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Abstract

Various deviation inequalities are obtained for functionals on Wiener space,
Poisson space or more generally for normal martingales. The method is based
on covariance identities obtained via the chaotic representation property, and
extends to the binomial process and to the infinite discrete cube {—1,1}*.
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1 Introduction

The purpose of the present paper is to further explore topics in deviation inequalities,
in particular in infinite dimensional settings. Deviation and concentration have at-
tracted a lot of attention in recent years well summarized in [13, 14] where the reader
will find up-to-date information, precise references and credit. Among the various
methods used to obtain these results one that we would like to emphasize is based on
covariance representations. In particular, it was used in the Gaussian or more gener-

ally infinitely divisible cases in [3], [10], [11]. We tackle below the infinite dimensional
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case with a similar method, recovering also the results recently obtained in [2], [4],
[27] using (modified) logarithmic Sobolev inequalities.

The content of this paper is as follows. In the next section, we briefly review the
notion of normal martingale and recall elements of its structure theory. Applications
that are specific to the Gaussian case are mentioned in Section 3. Section 4 is de-
voted to deviation inequalities for normal martingales having the chaos representation
property. This is then specialized to “deterministic” structure equations that simulta-
neously cover the Poisson and Wiener cases in Section 5. The general case of Poisson
random measure on a metric space is treated in Section 6, and the gradient of [5] is
used in Section 7 for the Poisson process on R, . Section 8 is devoted to similar results

for the binomial process and on the infinite discrete cube.

2 Preliminaries: normal martingales

Let (M;)ser, be a normal martingale, i.e. (My)er, is a martingale with deterministic
angle bracket d(M;, M;) = dt. Let (F;)iwcr, be the filtration generated by (M;)scr,

and let F = \/ F;. The multiple stochastic integral I,,(f,) is then defined as
tERT

o0 tn to
L.(fn) = n!/ / / falty, ... ty)dM,, ---dM, , f, € L*(R.)™, n>1,
0 0 0

where L?(R; )" is the set of symmetric square integrable functions on R, with

E[In(fn)lm(gm)] = n!l{n:m} <fna gm)LQ(R+)0n . (1)

We assume that (M;),cr, has the chaos representation property, i.e. every F €
L?(Q, F, P) has a decomposition as F = > ' I,(f,). Let D : Dom(D) — L*(Q x
R, ,dP x dt) denote the closable gradient operator defined as

DiF =Y nloi(fu(*,1), dPxdt—ae.,
n=1

with F = "> I,(fs). The Clark formula is a consequence of the chaos represen-
tation property for (M;).cr, , and states that any F' € Dom(D) C L*(Q, F, P) has a
representation -

F = E[F] +/0 E[D\F | Fy|dM;. (2)



It admits a simple proof via the chaos expansion of F

to

tn
F = E[F +Zn’/ / fn tla"'atn)th”'thn

::MH+ZMA Mﬂﬁ@WHMMM@:Em+A E[D,F | F]dM,.

Let (P,)icr, denote the Ornstein-Uhlenbeck semi-group, defined as

PF =Y e I(fa),

n=0

with FF =32 I, (fn).

Proposition 2.1 Let F,G € Dom(D). We have the covariance identities
Cov(F.G) = {/lMWWﬁLﬂﬂ (3)

and

Cov(F,G) = [/ / ”DFPDGM@} (4)

Proof. The first identity is a consequence of the Clark formula. By orthogonality
of multiple integrals of different orders and continuity of P, on L?(2), it suffices to

prove the second identity for F' = I,(f,) and G = I,,(g,) as

E[In(fn)ln(gn)] = n!<fnagn)L2(R1) = %E [A DuFDquu]

= F {/ e_s/ DuFPsDquuds].
0 0

Relation (4) implies the covariance inequality
|Cov(F, G)| < [[DF||Loe(,2 @) ElI DG 2w (5)

If (My)er, is in L*($2, F, P) then the chaos representation property implies that there

exists a square-integrable predictable process (¢;)«cr, such that
d[My, My] = dt + ¢,dM;, t € R, (6)

This last equation is called a structure equation, cf. [7]. Let 4, = 1y4,—0} and j; =
1—14; = 144,20}, t € Ry. The continuous part of (My)¢cr, is given by dM; = i,dM; and
the eventual jump of (M;);cr, at time t € Ry is given as AM; = ¢, on {AM,; # 0},
t € Ry, see [7], p. 70. The following are examples of normal martingales with the

chaos representation property, cf. [7].



a) (¢¢)ier, is deterministic. Then (M;);cr, can be represented as
th == itdBt + ¢t(dNt - )\tdt), t € R—f—a M() == O, (7)

with Ay = (1 —4;)1/¢7, t € R, where (By)ser, is a standard Brownian motion,

and (NVi)ier, a Poisson process independent of (B;)icr,, with intensity v, =

3 Asds, t € R,
b) Azéma martingales where ¢, = SM;, 5 € [—2,0).

If (¢4)ier, is a deterministic function, then ¢,D; is still a derivation operator, and we

have the product rule
D,(FG) = FD,G+ GD\F + ¢ D,FD,G, teR,, (8)
cf. Proposition 1.3 of [21]. In fact D; can be written as

where A? is the finite difference operator defined on random functionals by addition

at time ¢ of a jump of height ¢; to (My)er, . If ¢¢ # 0, this implies

Dy

F _ { ¢tDiF
Dte = d) (6 ].)
t

and at the limit ¢, — 0, D, becomes a derivation: D,e’ = e D,F.

) (10)

In the deterministic case, an Ornstein-Uhlenbeck process (X;)«cr, can be associated

to the semi-group (P;),cr, , and this implies the continuity of P;.

Lemma 2.1 Assume that (¢y)icr, is a deterministic function. For F' € Dom(D) we

have
||PtDF||Loo(Q,L2(R+)) < ||_DF||L00(Q,L2(R+)), te & (11)
Proof. Let (M;)icr, be defined as in (7) on the product space = £y x €, of in-

dependent Brownian motion (By)cr, and Poisson process (N;)er, . The exponential

vector

() = S L),

f e L' (R.) N L?(R,), has the probabilistic interpretation

£(f) = exp ( / " f(5)dB(s) + / " julog(1 + 6(s)1())dN(s)

- /0 " i(s)f(s)ds - /Owj(s)%ds) |
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Let (X?)er, and (X3)wcr, be respectively the classical Ornstein-Uhlenbeck process
on Wiener space, and the Ornstein-Uhlenbeck process on Poisson space, cf. [24]. We

have
Ele(f)(X!, X1) | (X0, X0)]

_ E[exp ( [ iaxio) + [ sitot + 606 ) ax
—5 [ i@ [T ie5es) 1000, x0)

- ( / et f(5)dX0(s) + / " julog(1 + e é(s) f(5))AXL(s)

L[~ -t — oo'se’tﬂs

5 [ s [T ¢(s)d)-

(e )X, XD) = Pe(f).

This identity extends to linear combinations of exponential vectors by linearity, and

to L?(Q2) by density and continuity of P;. This implies that

|P-DF || Lo,y )) < P DF 2wy lleo) < [|DF||por2®y)), ¢ € Ry,

for all F' € Dom(D). O

3 The Gaussian case

Before proceeding to general deviation inequalities for normal martingales with the
chaos representation property, we make some remarks on the Gaussian case. If
(My)er, is a standard Brownian motion, then D is a derivation operator whose

action on cylindrical functionals of the form

F:f(ll(el)a---all(en))) 61,...,€n€L2(R+), fEC;(Rn), (12)
is given by .
D,F =) ei()oif(Li(er),- ., Ti(en)), tER,,
i=1

cf. e.g. [25]. We have the relations

|DF 2wy = [VfILi(er), - .-, fi(en)),  a-s,

and

IDF||reo@,z2r4)) = IV flLip,

6



where |V f| is the gradient norm of f and ||V f|ri is the Lipschitz norm of f. The

covariance inequality (5):
|Cov(F, G)| < [[DF ||, 22 El| DG r2 )],

becomes the extension of Theorem 2.1 of [3] to Wiener functionals F,G € Dom(D).
If {e1,...,e,} is orthonormal in L?(R,) then {I;(e1),...,Ii(e,)} is a family of inde-
pendent standard Gaussian random variables, and applying Theorem 2.2 in [3] and
Pisier’s inequality [18] to F written as in (12) with || DF||pe(q,z2r,)) < 1, we obtain:
6—12/2 2 6—12/2
] < :
V2m oz

By density of the cylindrical functionals this result extends to Wiener functionals F

P(|[F — E[F]| > z) < E[|F — E[F]| z > 0.

in the domain of D and satisfying the condition || DF||pec(q,r2(k,)) < 1. We refer to

[8] for other deviation inequalities on the Wiener space.

4 Deviation inequality in the general case
In this section we work in the general framework of normal martingales with the chaos
representation property.

Lemma 4.1 Let F € Dom(D) be such that E[e®'Fl] < oo and e*¥ € Dom(D), 0 <
s <ty for some ty > 0. Then

E[e"F-EIFD] < exp (/Oth(s)ds) , 0<t <ty (13)
where h is defined as
W) = [ IDuF Il Do, s € 0,15 (1)
Proof. Let us first assunfe that E[F] = 0. We have
E[Fe’"] = E [ /0 OOE[DUF | FuJE[Dye" | fu]du]
- E [ /0 " Dy E[DF | fu]du]
< Ele’] /000 | DuF||solle™F Dye’" ||oodu, 0 < s < t.

In the general case, letting L(s) = E[e*"~PIF] we have

H(F—E[F "L(s) " E[(F — E[F])es" FIF]]
log(E[e""~#IFD]) = /0 mdé’ = /O Ees(F-EIF)]

0<t<t. O

ds,



Given F € L?(Q) we denote by np the process
nF(t) = E[DtF | '7:;5]’ teRy,
i.e. we have
F = E[F] +/ nr (t)d M.
0
A modification of the above proof as
E[Fe’f] = F [/ DueSFnudu} < E [T le " De” || p2wy Il z2®o)]
0
< E[e]lle7" De* || 2@ Nl L(@,r2 ),

also yields (13), with

h(s) = |Inlleo.r2@ ylle " De’ || Lo .2, -

In the next lemma we apply the semi-group correlation identity (4), and refer to [15]
for other applications of semi-groups, in particular to logarithmic Sobolev inequalities.

This result holds in particular in case of a deterministic structure equation.

Lemma 4.2 Let us assume that (P,)ycr, satisfies (11). Let F' € Dom(D) be such
that E[e*l] < 0o and e € Dom(D), 0 < s < to, for some ty > 0. Then

t
E[e!F-EFD] < exp (/ h(s)ds) ;o 0< 1t < Ay, (15)
0

where h is any of the functions

h(s) = | DF ||z ,r2®e ) lle T De’T | Lo r2myy), s € [0,t], (16)
6—8FD65F ,
h(s) =||—s—7—| IDuFlli(o,r2®yy, S € 0,0 (17)
DuF |

Proof.  Let us first assume that E[F| = 0. If the Ornstein-Uhlenbeck semi-group
satisfies (11), then

E[Fe’f] = E[ / e ” / DueSFPvDuqudv]
0 0

IN

E |:65F||€SFD65F||L2(R+)/ 6”||P1)DF||L2(]R+)dU:|
0

< E[e"] |l  De" lumioss) H / ¢ P, || DF || oz, v
0

o0

IN

FE [€SF] ||€_SFD€SF||L00(Q,L2(R+)) / 6_v||DF||Loo(Q7L2(R+))d’U
0

E [e"] [le=*" De*™ || oo, 2 @4 ) I DF || oo (2,221 )) -

IN
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A similar argument shows that

E[Fe’*] = FE / e_”/ DueSFPUDuqudv]
LJo 0
—sFD sF o0
< E e’ % /0 @U”DFPUDF”LI(RHCZU]
e—sFDesF 00 Y
< E e T DE / € ||DF||L2(R+)||PvDF||L2(R+)dU]
00 J0
. e—sFDesF o .
< Ele] —pr || IPFll=@r2m H/ e "P||DF|| 2w, dv
00 0 o0
. e—sFDesF 00 71}
< B[] | 55— ||DF||L°°(Q,L2(R+))/ e | DF||eo,r2q,)) dv
o 0
. e—sFDesF
< Ele’] ) IDF (|2 o0 (0,120, ))-
The remainder of the proof is as in Lemma 4.1. 0

From these lemmas we obtain a general deviation inequality.

Proposition 4.1 Let F' € Dom(D) be such that E[e*F] < 0o and e*f € Dom(D),
0 < s <tg, for some to > 0. Let h be the function defined in (14), or (if (¢¢)er, s
deterministic) in (16) or (17). Then

P(F — E[F] > z) <exp (— /Ow h_l(s)ds) ,  0<x<h(ty),

where h™! is the inverse of h.

Proof. From Lemma 4.1 we have for all z € R, :
e®P(F — E[F] > z) < E[FEIN] < HO 0 <t < t,,

with t
H(t):/ h(s)ds, 0<t<t.
0

For any 0 < t < to we have £ (H(t) — tz) = h(t) — z, hence

h=1(z)
min (H(t) —tz) = H(h"\(z)) - 2h~(z) = /0 h(s)ds — zh"(z)

0<t<to

= /0 ’ sdh™'(s) —xh ™' (z) = — /O ’ h~1(s)ds.



5 Deviation inequality for deterministic structure

In this section we work with (¢;):cr, a deterministic function, i.e. (My);er, is written
as in (7). This covers the Gaussian case for ¢ = 0, and also the general Poisson case,

as shown in Sect. 6.

Theorem 5.1 Let F € Dom(D) be such that E[e®Fl] < co for some ty > 0. Then
P(F — E[F] > z) <exp (—/ hl(s)ds> . 0<z < h(t),
0

where h™! is the inverse of any of the following functions:

h(t):/o J—“||DuF||oo(et¢’“”D“F”°°—1)du+t/0 iu|| Do F || du, (18)

]

h(t) = IDF |l =a,e2@epllé™ (€77 = Dl 0,021, (19)
1

00 = 55" - 1| 10 F B t€ 00 (20

Proof. In the deterministic case, e ' D, e!f € L?(Q x R, ), with

e tF D etF = (]b_u (et¢uDuF —1) +i,tD,F, u€eR;, (21)

u

which can also be written as

7 1
e tFDuetF: =

u

by replacing ¢, ' (e"+P+" — 1) with its limit as ¢, — 0, i.e. tD,F, if ¢, = 0. It

(e =1), (22)

remains to apply Proposition 4.1. O

Note that the inequalities given by (18), (19) and (20) are not comparable. Using the
bound
‘¢—1(et¢uDuF _ 1)‘ < t|DuF‘€t|¢“D”F|,

u

for all values of ¢, € R, Theorem 5.1 also holds for the functions

h(t) =t/ | Dy F |2 llef19+PFl|| o du,
0
and

h(t) = t||DF||Loo(Q’L2(R+))||€t|¢DF‘DF||Loo(Q’L2(R+)), t E [O,to]

Results of the type presented above continue to hold if for all 0 < ¢ < tg and E[F] =0,
E[Fe'™] < h(t)E[e!"'] for some increasing non negative continuous function 4 such that

h(0) = 0. We will show in the rest of the paper many instances where we can estimate
h and A7 .

10



Theorem 5.2 Let F € Dom(D) be such that Ele®F] < oo for some ty > 0, and
OuDF < K(u) a.s., u € Ry for some function K : R, — R. Then

P(F — E[F] > z) <exp (— /OaU h_l(s)ds) ,  0<z < h(t),

where h™! is the inverse of

1 .
80 = | 5@ =] PPl t€ 0.0
Proof. Since the function z — (e — 1)/x is positive and increasing on R, we have
et D,ett 1 1
0< u _ tpy Dy F' 1) < tK(u) _ 1
S D~ suDuF )< K ) uERs,
and tF [y tF
e ""Dye 1

D | S Kw)' ) ueR,

It remains to apply Proposition 4.1 and Lemma 4.2. U

In each of the following deviation inequalities the interval of validity for x € R, can
be easily determined in terms of the function A, and will not be explicitly given. The

following corollary is the main result of this section.

Corollary 5.1 Let F € Dom(D) be such that E[e®F] < oo, ¢DF < K for some
K >0 and ||DF||peo(o,2(r,)) < 00. Then

||DF||%oo(n L2(Ry)) K
P(F—E[F]>z) < exp|— g
K2 IPF o, 12,

< exp ¢ log | 1+ oK
s X T a1 ;
2K DN oo 0,124

with g(u) = (1 +u)log(l +u) —u, u> 0. If K =0 (decreasing functionals) we have

72
P(F—E[F|>z)<exp|— . (23)

2| DF (1200, r2m, )

Proof. 'The function h defined in Theorem 5.2 satisfies
1
h(t) < 2 (€ = DIDF Lo 2.,
hence
T B 1 T B
—/0 R (t)dt < _E/(; log (1 +tK||DF”L3°(Q,L2(R+))> dt

1 1 -
= —= <(:v+ IDE 0 122,) 108 (1+ 2K IDF 2 0 12ge ) = :1:) '

If K =0, the above proof is still valid by replacing all terms by their limits as K — 0.
O

11



For constant ¢, = ¢ € R, , t € R, , we have the following.

Corollary 5.2 Assume that ¢ = ¢ € Ry, t € Ry, is constant. Let F' € Dom(D) be
such that E[e®F] < oo, DF < K for some K > 0 and | DF||poo(o,r2(ry)) < 00. Then

exp _||DF||%oo(Q,L2(R+))g TPK
¢*K? IDF( Lo 124

ro K
< exp log | 1+ )
( 2K ( ”DF||2°°<Q,L2<R+)>>)

with g(u) = (14u)log(l4+u) —u, u > 0. If ¢ = 0 (Wiener case) or K = 0 (decreasing

functionals) we have

P(F — E[F] > z)

IN

72
P(F—E[F|>z)<exp|— . (24)
2D oo 0,121
Proof. We apply Corollary 5.1 with the condition ¢DF < ¢K. O

In particular if F' is Fp-measurable, then ||DF||pe(q, 2w, )) < KT and

P(F — E[F] > z) < exp (—%g (%)) < exp <—%log (1 + %))

which can be compared to the inequality

P(F — E[F] > ) < exp (—% log (1 + (25)

2TK2>>
which follows from Proposition 6.1 in [2]. We refer to [18], [26], for the classical

inequality (23) in the case ¢ = 0, i.e. on Wiener space, which gives
72
P(F—E[F]>x) <exp (—m) .

Corollary 5.3 Let ¢ = ¢ € Ry, t € Ry, be constant. Let F € Dom(D) be such that
E[e"F] < 00, |DF||es < K and ||DF||p1 (&, 1)) < 0. Then

IDF|[pr @y 10 x
P(F - E[F]|>z2) < exp(— + g
( [F] = 2) P*K | DF|| 21 ®y Lo (0)

ex o ?
S exp 2¢K B\ T D Py ey

with g(u) = (1 + u)log(l +u) — u, u > 0.

Proof. The function defined in (18) of Theorem 5.1 satisfies
h(t) < ¢~ (" = DIIDF| 1w, poo());
which allows to follow the proof of Corollary 5.1. g

12



The proof of Corollary 5.3 applies also in the limiting case ¢ = 0, and gives the

following corollary.

Corollary 5.4 Let ¢, =0, t € R,. Let F € Dom(D) be such that |DF||o < K and
E[el!F] < 0o for some ty > 0. Then

.T2
P(F-E[F]> = Seﬂ’(‘ )
( [F] > z) 2K||DF |11 (ry 1 ()

Proof. We have h(t) = tK||DF|| (&, L)), hence —h~1(t) = —tK_1||DF||Z}(R+’LOO(Q)).
O
Corollaries 5.3 and 5.4 are weaker than Corollary 5.2, however they rely only on (18)
or on Lemma 4.1, and not on the use of (P})er .- For this reason, Corollary 5.4 can
be stated for any derivation operator D that can be used to write a Clark formula,

and in particular it transfers immediately to the Poisson space for the operator D,

see Sect. 7.

6 Difference Operator on Poisson space

Ordering of configurations is not important for the statement of the results of Sect. 5
on the Poisson space, hence in this case there is no reason to restrict the index set to

R, . Let X be a Polish space and let QX denote the set of Radon measures

=N
0¥ = {w=Zeti ()Y C Xt ty, Vit g, N eNu{oo}},

where ¢; denotes the Dirac measure at ¢t € X. Given A € B(X), let F4 = o(w(B) :
B € B(X), B C A). Let o be a diffuse Radon measure on X, and let P denote the
Poisson measure with intensity o on QX and let L2(X) = L*(X,0). The multiple
integral I, (f,) is defined as

/ fa(tis - ta) (W(dt) = o(dth)) - (w(dtn) —o(dtn)), fu € Lo(X™)™
with A, = {(t1,...,t,) € X™ : t; #1;, Vi # j}, and the isometry formula

E[I (fn) (gm)] - n'l{n m}(fmgm>L2(X)°“7

see [17]. Moreover every square-integrable random variable F' € L?(Q2%, P) admits

the Wiener-Poisson decomposition

F =) IL(f)

13



in series of multiple stochastic integrals. The linear closable operator
D:L*(Q%,P)— L*(0" x X, P®o0)
is defined as
DI, (fn)(w) = nly 1(fu(x,t))(w), P(dw)® o(dt) —a.e., n €N
It is known, cf. [12] or Proposition 1 of [17], that
DiF(w) = F(wU{t}) — F(w), dP x dt — a.e., F € Dom(D),

where as a convention we identify w € QX with its support. There exists a measurable
bijection 7 : X — R, such that the Lebesgue measure is the image of ¢ by 7, and this
allows to restate Corollary 5.1 and Corollary 5.3. In this way we obtain a different

proof of Proposition 3.1. in [27]:

Corollary 6.1 Let F' € Dom(D) be such that E[e*!fl] < 0o, DF < K, a.s., for some
K >0, and || DF|| Lo ,12(x)) < 00. Then

||DF||20°(Q L2(X)) K
P(F-E[F|>z) < exp|-— ===y
K? IDF |70, 22¢x))

< 2 g {1+ it
S exp 0og )
2K IDF|[ o0, 12(x))

with g(u) = (1 +u)log(l+u) —u, u> 0. If K =0 (decreasing functionals) we have

2

e
P(F—E[F]|>z)<exp | — . (26)
2D (Lo 0,02(x))

In particular if F' = [ f(z)w(dz) we have ||DF||pe(o,r2(x)) = || flz2(x) and if f < K,

a.s., then

P([ st - ota) 2 2) < exp (- L Pl Dy ( e =)

which covers Proposition 2 of [23]. If f <0, a.s., then

P([ @) - o) 2 2) < e (- - f22|0 =)

Corollary 6.1 also implies, for F € Dom(D) such that E[e*!f] < oo and ||DF ||« < K:

I DF|| 2 (x, 000 () ( z ))
P(F—E[F|>z) < eXP<— ’ 9
( [F] > z) K | DF|| 11 (x, 100 (02))

a
< exp < lo ( )) .
oK 08 IDF 1 (x.0002)

14




If F = [, f(z)w(dz) then ||DF||pi(x, ) = ||fllz1(x), and if moreover ||flec < K

we obtain

P([ st o) 2a) < e (‘fxu(?a(d@g(fX|f(x33|a(dx)>)'

In case f > 0 a.s., this can be written as

([t 22) < on (-0 )

If F'is Fa-measurable with 0(A) < oo and ||DF || < K, then ||DF||11(x,100(0)) <
Ko(A) and

P(F — E[F] > z) < exp <—0(A)g (K:(A))) < exp (—ﬁ log (1 + KU“‘"(A))) .

As an application we consider as in [23] a family (V,),en € L?(X) of functions valued

in [0, K] with o(X) < oo, and the functional

F = sup / U, (2)w(dz).

aeN J x
We have
0 < D,F =sup (/ U, (z)w(dz) + \Ila(x)) - sup/ Y, (z)w(dx),
a€N X aeN J x

hence

0< D, F <sup¥,(z) <K,
aEN

P~ B[] 2 0) < exp (~0(0)g (1))

In particular for w = {z} we have

and

D.F = sup(\Ila(:E) + \Ila(f)) — sup ‘Ila(x) = sup \I/a(.T),
a€N aeN a€N

hence
”DmF”oo > sup \I’a(x):
a€N

1.e.

|DF||oo = supWu(z), =z€ X,
a€eN

15



and

||DF||L1(X,L00(Q)) = (sup ‘I’a(x)> o(dx)
X

aeN
> e—O'(X)
= ' / sup(Wy(z1) + -+ Vo(xy))o(dzy) - - - o(dxy,)
n—=1 n: Xn aeN
e U, (21)o(d d
> .
o —O'(X
>y / D2, Fllco(de) - o(dz,)
n=1 "
- 670(X) n—1
> ||IDF||px .z . (0(X))
n=1 )
1 —0
> TX)”DFHLI(X,Loo(Q))(l —e 7)),
hence
o(X
BIF) < IDFlusox i < o BLF)
and
o(X) z(1 — e X))
P(F — E[F] > z) < exp <_K(1 — G,G(X))E[F]g <W :

A similar result will hold for

P= (s [ v

with f a Lipschitz function.

7 Local gradient on Poisson space

In the Poisson case, if X = R, and o is the Lebesgue measure, then a local gradient
can be introduced, cf. [5], [6], [19]. Let (T))x>1 denote the jump times of the canonical
Poisson process (N;)icr,, and let 7, = Ty — T_1, k > 1, denote its interjump times,

with Ty = 0. Let S denote the set of smooth random functionals F' of the form

F:f(Tb"'aTn)a fECi(Rﬁ_), n > 1.

16



Let D denote the closable gradient defined as

k=n

DiF ==Y g1, (00 f(r,....,m), tER,, FEeS.

k=1
We have the relation E[D,F | 7| = E[D,F | F], t € R,, and the Clark formula can

be written for F' € Dom(D) as:
F=E[F)+ [ EIDF|FldN.-0), (27)
0

cf. Theorem 1 of [19]. First we note that the Wiener space proof of Corollary 5.4
is valid on Poisson space for D which satisfies the chain rule of derivation and Clark

formula (27):

Corollary 7.1 Let F € Dom(D) be such that |[DF||oe < K and E[e®F] < oo for
some ty > 0. Then

2
P(F-E[F]>z) <exp|-——n— .
2K DF || 1wy Lo ()

In particular if F is Fr measurable and ||[DF||o < K then

2
P(F — E[F] > z) <exp (_Q;—ZT) , x>0.

We construct the exponential random variables (7;);>1 as half sums of squared inde-
pendent Gaussian random variables. Let F' = f(m,...,7,), and consider the Wiener

functional ©F' given as

3+ 7 $Z+y%)

@sz( Rt

where x1,...,%n, Y1,...,Yn, denote two independent collections of normal random
variables that may be constructed as Brownian single stochastic integrals. We use the

fact that F' and ©F have same law, with the relation
2| DF[Ja,) = |DOF [Tz, ), (28)
see Lemma 1 of [20].

Corollary 7.2 Let F € Dom(D) be such that E[e®F] < oo for some t, > 0. Then

72
P(F—E[F|>z)<exp| — .
A DF|F o r2 )

Proof. We apply the Wiener space counterpart of this result (Corollary 5.2) to ©F
and use Relation (28). O

17



Note that Corollaries 7.1 and 7.2 are not comparable, unlike Corollaries 5.2 and 5.3.
The above result can also be obtained in terms of logarithmic Sobolev inequalities, i.e.
by application of Corollary 2.5 of [14] to Theorem 0.7 in [1] (or Relation (4.4) in [14]
for a formulation in terms of exponential random variables). A sufficient condition
for the exponential integrability of F' is |||DF\L2(R+)||OO < 00, cf. Theorem 4 of [20].

As an example we may consider F' = f(7y,...,7,) with

k=n
ZTk(akf(Tla"'aTn))Q S KZ, a.s.
k=1

8 Discrete settings

The covariance representations (3) and (4) which lead (when applied to F' and e'!")
to the deviation inequalities of the previous sections has versions in discrete settings.
It is thus now our purpose to explore deviation consequences of this representation.

We consider the discrete structure equation

i.e. (¢r)ken is a deterministic sequence of real numbers, and (Y;)x>1 is a sequence of
centered independent random variables. Since (29) is a second order equation, there
is a family (Xj)x>1 of independent Bernoulli {—1,1}-valued random variables such

that

o+ Xp/op 4+ 4
= 5 ,
The family (Xj)ren is constructed as a family of canonical projections on Q =
{=1,1}] under the measure P determined from the condition (29) and the fact

that E[Y;] =0 (which imply that E[Y}?] = 1), i.e.

P(X qk 1 Pk
Pr = (k—l)—F<)k— —)———7
\/ 2 o2 , keN,
Pk 2 gak 4

Y k> 1.

and _
Y _1, e
@ = P(X;, = -1 :P(Y:—\/ 2 2./0? ke N.
K = P(Xk ) i k \/wk iy
Let J,(f,) denote the multiple stochastic integral of f,, € [*(N)°" (the space of square-

summable symmetric functions on N*), defined as

Ta(fa) = D falki,o k)Y - Y,

_ ”’Z Z Z Jolke, oo kn)Ye, -+ Yy,

kn=00<knp_1<kn 0<k1<k2

18



where
An:{(kla---akn)ENn : ki#kj, 1§Z<]§n}’

with the isometry

E[J0(fn) Im(gm)] = n!l{n:m} (1, fn; gm>l2(N)®" .

Let S, = ﬁig(Xk + 1)/2 be the random walk associated to (X)k>o, cf. also [9],
[16]. If p = p and g = ¢, k € N, then J,(1p,n)) is the Krawtchouk polynomial
K,(Sy; N + 1,p) of order n, with parameter (N + 1,p), cf. [22]. The set P of
polynomials in X, X5, X3, ... is dense in L?(Q, P), hence any F € L?(Q, P) can be
represented as a series of multiple stochastic integrals:

o0

F=3 Ju(fa), fe € PN)*, k>0, Jo(fo) = E[F].

n=0

Definition 8.1 We densely define the linear gradient operator D : L*(Q) — L*(Q x
N) as
Dy Jn(fn) = ndna(fu(, k) 1a, (%, k),  fo € P(N)", neN

We have for (ki,...,k,) € A,

i=n i=n
Dy, (H Ym) = ljic{ky,kn}) H %
=1 1

kitk
hence the probabilistic interpretation of Dy, is
1
DkF(S) = e (F(S + l{Xk:—l}l{kg-}) — F(S — 1{Xk:1}1{k§-})) .

In the symmetric case (pr = ¢ = 1/2, k € N), when restricted to cylindrical func-
tionals of the form

F=f(Xy,..., X)),

the gradient D is exactly the finite difference operator considered in [3]:

1
VPrqk

DkF == (f(XI; [P ,kal, +15Xk—|—1a PP ,Xn) — f(Xl, PP ,kal, _15Xk+15 PP ,Xn)) .

The operator D does not satisfy the same product rules as in the continuous time

case (Relation (8)).
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Proposition 8.1 Let F,G : Q) — R. We have
Dk(FG) = FDkG + GDkF — Xk\/pquDkFDkG, k 2 0,

and
F

e
Dpef = —— (e XkvPraDeE _ 1) 30
Proof. Let Ff =F(S. + 1{Xk:—1}1{k§-}) and F, = F(S — 1{Xk:1}1{k§-}), k>0. We

have

DUFG) = e (F/G B, Gy)
— Ln——p— (F(GL = 6) + G — F) + (F} = F)(GL - G))
iy e (F(G = Gy) + (P = By) = (Be= £ )(Ge = )

= 1{Xk:—1} (FDkG + GDF + \/pquDkFDkG)
—}-I{szl} (FDkG + GDF — \/]quDkFDkG) .

We have
Dpef' = 1ix _1}71 (eF —efe) + 1ix,=1) ! (eF’:r )
Y/ Prlk Y /Drk
1 1
1 F 1— e*\/PkaDkF +1 __ eF e\/kaF -1
e ( )+ L, Y /Prae ( )
= —-X; 1 eF(e_Xk\/pklIkaF _ 1)‘
vV Prqk

O

The next result is the predictable representation of the functionals of (Sy)n>o. Let

Fn, N € N, denote the o-field generated by Xg,..., Xy.

Proposition 8.2 We have the Clark formula

F=E[F]|+ Y E[DiF | FralVy, FeL*Q).
k=1
Proof. For F = J,(f,) we have (see e.g. [22]):

= Jn(fn) = n'Jn(fn]-An) =n! Z Jn—l(fn('a k)]-[l,lc—l]"—l ()1An_1())}/}c

o

= Y Ju 1 (fal B) L poggea( ZE[Dk (fn) | Fra]Yi-

k=1
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This identity also shows that F' — E[D.F | F._1] has norm equal to one as an operator
from L?(2) into L2(Q x N):

IEID.F | Flllf2@xny = IF = ElF|[720) < IF = E[Fll72(q) + E[F]* < ||Fl72(),
hence the Clark formula extends to F € L?(Q). O

The Clark formula implies the covariance identity

Cov(F,G) =

Z DyFE [DyG | F_ 1]] :

k=1
and we also have as in the continuous time case:

Z / D, FP,DyGds

where (P;)icr, denotes the semi-group

Cov(F, G)

b

PF =) e™L(f), teR,,

n=0
F =3, Ju(fn)- The next result shows that the semi-group (P;)icr, admits a
representation by a probability kernel and an Ornstein-Uhlenbeck type process which
(in the symmetric case py = ¢ = 1/2, k € N) is in fact the Brownian motion on
{—=1,1}* considered in [2].
Proposition 8.3 For F € L*(Q, Fy) we have

PF(W) = | Flw)g(w,w)dP(w), w,w €Q, (31)

2

where ¢ (w,w') is the kernel
i=N

¢ (w,o) = [+ e i(wYi(w)), w,w' €.

=1

~.

Proof. Since L?(§2, Fy) is finite (2¥*1-)dimensional it suffices to consider the func-

tional Yy, - -- Yy, with (ky,...,k,) € A,. We have for v’ € Q, k € N:

E V()1 + e Vi(MWew)] = pk\/;?']:<1+ \/Z:'I:Kc(w’))

= e (W),
which implies by independence of the sequence (Xj)gen:

Pt(Ykl T Y;Cn)(w,) = e_mykl (w,) e }/’Cn(w,) = E[Y;Cl o 'Y;ﬂnqiv(" w,)]’ w' € Q.
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We have © .

/ e g (w,w')dt = / Qogt(w, w')d.
The Ornstein—UhlenbeckOprocess ((X,ﬁ)keN)teRi associated to (P)er, satisfies
PXf=1|X)=1)=p+e'q PXi=-1|X)=1)=q(l—c?),
P(Xp=1]Xy=-1)=p(1-e™) P(Xy=-1]Xg=-1)=g+e'p, keN

In other terms, the hitting time 7 _; € Ry U {+o00} of —1 starting from +1, resp. of
+1 starting from —1, has distribution

P, <t)=q(l—e), teR,,
resp.
Proa<t)=p(l—¢€"), teR,.
We start by showing a Gaussian deviation inequality for functionals of (S,,)nen-

Proposition 8.4 Let F': Q — R be such that Ele®F!] < co for some ty > 0, and
- 1

—— _|ID,F|% < K2
e 2(pk/\Qk)|| k ||oo—

Then

2
P(F — E[F] > z) < exp (-%) . 2>0.

Proof. Using the inequality

1
e —e¥| < Stz —yl(e +€¥), myeR (32)
we have
|Dk€tF| — ;|etF etFk | < l#tuﬁ_ F—|(etF,j' +€tFk_)
N = 2 /P g
1 +
= —t|DyF|(e!% + €' )= ——t|D,F|E [ | X5, i # k],
and
E[Fe] = E[E[DyF | Fi]De'™] < | DiF || E [|Dre™|]
k=0
1« -
= §t2 IDRFIZE [ + e |
00 1 .
= t22 A I IGE (B [ X i # &]]
=0
- 1
= tE [etf ——||DyF||%.
(12 3 A g 1P
We can conclude as in the proof of Corollary 5.4. g
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In the symmetric case p, = ¢x = 1/2, k € N, we obtain

72
P(F — E[F] > z) <exp .
D P

The representation (31) implies the inequality
|PsDF||Lo(2v) < | Ps| DF |2 ||2oo) < | DF||peooizavy, 5 € Ry,

for F € Dom(D), hence the following Proposition can be proved as Proposition 4.1
of Sect. 5.

Proposition 8.5 Let F' € Dom(D) be such that E[e®!F!] < oo for somety > 0. Then

t
E[e!F=EFD] < exp (/ h(s)ds) , 0<t <ty (33)

0

where h is any of the following functions:
)= |IDiFllx |le *FDye’”|| _, (34)

k=0
h(s) = IDF sy e De™ | ooy (3)
e—sFDesF

h(s) = —DF IDF (7o 02q0y> s € [0, o). (36)

Although D does not satisfy the same product rule as in the continuous case, from
(30) we still have the bound

1
e F Dyesl’| < ———(esVPRaIDREl 1) | e N, (37)
v/ Pk4k

which gives the following corollary of Proposition 8.5.

Corollary 8.1 Let F € Dom(D) be such that E[e?F] < oo for some ty > 0. Then

t
E[e!BIFD] < exp ( / h(s)ds) , 0<t<t, (38)
0

where h is any of the following functions:

)= 2 IDsF e | o (P _1>H | )
() = IDF om0 | 2V 1) , (0
m R
| (eSVRGIDRF| _ H DF|? e o0, 41
i € o0 ) S ; .
H\/pquDkF( ) Oo” [ze0 (209 [0, o] (41)
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Again, the inequalities given by (39), (40) and (41) are not comparable. The bound

W(eSW’kq HIDEFl 1) < 5| Dy F|esvPeaIDiFl | € N, also shows that Corollary 8.1
holds with

h(s) = SZ | Dy F|2, [|esvPea Perl]|

k=0
and

h(s) = sI|DF ||z, leVP P D.F|| ooy, s € [0, o).
The following corollary is obtained with the same proof as on the Poisson space.

Corollary 8.2 Let F € Dom(D) be such that E[e*'Fl] < oo, \/peqe|DiF| < K,
k €N, for some K >0, and | DF||pec02v) < 00. Then

||DF||%°°(Q 12(N)) K
P(F-E[F|>z) < exp|— ——g
K IDE 10 0,200

< e log oK
> €Xp 5
2K ||DF||LO<,(le ™)

with g(u) = (1 + u)log(1l +u) — u, u > 0.

Proof. We use the inequality

—sF F K
s < e’ Dkes — 1 estk\/kaF _ 1) < e’ — 1’
T DyF — X/ Pe@e Dy F' - K
and apply Corollary 8.1. g

In case pr = p and g, = ¢ for all k£ € N, the conditions \/pg|DyF| < 8, k € N, and
IDF|[ o2y < O give

<o (S 35)) oo (im0 22)

which is Relation (13) in [4]. In particular if F' is Fy-measurable, then

P(F — E[F] > 1) < exp < Ng (ﬂN» < exp (-% (log (1 + B—N) - 1)) .
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