Yo(ds,dy), t € Ry, is a pure jump martingale
and dji has mtenszty (1+ Z)dl/ under @,

i1 v(ds,dy) — s)dB(s), t € Ry, is a finite variation
0 [—1,1)¢
process.

Proof. of Th. 2.0.1 from Th. 2.0.2. let Z = Z, = 7z, assume that (M (t))wcr, =
(M?(t))ser, + (MC(t))ser, is defined as M¢(t) = w(t) and

/ / )(ds, dy) — / / v(ds,dy), te€ Ry,
1,1]d 1,1]d

with fi(w,7) = ¢(7) and &(ds,dy) = (1 + Z(s,y)) *v(ds,dy). Let (F;)iwcr, denote

the smallest filtration that makes every process (u(s, ¥))(sy)er, x[-1,1¢ adapted if (u o
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B(5,Y))(s,y)ery x[-1,1¢ 18 Fi-adapted. The process (]\Z(t))teRJr is (ﬁt)teR+ adapted.

Given a positive bounded F,-predictable process, (u(s, Y)) (s.y)eR x[~1,1]¢, We have

br [/R [1 1]du(s’y) ¢(7)(ds’dy)] - b /R - 1]dU<><zﬁ(s,y) 7(d8,dy)]
= Fp / u o ¢(s,y) V(ds,dy)]
Ry x[—1,1]4
_ B _uls,y) }
= Fp /]:{_'_X[ I/(ds,dy)

= Ep / U(S,y) ﬁ(dsady)] :
LJ R4 x[—1,1]¢

Hence under P, fi has intensity 7, and (M¢(t))cr, has quadratic variation (5(t))iwcr, =
(B(t))ter, - Let (M(t))ser, be defined as M°(t) = (w)(t), t € Ry, let

t t
M) = / / fi(ds, dy) — / / v(ds, dy).
0 J[-1,1¢ 0o J[-1,1)

From Th. 2.0.2, (M(t))tr, is a martingale under @), the random measure fi has
intensity v under @, and 9(w) is a continuous martingale under ) with quadratic
variation . Hence ¢(7y) and 4 (w) have the same laws under Q as v and w under P,

since [ and v are deterministic. It remains to notice that (2.0.3) can be rewritten as

@ — X _ * . o _1 t ) >
5 = © p( /O z(s)dw(s) /R+><[—1,1}dZ o(s,y)v(ds, dy) 2/0 22(s)dp(s)
< [ A+Zoe(s,y)), (2.0.4)
(s,y)er
o aitcay =1L iE3y) ey (3,9 =dlsy),
(5,9) = 0 otherwise,
and

_ Z(s,y)
Z(s,y)v(ds,dy) = / ——"—v(ds, dy)
/R+><[—1,1]d (5 1) ) Rox[—1,1)¢ 1+ Z(5,9) (

= / Z o ¢(s,y)v(ds, dy).
R4 x[—1,1]¢
O

We make some remarks on different factorizations of the density function and on the

deterministic case.



If the process Z does not belong to L' (R, x [—1,1]¢,#), P-a.s., then the product
(2.0.4) may not converge. However, if 7 is predictable and belongs to L?(Q) ®
L*(R, x [-1,1]4, D), i.e.

Bel [ 1zostsuPrtasan] =Be | [ (zGa)Potas )] <o
R4 x[-1,1]d Ry x[-1,1]d

then the probability density d@/dP can still be formulated via a “renormaliza-
tion” due to stochastic calculus. Namely, it can be written as the limit L., as ¢

goes to infinity of the process

L = exp (= [ a(s)dire(s (5,9)(i(ds, dy) — #(ds, dy))
(= [ o [ [ 2

- / tz2(8)dﬁ(s)) [T (1+Z(s,9) AR (s, y))e 2ew2itteniy .5)

(5,y), s<t

t € R, which is solution to the It6 stochastic differential equation

SdLy = ()N (1) + / 2t y)ildt, dy) — v(dt.dy)), Lo=1, t>0.
= [~1,1]

The factorization
[[ 0+ 2(s.9)AM(s,y))e Zovatiey (2.0.6)
(5,9), s<t

is used in (2.0.5) because this modified product still converges as t — 0o when

7Z € L*(Q) ® L*(Ry x [—1,1]¢,D) since P(dy) almost surely, the series

> (Zog(sy)

(s,y)€v

is summable. Moreover, in (2.0.5) the stochastic integral

/ / Z(s,y)(f(ds, dy) — v(ds, dy))
1,14
makes sense in L%(Q) for predictable Z € L*(Q) ® L?*(Ry x [-1,1]¢, 7). The

same factorization will be used in the anticipating case, where the traditional
determinant is replaced by a Carleman-Fredholm determinant (see (4.0.10)),

compensated with a divergence operator, cf. [17], [23] (see below in Sect. 4).

The absolute continuity result for deterministic shifts on Poisson space of [3],
[18], [22] follows from the Girsanov theorem, in the particular case of a smooth

deterministic diffeomorphism
¢:Ry x[-1,1]" — Ry x [-1,1]%
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We denote by P, the Poisson measure on I'(R; x [—1,1]¢) with deterministic
intensity v, i.e. the probability under which u(w,~y) = 7 has intensity v, with

characteristic function

Ep, [eXp < / gdv)} = exp ( / (e9®) — 1)V(dy)> :
Ry x[—1,1]¢ Ryx[—1,1]4

g € C.(Ry x [—1,1]%). Th. 2.0.1 gives
Ep[f(w, ’7)]

= e |fstew (- [ Zossymtasan) ] 1+ Zoo)|,

(ssy)€7

[ : 2 — R measurable bounded, where (1 + Z)~! is the density of ¢,v with
respect to v. In the particular case where v is the Lebesgue measure on R %

[—1,1]% we find:

d¢;iP,

(s)evr
3 Sequence model for the space (2

In this section we introduce the sequence model of €2 as a vector space denoted by
B, i.e. the random element (w,y) is constructed via a sequence of vectors which have
independent Gaussian, exponential and uniformly distributed components. In the
remaining of this paper we work in the case of a deterministic flat intensity v given

as

1

dv(y's -y = e (W) (V) - (™ dy - dy™ (3.0.7)

and with the quadratic variation 3(t) = ¢, t € R,. (We will use the notation R**? 5

zp = (29,...,20%Y). Let B = {x = (Tg)ken © Tk € ]Rd+2}, with the norm
|z — yllz = sup |lzx — yxllge+=/(k + 1),
k>0

and associated Borel g-algebra F. Let d > 1, r > 0, and let A, be the finite measure
on R%? defined by its density

d)\'l‘(thtla"' ?td-l-l)
1 2
_t0/2e_t11R<t0)1[—r,oo[(t1)1[—r—1,1+r] (t2) «+ Lj—pq,140] (tag1)dto - - - dbayq.

— ¢
24-1,/27



We denote by P the probability defined on (B, F) via its expression on cylinder sets:
P{z = (%x)pex € B 1 (0,--.,2,) € A}) = AF"TH(A), (3.0.8)
A Borel set in (R*2)"*1 n € N. We denote by
= (1p,..., 7)) : B — R*™? k€N,

the coordinate functionals defined as

(@) = o = (2f, ..., 2™,
and
(TR (@), T (@) = (2, -2 ™).
The sequences (T9)ren, (T4)ken, (T8)ren, ¢ = 2,...,d + 2, are independent and re-

spectively Gaussian, exponential and uniform on [—1,1]. We let

E = Rx]0,00[x] — 1,1[%7,

E =R x[0,00[x[-1,1]%

and

Bi={z€eB : z,€FE, keN},
B ={ze€B : z,€FE, keN}.
The random configurations v can be constructed as the sets of points
y={Ti(z) : k>1}CR, x[-1,1]% =z € By,

defined as

i=k—1
Ty(z) = ( i (x), 2 (), . .. ,T,f“(x)) , TE€B, k>1
i=0
On the other hand, it is well-known that the classical Brownian motion on [0, 1] can
be constructed as

© o
W(t) = trd + \/iz 22—”7 sin(2nnt), t€[0,1],
n=1

1.e.

2= \/5/1 sin(2rnt)dW(t), n>1, 70— /1 AW (1) = W (1),

10



and if (2(t))scp0,1) is an adapted process given as

z(t) = F(0,0) + \/ii F(n,0)cos(2nwt), te[0,1],

n=1
then the stochastic integral of (z(t)):e[o,) With respect to (W (t))sepo,] is written as

oo

/0 2(t)dW (t) = F(n,0)7y,

n=0

and we have

n=0
Let also
R4, 1 =0,
Ei=< {G°...,.y") e R : y' =0}, i=1,
{@0 ...,y e R ¢ yie {-1,1}}, i=2,...,d+]1,
and

B,={x€B : 2,€E}, keN,i=1,...,d+1.

We denote by (ey)r>o the canonical basis of H = [2(N, R**?) = [?(N) ® R**?, with
er = (€y,...,ef™), kel

In this framework, the shift of Brownian motion by a process (1(s))scjo1] and the
random diffeomorphism ¢ : Ry x [—1,1]? — R, x [—1,1]¢ will be replaced by a
random variable F' : B — H whose components are denoted by (F'(k, ¢))ken,i=o,... d+1-
The link between F' and v, ¢ is the following:

V2 [ sin(2rkt)y(t)dt, k> 1,
F(k,0) =

Sy w(t)dt, k=0,
Tli + F(ka 1) = ¢1(Tk+1) - ¢1(Tk)a k Z Oa

i+ F(kyi) = ¢'(T), k>0,i=2,...,d+1.
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4 Anticipating Girsanov theorem

In this section we will state the extension of the Girsanov theorem for Lévy processes to
non-adapted shifts, and compare it to its classical adapted version (Th. 2.0.2). Before
that we need to introduce the tools of gradient and divergence operator which will be
used in the expressions of densities. Given X be a real separable Hilbert space with
orthonormal basis (h;);en, let H ® X denote the completed Hilbert-Schmidt tensor
product of H with X. Let S be the set of functionals on B of the form f(7y,,...,x,),
where n € N, ky,...,k, € N, and f is a polynomial or f € C°(E™). We define a set

of smooth vector-valued functionals as

S(X)z{ZFihi . Fy,...,F, €8, ho,... h, € X, nGN},
=0

which is dense in L*(B, P; X).

Definition 4.0.1 We define a gradient D : S(X) — L*(B,H ® X) by

F(z+eh)— F
(DF(x), h)mrox = lim ($+5€) @) e hen

The coordinates of DF € L?*(B; H ® X) are denoted by (D}F),ienx{o,... a+1}- For
u € S(H ® X), we write

Let
UX)={ueSH®X) : up=00nBj, keN, i=0,...,d+1},
which is dense in L?(B; H ® X).

Proposition 4.0.1 The operator D : L*(B; X) — L*(B; H ® X) is closable and has
an adjoint operator 6 : U(X) — L*(B; X), with

Ep[(DF,u)pex] = E[(0(u), F)x], uweU(X) F e S(X), (4.0.9)
where § is defined as

d(u) = ZT,SU% + uy — trace Dyuy, u € U(X),
kEN
with

trace Dyuy, = Dyul + - - + Dittyd+t oy e U(X).

12



Proof. This result is proved by finite dimensional integration by parts with respect

to Ag, under the boundary conditions imposed on elements of U(X). O

Given a Hilbert-Schmidt operator K : H — H, the Carleman-Fredholm determinant
of Ig + K is defined as

o0

dety(Ty + K) = [ (1 + a) exp(—av), (4.0.10)

=0

where (ay)ren are the eigenvalues of K, counted with their multiplicities, cf. [6].

Theorem 4.0.3 Let F': B — H be such that h — F(z + h) is continuously differen-
tiable in HQ H on{h € H : ©+ h € B.}, a.s. for x € B. Assume that

(i) I+ F)(B-) = B,

(ii) I+ F)(By) CB., ke N,i=1,... ,d+ 1,

(#ii) Ig + F : B — B is a.s. bijective,

(iv) Ig + DF : H — H s a.s. invertible.

Then

Ep|[f] = Ep ||deta(Ig + DF)|exp (—(5(F) — %|7rOF|fH> fo(lp+ F)]

for f : B — R measurable and bounded, where n° : H — [2(IN) is the projection
operator defined as 7 (u) = (ul)ren-

This result is a particular case of Th. 4.0.4 stated below and proved in Sect. 6. The
integrability condition (2.0.2) in Th. 2.0.1 is ensured by the hypothesis of Th. 4.0.3.

We also make the following remarks:

e The boundary condition (#z) in Th. 4.0.3 is natural. For ¢ = 1, it states that if
two points in v have same jump times then their images by Iz + F' also have

same jump times. For ¢+ = 2,... ,d 4+ 1, it means that
=241 = F(k,i)=0
i.e. if a point lies at a boundary of [—1,1]¢, then its image by Iz + F lies at the

same boundary.
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e Let us check that in the adapted Poisson case (F'(n,0) = 0, n € IN), the above
result is in agreement with Th. 2.0.1 (v is the flat intensity given by (3.0.7)).
If Ig + F : B — B satisfies the hypothesis of Th. 4.0.3 and corresponds to
a smooth F-predictable random diffeomorphism ¢ : R, x [-1,1]% — R, x
[—1,1] satisfying the hypothesis of Th. 2.0.1, then DiF(l,5) = 0, k > [, hence
Iy + DF is a block diagonal matrix, each d x d diagonal block being equal to
the Jacobian determinant |0¢(Ty)|. We have 7} + F(k,1) = ¢*(T11) — &' (T}),
k>1,¢1(Tp) =+lifri=+1,k>1,i=2...d+1, and

D F(k1) = lim (¢'(T) = T7)
= lim v($([0, Ti] x [=1,1]%) = v([0, T x [-1,1)%)

= / (|104(s,z)| — V)v(ds,dz), a.s.
Ryx[—1,1]¢

Hence the formula of Th. 2.0.1:

|deto (I + DF)|exp (—0(F)) = |det(I + DF)|exp (— iF(k, 1))
= exp (—ZF(k, 1)) 1 10¢(T)]

= (- LR (s, o) 1°j|a¢<Tk>\.

e Still in the adapted Poisson case, the Carleman-Fredholm factorization dets (/5 +
DF) of the determinant has some similarity with the expression (2.0.5) of the
density Lo, = dQ/dP. The conditions Z = (|0¢| — 1) € L*(Ry x [—1,1]¢, D),
resp. Z(|0¢| —1) € L*(R,; x [—1,1]% D) are the respective analog of the trace
class and Hilbert-Schmidt hypothesis on DF', a.s. More precisely we have

o] d+1
det(Ig + DF) = [ [ 104(Ts)| exp (— > DiF(k, i)) .
k=1 i=1

If (and only if) d = 0, then the Carleman-Fredholm determinant dety(Ig + DF')

coincides exactly with the factorization (2.0.6), i.e.
dety(T + DF) = [ [ |¢/(T%) | exp (1 — ¢/(T})) ,
k=1

and 0(F) = [;" ¢'(t)(y(dt) — v(dt)).
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e In the general adapted case, i.e. if F' also perturbs the Brownian component,
then this type of result can not be checked via the above elementary computa-
tion. If Ip + F' satisfies all the above smoothness and adaptedness conditions,
the comparison of Th. 4.0.3 to the classical Girsanov theorem Th. 2.0.1 yields

an equality between

1
|dety(Ig + DF)|exp (—5(F) — §|7TOF|§{>

[o.9]

— |det(Iy + DF)|exp (- S R F(k,0) — F(k, 1) — %(F(k, o))2>

= exp (— /01 z(s)dW(s)—l—/R " 1]d(|a<;s((<;,a:)| —1)v(ds, dz) — §/Olz(s)2ds>
«|det (I + DF)| T

and

exp (- /0 L (s)aw (s) + /R U6 2)] = vtas, ) - % /0 1 z(s)2d3>

x [ [ 106(T:)],

k=1
hence the expression of the determinant in the case of an adapted transformation
of a Brownian motion and a Poisson random measure satisfying the hypothesis

of Th. 2.0.1 and Th. 4.0.3:

o0

det(Ig + DF) = [ ] 104(T:)|.

k=1

We will prove a result which is more general than Th. 4.0.3 and does not require g+ F'

to be bijective. For this we need to consider the following class of transformations, cf.
[10], [21].

Definition 4.0.2 A random variable F : B — H is said to be HC; . if there is a

loc

random variable R : B — [0,00] with R > 0 a.s. such that h — F(z + h) is
continuously differentiable in H @ H on

{he H : ||h|lg < R(z) and z+ h € B, },
for any x € B,.

Our main result is the following, it is formulated for not necessarily invertible shifts,

as in [21] on the Wiener space.

15



Theorem 4.0.4 Let F € HC,,, and M = {x € B, :dety(Ig+ DF) # 0}. Assume
that

(i) (Ig+ F)(B-) C B_ and

(ii) Iy + F)(Bi) C B, ke N,i=1,...,d+1.

Then

(i) N(z; M) := card((Ig + F)"Y(z) M), z € B, is at most countably infinite,
(7i) we have

EnlfN (3 M) = Bp |[deta(ly + DF)|exp (~0(F) = J1x°FIy ) fo(la+ F)]

for f € Cf(B),
(iii) the measure (Ip + F).(Pa) is absolutely continuous with respect to P, and
d(Ip + F).Pu 1 5, 9 1
= F —|m F .

0e(Ip+F)~ Y (z)nM

Proof. cf. Sect. 6. O]

Th. 4.0.3 is a particular case of Th. 4.0.4 with R = oo, P-a.s., P(M)=1and Iz + F

P-a.s. bijective.

5 Technical results

In this section, some further notation is introduced, and basic properties of D and ¢

are stated.
Definition 5.0.3 For p > 1, we call

o ID,,(X) the completion of S(X) with respect to the norm
1F D, xy = IIFlxllzos) + IDF || aox]zos),

o DIZ;{J(H) the completion of U(R) with respect to the norm || - ”ﬂ)p,l(H)’

o Dy1(X), resp. ngo,l(H) the subset of IDy1(X), resp. ]DZ;J(H) made of the
random variables F' for which || F|| p_ \(x)» TESP- 17D ) B bounded.

16



For p € [1,00], we call

. Dlp"i (X), resp. DIL,’,’IIOC(H), the sets of functionals F such that there is a measur-
able almost sure partition (A, )nen of B and F,, € ID,1(X), resp. F, € D;;{’I(X),
with F,, = F a.s. on A,, n € N.

Forp=2,
e let Dom(d; X) denote the domain of the closed extension of §.

The interest in the space ]DI;,1 (H) is that it is a Hilbert space contained in Dom(d; X),

as shown in the following proposition.

Proposition 5.0.2 (i) The operator 6 is continuous from IDy(H) into L*(B) with

6(F) ez < (@+DIFIpy . F € D (). (501

(ii) The operators D and § are local, cf. [2], [12], [14], i.e. for F € IDs;(X), resp.
F € Dom(0; X). we have DF = 0 a.s. on {F =0}, resp. 6(F) =0 a.s. on
{F = 0}.

Proof. (i) Let F € U(RR). We have

5(F):Z( OF(k,0) + F(k,1) — dipz /”>,

and

O(F)* < (d+2) (iTISF(k,O)—D;?F(k,U)>

+(d+2)<§:F(k,1)—D,§F(k,1)) +(d+2) di(ka kz),

hence from the Gaussian, exponential and uniform cases, cf. [17], [14], [15], we have
k=0 ]

Z (DRF(1,0))* + (DR F(1,1))* + Z(DZF(L 2'))2]

k,1=0

< (d+2)||=°F|]? )
< @+ Pl

16(F) |2 < (d+2)E

+(d+2)Ep

(See Th.4.0.3 for the definition of 7°). The proof of (ii) relies only on the duality
relation between D and ¢ and on the density of #(X) in L?*(B; H ® X). O
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The proof of the following result is directly adapted from [4], [11], [13], [14], it stays
valid by replacing Ay with any absolutely continuous probability measure on R%"2.

Let F, denote the g-algebra generated by 7o, ... , 7,.
Lemma 1 Let F € L*(B; X) and F, = E[F | F,] € D>1(X), n € N.

o F'e IDy1(X) if and only if F,, € D21(X) VYn € N and (DF,)nen converges in
L*(B;H ® X). In this case,

||DFn||H®X S ||DF||H®X7 a.s., n € IN.

o F, belongs to D1 (R) if and only if there exists
f c W2,1(En—|—1’ )\g@n—kl)
such that F,, = f(1o,... ,7,). In this case, DF,, = (O f (70, - . -

) Tn) ) ken-
o Assume that for some ¢ > 0,
|F(x+h)— F(x)||x <c|h|l|zg, h€H z€By, x+heB,.
Then F € D21(X) and |DF||gex < c, a.s.
We denote by 7, the application 7, : B — H defined by m,(z) = (mkl{kﬁn})keN'
Lemma 2 Let F': B — H measurable and bounded such that
(i) Ipg+F)B) CB,,keN,i=1,... ,d+1,

(#1) F is Lipschitz on By with Lipschitz constant ¢ > 0:

|F(z+h) — F(x)||lg <c|b|lzg, h€H, z€By, x+heB,.

Then F € Dgo,l(H), and there is a sequence (Fp)nenw C U(R) that converges in
DY, (H) to F with

(1) M Fallzlloe < NIE |2l oo-

(i) IIDFnllromlloc < ¢, n € N.

18



Proof. Let,
E, 1 =0,

E;={ RxRx[-1,1]%, i=1,

RxR, x[-1,1]"2x R x [-1,1]4 =2 ... d+1,
and
Bi={zeB, : 2, €E}, i=0,...,d+1, keN.
First we note that after putting F' = 0 on B¢, the Lipschitz condition on F' extends
to B} as
|F(k,i)(x + h) — F(k,i)(z)| <c||h|llzg, h€eH, ze B,i, x+he B,i.

Let F,, = m,E[F | F,], n € N. The sequence (F),),en converges to F' in IDy;(H)
and satisfies to (i) and (i7). There exists a function fi € W2'(R@+2® ) dz) which
has a Lipschitz version on R4 and support in E™!, such that F.(k,i) =
fi(o,... ) P-ae, k =0,...,n, i =0,...,d+1. Let ¥ e C®(REDn+)
with support in [—2, 0]F(¢+2+% x [0,2] x [-2,0]»—F(d+2)+(d+2=) o < ¥ < 1 and
[r@in@men Y(z)dz = 1. Let for N > 2 and y € E"T:

[ (
Prin(y) = { (

) A [ W(N(y — 2)) fi(2)de, i = 0,1,

2=

)(d+2)(n+1) fE T(N(y — x))fli(x)dx’ Z/i <0,1=2,...,d+1,

s

d+2)(n+1 ; ; .
\ (%)( 2 )fEi\If(N(y-i-x))f,ﬁ(x)dx, Yy >0,1=2,...,d+1.
Forke€ Nand ¢ =0,...,d+1, let Gn(k,i) = drin(T0,...,70), kK =0,...,n, and
Gn(k,i) =0, k > n. Then Gy € U(R), N > 2, and (Gy)n>2 converges to F,, in
D, (H) and satisfies to (i) and (4i). O
We refer to [10] for the following definition on the Wiener space.

Definition 5.0.4 If A C B is measurable, let

)_ 1nfh€H{||h||H : .’I}+h€A}, r € B,
] oo, r¢ A+ H, z € B.

Let ¢ € C°(R) with [|¢]|c < 1, such that ¢ = 0 on [2/3,00[, ¢ = 1 on [0,1/3] and
|¢']|c0 < 4. If A o-compact, then

pa(z

1p(pa(z + b)) — d(pa(@))llu < 1¢llellbllr, =€ B, heH,
hence ¢(pa) € Doo(R) with ||De(pa)llr < [[¢]|o-
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Lemma 3 Let ng € N and F € HC,,,, such that
(Ig+F)(By) C B, i=1,...,d+1, k> ng.

Let a, 3 > 0 and

A={z€eB_ : pB’ic(WnOx)>4/a,ke]N,z'zl,...,d+1,
R(z) > 4/a,
sup ||F(z + h)|la < B/(60),
I~ <2/a

Ihll ez <2/

and F = d(apg)F, where G is a o-compact set contained in A. Then
||13’(x+h) ( e < (56/6)||h||lg, h€H, z,x+he€ By,

and ||||F|| |l < B/(6a). Consequently F D% (H), and F € D% lOC(H).

Proof.  Any z € A satisfies z} > 4/a, 1 — 2% > 4/a, and 2, +1 > 4/, i =

.,d+1, k < ng. For z in B} we have pa(z) > 4/a, hence ¢(apa(z)) = 0, and
(Ig+ F(k,i))(B) C Bi,0<k<mng,i=1,...,d+1. From Lemma 2 it follows that
Fe D%, (H). The fact that F' € IDZ;lolfc(H) is proved by covering B with a countable
collection of sets such as A, with a, 8 € QNJ0, ool. O

Lemma 4 Let F\G € S(H) and T = Ig+ F. We have GoT € Dom(d) and

5(G)oT =6(GoT)+trace (DF*(DG)oT)+ (n°F,GoT)y.

Proof. We have §(GoT) € S and

oo d+1
5(GoT) = ZT,SGkO JoT+G(k,1)oT —> > Di(G(k,i)oT)
k=0 =0
oo i=d+1
= ZT,SGk 0)oT +G(k,1)oT =Y > Di(Is + F)'(DG(k,i)) o
k=0 k=0 =0
i=d+1 o0
= —(n"F,GoT)g+46(G)oT— > > DiF(l,j)(DiG(k,i))o
1,j=0 k,1=0

= 6(G)oT —trace (DF*(DG)oT)— (n°F,GoT)y.
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6 Proof of Th. 4.0.4
Since from Prop. 5.0.2, DY, (H) C Dom(d), we define

1
Ar = dety(Ig + DF) exp (—(5(F) — §|7TOF|§{> , Fe DYy (H). (6.0.12)

The proof of Th. 4.0.4 is done in two main steps: first we treat the case of Lipschitz
transformations in the following lemma. Then we use the fact that F' € HCj,, can
be locally written as a Lipschitz transformation, as in [10]. Let P;- denote the image

measure of P by my := Ig — m,.

Proposition 6.0.3 Let ng € N, let K : H — m,,H be a linear operator such that
Iy + K is invertible, and let v € m, H. Let F': B — H be measurable, bounded with
bounded support, such that

(i) Is+F)Bi) CB,,keN,i=1,...,d+1,
(i) my o (Ip+ F)(B) C By, a.s.,
(iii) F is Lipschitz on B_ with Lipschitz constant ¢ < (||(Ig + K) o) -

|EF(z+h) — F(z)||lg <c||h|l|lg, heH, x€B_, t+he B_. (6.0.13)

Then Ig + F + K + v 1s injective and there is v > 0 such that

Ep|f] :/ Apikio] fo(Ip+F + K +v) d\®M+) g pl
B

no?
for f: B — R bounded measurable with support in B_.

Proof.  Step 1: finite dimensional case. The injectivity of Iz + F' + K + v follows
from (6.0.13) as in [10], [14]. Let F' =0 on BS. Let (F},)n>n, C U(R) be the sequence
given by Lemma 2, converging to F' in D.;(H), and let T,, = Ip + F, + K + v.
Since 7, (Iz + F)(B) C By, by construction the sequence (Fy)nen also satisfies
Tn. (I + F,)(B) C By, n € N. Replicating the argument of [10], [14], [21], we show
that Ig + F, o (Ip + K)™' + v is contractive from (6.0.13), hence bijective on B with
inverse Ip + G, = (Ip + K) o T,; !, where G,, satisfies

Gn=—-F,0o(Ig+ K)o (Ilzg+G,) -, (6.0.14)
and

IDGullaon < cll(Ta + K) oo/ (1 = el (I + K) 7' loc). (6.0.15)
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From (6.0.14) and the uniform boundedness in n and z of (F,)n>n, and (Gp)n>nes
there exists 7 > 0 such that [T, 1(k,i)| < 1+7r,i=2,...,d+1,and T, (k,1) > —r,
n€e€N,k=0,...,n9, on By. Let g € C*(RHI"+D 7 H) such that F, + K +v =
9(To, ... ,Ta), 0 > myg. Since m, (Ip + F,)(B) C By and F,, =0 on B_, n € N, from
(6.0.14) we have

T,{x€B : ax€E, k>n})={r€B : z,€E, k>ngl}, (6.0.16)

hence z — = + g() is a diffeomorphism of (R%**?)" x E"~". The Jacobi theorem in

dimension (d + 2)(n + 1) gives:

/B [Ap,+ k40| f(mn 0 Ty) d)‘g)(nﬁl) ® Pri)

1
T 2@ i /R(M)(m) Lgnti (2 + 9()) f(2 + g(2))

| det (g + )| exp (— Z gi. + T + Tl + %(w%)? + %@2)2) m(dz)
k=1
1 k=n 1
- 9(d-1)(n+1) /R(d+2)(n+1) Lgns1 (y) £ (y) exp (_ ;yllc + 5(92)2> m(dy)
= Eplfoml, i (6.0.17)

where m(dz) denotes the Lebesgue measure on R4+ for f ¢ ¢ (R D))

with support in E"*!. This relation extends to f € C;(B) with support in B_:

/ |Ap i r+o| foTh d)‘g)(no-l—l) ® Pri) =Ep[f].
B

Step 2: uniform integrability argument. From the de la Vallée-Poussin Lemma we

need to find a bound on

/B Ip_o Tn\AFn+K+v log |AFn+K+v|| d)‘?(nﬁl) ® Priﬂ

uniformly on n > ng. Since (||DF,()||#em),en is bounded uniformly in n € N and

z € B, (|deto DT}, (z)|)nen is uniformly lower and upper bounded from

etz (DT (2))| < (1+ | DTo(2) — Inllaen) exp(1+ |1 DTy(2) — Inllieon),
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we only need to estimate

/ 1g o T,|6(F, + K + v)Ap, 1 x40 dAE™™ @ Pt
B: Ep[|6(F,+ K +v)oT, ']
< Ep |[|6(mnoFn+ K +v)o T, 1] (6.0.18)
+Ep [[trace [(D(-Ko(Ip+K)"'+(Ip+K) ' 0G,)) - (Dmy F,) o T, ']

+Ep [|(n°(G + G o (Is + K)), mp, Fyy o T )]
[

» P ng

+Ep [|6(mp Fr 0 T Y] (6.0.19)

from (6.0.17) and Lemma 4, since

(Ip + K)"Y(Iz + G,)

(Is + K) ™'+ (Ip + K) " (Ip + Gy)

(Is+K)Ip+K) ' —K(Ip+K)""+ (Ip+ K) '(Ip + G,)
= Ip—K(Ip+K) '+ ({Ip+K)'(Ip+G,), neN.

The first three terms in (6.0.19) are uniformly bounded in n from (6.0.15). From
(6.0.14), we have 7. G, = —my, F,, o T,7, and 7 Gy, € U(R), hence from (5.0.11),

Ep [[6(mg F 0 T71)]] Ep [10(mqGn)|] < Ep [|6(m5,Gn) ]
(d+2)Ep [||[Dm,Gullien] + (d+ 2 FII
(d+2)(ell(In + K) Hloo/ (1 = ell(Zrr + K) o))

+d+2)FII%,  n > no,

VAN

IN

)

from (5.0.11). Choosing a subsequence we have the AY™ ! g P;--a.e. convergence

of (|Ar,+x+v|f © T)n>ne t0 |Apikis| foT, and by uniform integrability
/B Arirs] foT dAS @ PL = B, [f]. (6.0.20)
0

Proof. of Th. 4.0.4. We construct a family of sets that form a partition of M, such
that F' is Lipschitz and satisfies the hypothesis of Prop. 6.0.3 on each of those sets.
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Given K : H — m,,H a linear operator, v € m,,H, n > 8, let

8
A(ng,n, K,v) = {xEB,:pB};(WnOx)>E, keN,i=1,...,d+1,
4

R(z) > o

1 _
sup |[|F'(z+h) = K(z +h) —vlla < o (10 + K) M loo) ™

IrllE<1/n

1 B _
sup [|DF(w+h) = Kllon < - (I (I + K) ) } ,

lIrllE<1/n

Let Frep = ¢(n04(ngm,x,0)) (' — K — ), where A(ng,n, K,v) is a o-compact modifica-
tion of A(ng,n, K,v) () M. Then from Lemma 3, Fx,, and A(ng,n, K,v) satisfy the
hypothesis of Prop. 6.0.3, and since T' = Ig + Fk, + K + v on A(ng,n, K,v) C B_,

we have from Prop. 6.0.3:

Ep 1A(n0,n,K,v) |AF| fOT:| =Ep |:1T(A(n0,n,K,v))f :

Finally we deal with the non-invertibility of T = Iz + F' as in [21]. Denote by
(Ag)ren the countable family (A(ng, n, K, V))nom,k,0 Obtained by letting K, resp. v,
run in the finite rank linear operators and vectors with rational coefficients. Let

M, =A, N (U’:zg_l Ai) , n € N*. We have the partition | J, .« M, = M, and

2

Ep[|Ap| foT) = > Ep[lm,|Ap| foT]
n=0

= ZEP (17 f] = Ep [fN(x; M)].

The computation of d(Ip + F). P ,,/dP follows from

Ar(0)

n=0

g /
Ep(lyfoT| = ZEP [1T(M“)m = br feeT—;)ﬂM
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