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Abstract

A structured and synthetic presentation of Vasil’eva’s combined expansions is pro-
posed. These expansions take into account at once the limit layer and the slow motion
of solutions of a singularly perturbed differential equation. An asymptotic formula is
established which gives the distance between two exponentially close solutions. An
”input-output” relation around a canard solution is carried out in the case of turning
point. At last, the distance between two canard values of differential equations with
parameter is given.

We illustrate this study on Liouville equation and the splitting of energy levels in
the one dimensional steady Schrédinger equation in the double well symmetric case.
The structured nature of our approach allows us to give effective symbolic algorithms.

Key words: Singular perturbation, combined asymptotic expansion, turning point,
canard solution.
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1 Introduction.

One of the motivations of our work concerns the real steady Schrodinger equation

el = (U(t) - E)y, (1)

where the dot denotes the derivative with respect to the space variable ¢, the small param-
eter € > 0 is related to the Planck constant (¢ = i/v/2m), E € IR is the energy and U is
a symmetric non-degenerated double well potential. Precisely, U is assumed to be a C*
even function with three critical points: one local maximum at the origin and two global
minima at +ty, which are supposed to be quadratic. By a translation on U and F, we may
suppose that U vanishes at +t5. Hence the potential is of the form U(t) = ¢(¢)? where ¢
is itself a C'™ even function, and satisfies furthermore (0) > 0, ¢(ty) = 0, ¢'(ty) # 0 and
¢ decreasing on IR*. The simplest example, which has already been studied [3, 15, 16], is
given by:

Ut)=(1-¢)°. (2)

The following description contains some affirmations which will be proven in subsec-
tion 3.3. The asymptotic behaviour of the solutions in the neighborhood of +o0 is as
follows: there is a one dimensional subspace denoted by V (in the two dimensional space



of solutions) of exponentially decaying solutions as ¢ — +00; the other solutions increase
exponentially. The situation is similar at —oo.

A natural question is to find the energy values for which these two subspaces coincide.
This is equivalent to the fact that equation (1) has nontrivial solutions in L?(] — oo, +oc])
which leads to energy quantification. These values of E are related to the energy levels
which correspond to observable solutions of [2].

We consider in this paper only solutions without zero in the neighborhood of £¢;3. This
corresponds to the first energy level and this implies that F /e is infinitely close to —¢'(tg)-

It appears that the posed problem has two solutions, denoted by E#(¢) and E’(e).
They are canard values for the Riccati equation associated to (1):

ev' =U(t) — E — 2, (3)

that is to say, values for which (3) has solutions with a particular asymptotic behaviour.
Those solutions, denoted by v# and v°, border the slow curve v = —¢(t) on ] — 0,0,
and the other slow curve v = () on ]0,4+o0c[. The solution v# (resp. v°) takes the
value v = oo (resp. 0) at t = 0 and is a canard solution both at t = —ty and at t = tg.
Concerning the potential (2), it is proven in [6] that these canard values are exponentially
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Figure 1: The solutions v# and v”, and a ”great canard solution” v! for the potential (2)
_ 1
and € = 3.
close to each other; precisely:
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E*(e) — E’(e) = exp <_E <§+0(1))) , €—=0. (4)

In the general case, the same method yields the analogous result, where the constant a
that plays the role of 4/3 is given by

a=2 /Oto p(t)dt . (5)

We present in this paper the following result:

Theorem 1 — There are a constant C' and a real sequence (an)n>1 such that for any
fized integer N > 1 one has, as € — 0:

E*(e) - B'(e) = Ce'/? exp(—a/e) (1+ me + .+ ay 16"+ 0(E™)) . (6)



COMMENTS: Before giving an idea of proof of this theorem, we describe below some

experimental results and related conjectures.

In the case of the potential (2) we found C' = % and a; = — £, which were already

found in [3] (only a; has to be replaced b —% because [3] uses the potential U(t) =

t2(1 — t)2). See also [15, 16] for a related work. Using Maple, we obtained the following

_ _ 6299 _ _ 2691107
terms a2 = —{gi35, @3 = — 308416

guess the following:

Symbolic manipulations for other potentials led us to

Conjecture 1 — In the case of potential (2), all ay, are rational.

This conjecture has no particular physical relevance. Moreover it cannot be generalized
to other potentials, since we found several polynomial potentials with rational coefficients
for which the a,, are not rational, see subsection 3.4.

On the other hand, the conjectures that follow seem to us more interesting. Let E be
some parameter value such that the corresponding solution v? of (3) borders the slow curve
v = @(t) from —ty to 400, i.e. a great canard. Such a value is defined up to exponentially
small. Precisely, one shows as in (4) that, if E = E(e) is a given great canard value, then
it is the same for E? if and only if

B(e) - Bi(e) = O (exp ( ! 20 + 0(1)))> .

e
We say in this case that E? is defined within an ezponential of type 2a.

Since E’, E# are unique, the differences E# — E% E' — E” are known up to an
exponential of type 2a; as these quantities are exponentials of type a (c.f. [6]), they are
known in relative value up to an exponential of type a. Therefore it is natural to expect
an expansion in powers of € in the expression of these differences. In any case, if such
an expansion exists, it is necessarily unique, (i.e. independent of the chosen great canard
value E%). Indeed, we obtain as in theorem 1 the analogous formulae:

E#(e) — E'(e) = C#e'/? exp(—a/e) (1 + af'&s +...+ aﬁ_leN_l + rﬁ(s)) , (7)

Ebe) — B’ () = C’¢Y/? exp(—a/e) (1 +adle+...+ay eV 4 rlj’v(e)) , (8)

where 77 (¢) = O(eN) and 7 (¢) = O(eY). Using Maple we found a¥ = a’ = a, for n < 4
for several potentials. Hence we are led to the following;:

Conjecture 2 — With the assumptions on @, we have C# = C’ = % and for all n €

— o =
IN*, af = a), = ay.

This result seems to be amazing insofar as the equation has no symmetry according to
the change of variable v — 1/u. Concerning potential (2), in the approach of [3], this
symmetry between the coefficients a# and a” seems to follow directly from the fact that U
is even. Since this approach may be generalized to other polynomial symmetric potentials,
and due to its formal nature, conjecture 2 is highly believable.

We must point out here that, if the method in [3] may work for polynomial — possibly
analytic — potentials, it is by no means applicable to general C* potentials, as this
approach makes a wide use of complex analysis. Futhermore, our approach seems to be
applicable to the case of minima that are not quadratic. On the other hand, the technique
of [3] allows a deep insight of the analytic structure of E# and E’, which is out of the
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range of our “real” methods. Anyway, numerical computations (see section 3.4 suggest
the following:

Conjecture 3 — In the case of potential (2), the mean value %(E#—FEb) s a great canard
value.

More general conjectures for analytic potentials are available, but need to deal with the
singularities of the potential in the complex plane. As we chose to keep a real viewpoint in
this article, we do not formulate them. A way to show part of this conjecture would be to
prove that the asymptotic expansion 1+ ", <, ane™ is Gevrey-1 as well as the remainder
terms, in other words, that there are A, C, ey > 0 such that for all n € IN* and all €]0, e
one has

lan| < AC™n!, |rf(e)| < AC™nle™, |rl(e)] < ACTnle™, (9)

where r# and r’, are defined (within an exponential of type 4/3) by (7) and (8). This
point seems to be more accessible and allows to prove that the solution corresponding to
L(E* + E’) borders the slow curve v = 1 — 2 on a interval ]a, +00[ containing 0 (i.c. a
canard solution longer than v# and v").

Actually, the classical results of Gevrey analysis and a study of potential (2) in the
complex domain allow to prove that 3(E# + E’) is a great canard value if:

e for all n € IN*, one has a¥ = a} = a,,

e the expansion 1+ 3, -, a,c" as well as the remainders r# and rﬁ’z are Gevrey-1 of type
3/4, i.e. for all § > 0 there is A > 0 such that (9) is satisfied with C = 3 + 4.

These questions of Gevrey analysis are beyond the scope of the present article and will
be the topic of another study.

WE NOW RETURN TO THEOREM 1. The principle of the proof is to consider an associated
Riccati equation to (1) (different from(3) for technical reasons). To each family of expo-
nentially decaying solutions of (1) described above correspond two solutions (analogous
to v# and UI’) denoted by u# and v’ of the Riccati equation with E# and E” as values of
the energy.

Using the differential equation satisfied by y = u# — u’ written in a linear form, we
express E# — E’ in terms of integrals containing v’ and u#; see subsection 3.3. This
requires an accurately estimate of u# and v, not only for the slow motion, but also for
the fast one.

We used for this purpose the combined asymptotic expansions introduced by A.B.
Vasil’eva and V.F. Butuzov [13]. In spite of the large use of these expansions in asymp-
totic analysis, we believe useful to present them in a structured and simplified version.
Indeed, the approach of Vasil’eva and Butuzov is more general and therefore with some
technical difficulties. Sporadic presentations of these expansions are done [12], [14], with-
out complete proofs.

The algebraic properties of combined expansions are described in section 2.4. Among
them, are proved general compatibility results with respect to usual operations (algebra-
ic, analytic and differential). Some elementary results related to exponentially decaying
functions, which are used later, are included in section 2.3.

The existence of combined expansions for solutions of singularly perturbed differential
equations is proved in section 2.5.

Next, an application for the estimation of the difference of two solutions in a slow-fast
differential equation is presented. The case without turning point is illustrated on the



Liouville equation in section 3.1. We briefly describe the turning point case, together with
a canard solution, and the input-output relation [1] is carried out.

Section 3.3 is devoted to the proof of theorem 1 and the numerical results mentioned
above.

This paper is written in the framework of nonstandard analysis in its IST version,
introduced by Edward NELSON [10]. However, the reader can easily “translate” all the s-
tatements and proofs into standard mathematical language. Notions and notations related
to nonstandard analysis are collected in section 2.

2 Foundations.

2.1 Notations.

IR¢ is equipped with the maximum norm. T = [t;,15] denotes a standard interval in IR,
¢ > 0 is infinitely small and X denotes the nonstandard interval X = [0, (t2 — t1)/e] =
{reR; t1 +ex €T}

The symbol £ denotes any limited quantity (generally functions of ¢ or of z). Two oc-
curences of this symbol have not necessarily the same value.

The symbol @ denotes any infinitely small quantity.

The symbol @ denotes a positive, limited and non infinitely small quantity .

The symbols V** and 3% stand for the expressions ”for all standard” and ”there is a stan-
dard”.

The notation £ ~ y means "z — y is infinitely small”.

J]a, b] denotes the external set of points in ]a, b] which are not infinitely close to a.

Given a function f of class C'! on an open subset U in IR¢, we introduce the notation

h%(f(.fl, ey T+ hg, ...,.’Ed) — f($1, ...,:cd)), if h; #£0
Aif(zshi) ==

2L (@1, ., 74) i hy=0

We will use the following formula: if x = (2;);c(1,....aqy and h = (h;)icq1,...,ay are such that
z + (hi, ..., hg, 0, ...,0) belongs to U, for any k € {1,...,d}, then

d
fla+h) = f(z) + Y hilif(a,h) (10)

k=1

with Ak.f(xa h) = Akf($+(h1, ey Hgg—1, 0, "'10); h’k)

2.2 Expansions.

Given a limited quantity g, we say that ¢ has an e-ezpansion if there is a standard sequence
(gn)nen such that for all standard integer N > 1, we have

N—1
q= anen—l—.ﬁsN . (11)

n=0

The sequence (gy,,) is of course unique in this case and we simply write

g~ qne" .

n>0
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When ¢ is a function defined on an internal or external set F, the relation (11) must
be satisfied for every element of E, standard or not. In classical terms, the expansion in
e-(resp. for every standard element of F) notion corresponds to the uniform asymptotic
expansion (pointwise asymptotic expansion). Uniform expansion on any compact subset
of some domain D would correspond to e-expansion on the S-interior of D, which is the
external set of limited points of D that are not i-close to the boundary of D.

Given an integer k and a function f defined on a standard open subset U in IR? into
IRP, we say that f is of class S* on U if f is of class C*¥ on U, if f has a shadow °f of
class C* on U and if

Vi <k, fU isS-continuous and °(fW)) = (°f)¥) .

By “S-continuous” we mean: z ~ y = f(z) ~ f(y). This corresponds to “uniformly
S-continuous” in other texts. We recall that the shadow of a function f defined on a
standard set is the only standard function °f that takes at any standard z the standard
part of f(z).

We say that a function f : U C R — IRP has a regular e-ezpansion in U if f is of
class S on U and if f has an e-expansion on U as well as all its derivatives of standard
order. Be aware that not only the expansion is “regular”.

It is known [4] that, if f has a regular e-expansion in U, then the expansion of f
commutes with the derivation: there exists a standard sequence (fy)new of C* functions
such that

Ve e U V' e NVN e N* |, f&)(g)

I
~
<
g
™

3

+
&
™

2

(12)

We will also use the following.

Proposition 2 — 1- If f and g have regular e-expansions, then the same holds for f'

and [f, for f+g, for fg, for fog and for Af.
2- If f has a regular e-expansion, and let y = y(z,c) denote the solution of the b.v.p.

y'=f(z,y), yl@)=c.
Then y has a regular c-expansion with respect to x and c.

PROOF — 1- Since these results are well known for usual e-expansions, we only check the
property “regular”. For f’ and [f it is obvious. For fg, use Leibnitz formula. For f o g,

h
use (fog) = flogxg'. For Af, use Af(z;h) = %/ f'(z + u)du for dimension 1 and
0
similar formulae for higher dimension.

2— For z, use the result for f o g: f and y e-expandable implies that 3’ is, too. For ¢, the
variation equation yields the formula

Oy

%) ey ([

(e ues)

shows that % has an e-expansion. It is then clear that expansion w.r.t € and derivation
w.r.t. ¢ commute. Conclude by induction. 0

A free Maple package is available at http://www.univ-Ir.fr/Labo/MATH/DAC.



2.3 Functions with exponential decay and with S-exponential decay.
The Laplace method will be used later in the following form:

Proposition 3 — Lett; < 0 < ta be two standard real numbers and f, g two S functions
admitting a reqular e-ezpansion in T = [t1,t2]. Assume that fo(0) = f3(0) = 0, a :=
1(0)/2 > 0, ¥t € T\ {0}, fo(t) > 0.
t2
Then the integral I = / exp (%(t)) g(t)dt has an n—shadow expansion, with n = /€.

t1

If go(0) # 0 we have furthermore I = @Qn. Namely, I = /2 g(0) n+ @n.

a

PROOF — There is a standard k£ > 0 such that for all ¢ in T one has fo(¢) > kt?. Thus,
for every t € T one has f(t) > kt? — Ce, with C = sup|f1(t)| + 1 for example. Using the
teT

change of variable t = 57 and Taylor expansion fo(t) = at? + Y22 a;t' + £12N72, one

has , for 7 limited
2N+1

folnr)fe = ar® + Y air'y = + LV
=3

If we expand each f, and g, with Taylor formula, we find that the function

G(7) = exp (G,TZ— @) g(nT)

admits an expansion in powers of 7 (for limited 7) whose coefficients, denoted G, (n),
admit an n—shadow expansion with valuation at least n — 2. Indeed, with the notation

fi(t) = Xiso ai;t* and g;(t) = >i>0 bi;jt* we have

2N+1 N 2(N—j)+1 S o
G(t)=exp | — Z a;T'nt 2 — Z Z Gz‘szﬂ%H*Q Z bz-jTZn23+Z+772N£ )
i=3 j=1 1=0 0<j<N-1
0<i<2(N—j)—1

With these notations, the new integrand equals to 1 exp(—a72)G(7). Since nexp(—k7% +

C)(sup |go(t)| + 1) bounds this integrand on T := {r € IR ; n7 € T}, the dominated
teT

convergence theorem implies:

o0
—00

t2 2N
| exp(=1@)/e)gdt = Y- nGuln) [ e rmdr 4 £
b n=0
To end up, it suffices to rearrange the terms. 0

Definition 4 — Let I = [0,2*] with z* € IRT not necessarily limited. A function f :
I — TR is said to have S-ezponential decay (notation f(z) = £Le~ %) if there are standard
constants ¢, C > 0 such that :

Vz el, |f(z)] < Ce <.

In the case of a standard and bounded function on IR™, this notion coincides of course
with the usual exponential decay at infinity. The following properties of these functions
will be used in the article; their proofs are straightforward.



Proposition 5 — 17— If f has S-exponential decay then, for every standard polynomial
P, the product Pf has S-exponential decay too.
2- Let a be a continuous function on IR™, with limited values, and xo be a non negative
limited real number such that, for every © > xg, a(z) is appreciably negative. Let b be a
continuous function on IRT with S-exponential decay. If y is a solution of the differential
equation

y' = a(z)y + b(z)

with y(0) limited, then y has an S-exponential decay. In other words, if y = £y + £ for
z <z, and iy = —Qy + £~ for x > zo with y(0) = £, then y(z) = £e79%. As a
consequence, y' itself has S-exponential decay.

2.4 Combined expansions: algebraic properties.

Definition 6 — Consider again T' = [t1,t5]. A function ¢ : T — IRY admits a com-
bined expansion if there are two standard sequences of C*° functions (¢p)neN, (¥n)nelN,
¢n : T =R 1, : IRt — R? such that

N—
e VINeINVEET , oft Z )+t (E1)) ™ + £V (13)
e 1), has exponential decay at infinity.

The sequence (¢, )nen is called the slow part and (¢, )new the fast part of the combined
expansion. The dimension d will allow us in the next sections to consider two different so-
lutions of an ordinary differential equation as a function on IR? with a combined expansion.
The variable t will be considered itself as a third component.

Proposition 7 — 1- Combined expansions are unique.

2— A wvector function has a combined expansion if, and only if, each of its components
has.

3~ Let f be a C*® standard function from an open subset U of R? to IRP and ¢ a function
from T to R® having a combined expansion (pn,n). Suppose that for allt € T, @o(t) € U
and for all z € R™, ¢o(t1) +o(z) € U. Then f o is well defined and has a computable
combined expansion.

4— If ¢ has a combined expansion (pn,1y), then ® : [t,ts] — Rt — fttl o(1)dT has a
combined expansion (®,,¥,) given, for every z in X and t in T, by

(1) Z/tgao(T)dT, To(z) = 0

t1

and forn > 1:
t +0oo

D,(t) = [ on(r)dr + ; Yn—1(z)dz

+oo

Un(z) = - PYn—1(§)d§ -

x

In particular, we have

to

p(t)dt ~ <,00 dt+2(

t1 t1 n>1 t1

on(t dt+/ Yn—1(x )diF)



The word “computable” in statement 3 means that algorithms exist, which are not
described in the present article. They allow to calculate the expansion of f o . Actu-
ally, the reader may find a free Maple package already mentioned at http://www.univ-
Ir.fr/Labo/MATH/DAC, see procedure called subsDAC (only for f : R — IR).

PROOF — 1- By contradiction. If a function admits two different combined expansions,
then their difference is a non trivial combined expansion (,,,) of 0. Let ng be the
first index such that ¢, or v, is not the zero function. Using the transfer principle,

no

ng is standard. Taking N = ng + 1 and multiplying by €~ "°, one obtains, for any ¢ in

T, that @n,(t) + ¥, (t;tl) ~ 0. Since 1y, has exponential decay, for any standard ¢ in
T\ {t1}, ¢ne(t) ~ 0 and consequently ¢, (t) = 0. By transfer, this remains valid for
every t in T'\ {¢1}, and by continuity for ¢ = ¢;. Now, for a standard z in IR* one obtains
Yo (z) =~ 0, therefore 9,,(z) = 0, and this remains valid for any real = by transfer. This

leads to the contradiction.

Statement 2 is obvious.
3- Denote by ¢' the components of ¢ := > on>0 Pne” (and similarly for ). Formula
(10) yields

d
f@+9 Z F(@,9)@*)

The first term f(p) gives the slow part (f,)neN, since the image of an usual asymptotic
expansion by a C° mapping is an asymptotic expansion (expand f at o(t) with Taylor
formula).

For the fast part, given by the sum Y°¢_, (%) AL f (@, 1), one first expands each function
<pg (t) = (pg (t1 + ex) up to order (N — 1) by Taylor formula. Using the same Taylor
expansion of order (N — 1) to the function A,f at (¢o(t1),10(z)) and multiplying it by
the expansion of (zpk) one obtains an e-expansion. These coeflicients g, are polynomial
in z and ’l/)ZJ( ) and derivatives of Ay f at (@o(t1),¥o(x)). As 1 is bounded on IR*, each
of these derivatives is a bounded function of . Moreover, each of the monomial terms of
gn contains at least one term ¢f Therefore, these functions g, have exponential decay.
Concerning the remainder term

d N-1
Ry(z) =Y Apf(@,9)@F) = Y gnl@)e” ,
k=1 n=0

if each of the former Taylor expansions is written with a remainder term of the form
%(pf (N) (Tij)sN, 7;j € T (similarly for Akf), we see that Ry is polynomial in z, e,
gog (N)(Tij), wf(w) and in the differentials of A, f at some points (o, 3) with « i-close to
©o(T) and f i-close to 4o (IR). Moreover, each monomial term of Ry contains at least one
term 1! and a power of ¢ greater or equal to N. Thus, Rye™" has S-exponential decay,
hence is limited on 7.

4— Formula (13) gives:

t ¢ Nl T—tl
/go = / Z‘P" g” +Z¢n( >e"+£6N dr
t1 1 \n=0 n=0 €
N

_ Z( on(r d76+/ Yo 1(€ dg) Z/ bal6)de 1 4 £V

10



Since 9, has exponential decay, ¥p1(z) := — ['* 1, (s) ds has exponential decay. In
+o0

particular, since s is standard, we conclude that /(t ) Y (z)dz = e 9/e — pcN 0
2—Ll1)/€
REMARKS ON STATEMENT 3.

1- We detail here the computation of these expansions in the cases of dimensions d and p
n

equal to 1. With f C* standard, ¢t = t; + ez and ¢(t) = Z((p,(t) +1pi(z))e! + £, we
i=0
look for an expression of f o ¢ in the form

o) = Sl + gi(a))et + £t . (14)

i=0
The slow expansion is the usual asymptotic expansion of a composition of two expansions,
given by: fo(t) = f(vo(t)), and for n > 1:

fa(t) = > 71 F9(00(8)) pps (1) 0, (1) - (15)

1<p;<n, 1<k<n
p1t-..tpr=n

Here and in the sequel, we will use bold letters for multi-indices. We denote by FE,, the
set of finite sequences of positive integers that are smaller than or equal to n, i.e.

+o0
E, := U {1,..,n}¢
d=0

For p = (p1,-.-,pd) € En, we denote its length by #(p) := d and its size by |p| =
p1 + ... + ps. We denote by @, the product @, = ¢, ...¢0p, (with the usual convention
&y = 1). For instance (15) becomes with these notations:

Vn >0, falt)= )

PEEn
|p|=n

# (0())p

For the fast expansion, glven some n € IN, with the notation ¢(t) = ¢(t) + ¥(z), ¢ :=

Z e’ (hence ¢(t) Z wi(t)et + £™ for all t € T') we have
=0

f(o(t) + () = F(¢(®) + Af(B(2); 9 (2))(z) - (16)

The first term f($(t)) yields the slow part already calculated, and the second part (which
has S-exponential decay) corresponds to the fast part.
We then use the Taylor formula in the form

Af(usv) = Y Agluo,vo)(u —ug) (v —vo) + £(u —ug)" ™ + £(v — )" (17)

4,520
i+j<n

with Ay i= 75250 Af. We apply it to u = g(t), ug = go(tr), v := $(x), vo == o (v).

Using Taylor formula for ¢ at point ¢ = 1, we get:

n k

1 (s :

u = E up(z)e® + L2" e with wy(z) = E ﬁgo,(c{)j(tl)m]
- j=0"7"

11



(notice that ug(x) is constant equal to ug = ¢g(t1)). In addition, we simplify the notation:

fij(x) = Aqi(po(t1), Po(z)) -

Altogether, using u — ug = £xe and v — vy = £e, (17) gives

= Y fijlz (Z ug(x ) <Z¢,e> + £(1 4 2"t (18)

1,520
i+j<n
Taking into account the last term v(z) in (16), whose S-exponential decay implies that
£(1 4 z"THentlyp(z) = L™ on T, we obtain the coefficients of the fast expansion of
(14):
go(z) = f(eo(t1) +vo(x)) — fpo(t1)) ,

and for n > 1:
gn(z) = > fij () gy (2).up; (2) Py, (3).- Ay, (T) P ()
%,j,m>0
1<k1,..,ki<n
1<l li<n

k1—|—...—|—ki+ll—|—...+lj—|—m:n

or, more concisely, using the notation below (15):

gn= D fro9 #a) v V1 P
KIEE,, m>0
K| +|1[+m=n

We refer to the Maple package already mentioned for the implementation.

2— We insist on the fact that the fast expansion of f o ¢ depends of the slow and fast
expansions of ¢, whereas the slow expansion of f o ¢ depends only of the slow expansion
of ¢. Consider, for example, the product of two real combined expansions ¢ and @. Using
capital letters for the resulting combined expansion, we have

= Xn: 0k (t) Pk (t)
k=0

To obtain ¥, (z), we consider the other terms

(Z oy (t1 +ex)e ) (2 e ) + (Z qp,,(:c)e”) (Z vt + 63:)5") +
v>0 v>0 v>0 v>0

(S 0e) (o)
v>0 v>0

and expand each term ¢, (¢1 +ez) with Taylor formula. Then, ¥, (z) will be the n-th term
of the obtained expansion in power of e.

12



2.5 Combined expansions in singular perturbation theory.
Consider the singularly perturbed real differential equation:
eu = f(t,u) (19)
with the following hypotheses.
HyPoTHESIS 1 — The function f is S and has a regular e-exzpansion in a standard open

subset U of IR?.

HYPOTHESIS 2 — There is a slow curve u = uy(t) in U defined and C* on a standard
compact interval T = [t1,t2] , i.e.

Vit € [tl,tg] , (t,uo(t)) € U and f()(t,’u,o(t)) =0. (20)

Let ¢y standard be such that the segment {¢1} X [ug(t1),co] is in U (in the case ¢y < up(t1)
one may replace [ug(t1),co] by [co, uo(t1)] in the sequel).

HypOTHESIS 3 — (attractiveness) The function a(t,u) := %(t,u) is bounded above by
some standard negative constant on U.

Notice that for hypothesis 3 the following suffices (use compactness and take a smaller
U if necessary):

Vu € [ug(t1),co] , a(ti,u) <0 and Vt € [t1,t2] , a(t,uo(t)) <O . (21)

In this situation, it is well known [9] that, if the initial condition u(¢;) = c¢ is such that
¢ ~ ¢y, then the solution, after a possible boundary layer at ¢, borders the slow curve
until ¢5. Tt is known too that the slow part of u has a unique e-expansion:

Figure 2: Here, f(t,u) = —(u+1/t), t1 =1,t2=3,¢c=0, and e = 1/7.

N-1
I (un)nen VE €], 1] Voin € IN, u(t) = 3 up(t)e® + L&V .
n=0

This expansion is said to be slow and corresponds to the outer expansion in classical
asymptotics. Moreover, u has a regular expansion on ]|t1, t2], since its k-th derivative u(¥)
can be expressed with the derivatives of f and u of order j < k — 1.

13



It is also possible to consider the inner expansion but we will use another expansion,
see theorem 8 below. The inner expansion may be defined as follows. In the neighborhood
of t1, the change of variables t = t; 4+ ex yields

@' (z) = f(t1 + ez, 0(x)) (22)

which is a regular perturbation of u'(z) = fo(t1,u(z)). Every solution of (22) with an
initial condition ¢ having an e-expansion admits an e-expansion, @(z) ~ Y., <o Un(z)e™.
This expansion is said to be fast; the coefficients u,, are solutions of

’17,6 = f()(tl, ﬂo), ﬂo(O) = Cy
(23)
a, = a(x)i, + (2, do(x), ... Un—1(z)), @n(0) =c,

where f, and ¢, are the coefficients of the e-expansions of f and c¢. The function @ is
given by a(z) = %(tl, to(x)) and P, is obtained by considering the n—th term (in €) of
the Taylor expansion of f(t; + ez, 4(x)) at the point (1, %g(z)) and by removing the term
containing .

This fast expansion u(t) ~ Y ,,5¢@ (2) e is valid a priori for ¢t = ¢ + £, but the
slow one is valid for t = ¢t; + Q.

Using the permanence principle, the validity domains of these expansions can be re-
spectively extended to [t1,t3], ((t3 — t1)/e infinitely large) and [t4,t2], (t4 =~ t1). These
intervals are disjoint and none of the expansions is valid for certain intermediate .

The following theorem shows that the solution u has a combined expansion in the sense
of section 2. It is the sum of the slow expansion (corresponding to the slow phase) and the
fast expansion (corresponding to the limit layer) and it is valid in [¢1, ¢2]. This expansion

is intrinsically different of the one given by (23).

Theorem 8 — We consider the differential equation (19) et = f(t,u), where the function
[ satisfies the previous hypotheses 1,2 and 3. Then, for every number c ~ Y <, cne™, the
solution u of (19) with the initial condition u(t)) = c is defined and admits a combined
expansion in [t1,to]:

w(t) ~ Y un(t)e” + Y yn(@)e” , t=ti+ew. (24)
n>0 n>0

PROOF — To fix ideas we assume that ¢g > wug(t1). For simplicity we also reduce to t; = 0
and ug(t1) = 0. Denote by K the compact set

K = ({0} x [0,c0]) U {(t,u0()) ; 0 <t <t} .

By hypothesis 3 the function a is appreciably negative on K. Therefore the solution
is defined at least until ¢3 and the shadow of its graph on [0,%2] is K. The idea is to
compare u with another solution u? which borders the slow curve on a larger interval. For
this purpose, note that, by continuity, the hypotheses 2 and 3 of the statement are still
valid if ¢1 (= 0) is replaced by —d (for § > 0 standard and sufficiently small). We can then
consider u! as the solution of (1) with the initial condition u%(—4) = ug(—6).

The attractiveness of the slow curve implies that this solution is defined and has a
regular e-expansion in [0, t3], with C* coefficients u,. This allows to isolate the slow part
of the expansion (24). Set § := u — uf; this leads to

5:‘:] = g(ta g)g ’ (25)

14



where g(t,79) := Aaf (t,u(t);§) and Ay f is defined just above (10).
Since u? has itself a regular expansion, g has, too; we denote by g; its coefficients.
Moreover g remains appreciably negative on a standard neighborhood V' of

= ({0} x [0, co]) U ([0, 2] x {0}) -

Indeed, the shadow of g, denoted by gy, satisfies go(t,0) = a(t,u(t)) for any t € [0,1o]
y

and go(0,y) = %/ a(0,v)dv for any y €]0, co]. Let ¢t = ex and y(x) := g(ex). Then
0

y'(2) = glez,y(2))y(z) , y(0) = c —u*(0) (26)

where ’ denotes the derivation with respect to z. It will be shown that this solution admits
an e-expansion with coefficients y, exponentially decreasing.

First of all, y is decreasing, hence y' is limited on X := [0, %2] Therefore y is S-
continuous, hence has a shadow, denoted by y,. This shadow satisfies

yo(z) = 90(0,30(2)) yo(z) , 50(0) = co . (27)

This implies that 1o is decreasing on IR™ and has exponential decay at infinity, by state-

ment 2 of proposition 5. By definition one has a priori y(z) ~ yo(z) only for limited values

of z, but this remains true for all z € X, as both functions are i-small for z i-large.
Examin now the formal solutions. We write the coefficients of g in the form

= Y d' @y —yol@)"

J.k=>0

with

We omit in the sequel the dependance in z of gf and y;. With these notations, one has

k
. —
Sule = 3 gt (Y| Yue (28)
i>0 4,5, k>0 v>1 1>0

Symbolic identification yields a linear differential equation for y,:
yr, = terms of order n in € of rhs(28) ,

where among the terms of rhs(28) (which are of the form gz.kacjy,,1 Y Y, Vp > 1) we will
write later separately those which contain y,, namely (g3° + g9'yo)y,. It is convenient to
introduce the following set of indices:

n

U { (4, 7,l,v1, .y k) € {O,...,n}k+3 5 Up > 1} , (29)

and the notation, for u = (7, ,1,v1,...,vx) € My:
p|=i+j+1l+v1+...+v and y, = gzjka:jy,,l...yukyl. (30)
To sum up, y, satisfies:

Yn= . Yu- (31)

KEMn,|ul=n
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We notice here (this will be used later) that, if m < n, then M,, contains M,,. In other
words, one has
Vm <mn, y, = 2 Yu - (32)
WEMp,|u|=m
Let us now end up with the formal part of the proof of theorem 8. We have to show that
yn, has exponential decay on IR*. For that purpose, we rewrite (31) in the form

yn =90+ 90 v0)yn + D Yu- (33)
BEM,|ul=n

where M} is equal to M,, except the “special terms” (0,0,m) and (0,0,0,m). Remark
that the gzj’c depend on z only by yo(x). In particular, they are standard and bounded
functions on IR*. By induction on n, if for all m < m, y,, has exponential decay, then
it is the same for any y,, u € M;. As g3° + g§'yo is standard and bounded above by a
standard negative constant, statement 2 of proposition 5 applies and yields that y, has
exponential decay on IR™.

n

Concerning the remainder terms, let us write y = Yy, +r,e" ! with Y, (z) = Z yi ()€l

1=0
Obviously Y,, has S-exponential decay, and we have

Yy (%) = yo(z) + £& forall z € X = [0, 2] , (34)

£

as the y; are standard bounded. In particular (ez, Y, (z)) is in the neighborhood V for any
x € X; therefore, g(ex,Y,(z)) is bounded above by a standard negative constant. The
idea is to write the differential equation satisfied by 7, in a linear form, considering y and
Y,, as known (we already know that y and Y, are defined and infinitely close to yy on X).

We have Y, + re" ™ = (g(ez, Yy) + Aoglex, Yoy — Yo)rne™ ) (Y, + r,e™TL), hence:

I, = an(T)ry + bn ()

with
an(z) = glex, Yn(z)) + Agg(ex, Yn(z);y(x) — Ya(r)) y(z)
and
b(z) = (9(ez, Yo (x))Ya(z) — Y, (x)) /"

For any z in X, we have a,(z) = —Q + e @2 £. It follows that, if 2y is chosen standard
sufficiently large, then a,(z) is bounded above by a standard negative constant for all
z € [z, 2].

It thus suffices to show that b has S-exponential decay, then apply again statement 2
of proposition 4 and deduce that r, has S-exponential decay, hence is bounded. For this
purpose, we first write

n

g(ex,Y,) = Zgi(eaz,Yn)ei + Le™L .
i=0

Secondly, using Taylor formula at ¢ = ex = 0:

(0,Yy)(ex)? + £(ex) 41,

S,
g
<.
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&
Finally, the Taylor formula at y = yg is applied to each function %, 0<i<n,0<5<

&g; " n * »
]ll at] Z g (Z yvel/) + £(Ys — yO)n7Z7J+1 .
v=1

Altogether, we obtain:

n—1:

k' n
9(ez, Yn)Y, = Z Tty (Zy € ) Zylgl
=0

i,j,lczO,i+j+k<n

n . .
+ (£ + Z Lz 4 Z £17 (@)nzyﬂ) Y, et .

1=0 ,j>0,i+j<n

By (34), the sum, between brackets, multiplying Y,e"*! is of the form £ + £z"t1.
Therefore, with the notations (29) and (30), we obtain

9(ez, Yo)Yo = Y yu el + (£ + £2"T) Vet
nEM],

with M) = {u = (i,4,l,n1,...,n) € My, ; i+ j+k <n}. Notice that M), contains all the
p € My, such that |u| < n.
Moreover, using (32), we have

YTQ = Z Yu glul

NEMn’|u|Sn
Therefore
g(en, Vo) Yo —Yi = 3 yuell 4 (£ 4 £am et
MGM;“|/L|>7L

Each term y, = g{ka:jy,,l...y,,kyl contains at least one factor y;, hence has S-exponential
decay, and Y,, has S-exponential decay too. To sum up,

g(ex, Y)Yy = V! = (£ 4 £2"F1)e~@2entl = LeQzentl

This shows that b has S-exponential decay. 0

REMARKS : 1 — The more general hypothesis “f admits an e-expansion” instead of “f
standard” is useful:

e This allows to treat problems where the initial instant ¢; is not standard but has only
an ¢-expansion. Indeed, if ¢ is standard and C°*° — or has an e-expansion — and if ¢; has
an e-expansion,then @ : [0, — ;] — IR%, s+ (t; + s) has an e-expansion and is S°.

e Furthermore, the Schrodinger equation(we will study) may contain a nonstandard pa-
rameter (canard value).

2 — Theorem 8 will be applied in more general situations, for instance when the equation
has a turning point in ]¢1,t2[, or when the starting point ¢; is not standard. Therefore we
present the following result.

Proposition 9 — 71— Theorem 8 remains valid if hypothesis 3 is replaced by the following
ones:

17



(i) There is a S solution of (19), close to the slow curve u = ug(t) on a standard
open interval containing [t1,t2].

(ii) For every u € [ug(t1),co] one has a(t1,u) <O0.

(i1i) For every t €]t1,t2] one has Ay(t) < 0, where Ay is given by (35).
2— Theorem 8 remains valid if t1 is only e-expandable instead of standard.

PROOF — 1— Assume that there is already a S canard solution ! close to the slow curve
on a standard open interval containing [t1,%2]. In that case, the solutions u and u? are
exponentially close to each other as soon as t is appreciably greater than ¢; and as far as
the “accumulated stability” is positive: more precisely, if Ay is given by

Ao(t) = /t ' alrup(r))dr (35)

(recall that a(t,u) = %(t,u)) then
u(t) — ui(t) = exp ((Ao(t) + @) /e)

as far as Ag is appreciably negative (the “accumulated stability” would be defined as
—Ap). Since u! is S and defined on [t; — §,ty + 8] for some § > 0 standard, it admits an
g-expansion on [t1,%2]. Theorem 8 applied to [t1,t1 + 6], d > 0 standard sufficiently small,
yields a combined expansion for u on [t,t; + §]. As u is exponentially close to uf, this
combined expansion remains valid on [¢t; + §,%2]. This proves the first part.

2- Put @ =t —°t1, t = s+ «, u(t) = v(s). Then v salisfies ev = g(s,v) with
9(s,v) := f(s+ a,v). The function g has a regular e-expansion; hence v has a combined
expansion v(s) = Y vn(s)e™ + X yn(z)e™, z := (s —° t1)/e. Taylor formula shows that
> vp(t — a)e™ has a regular e-expansion ) u,(t)e™. This gives the slow part. The fast
part is the same, since z is also equal to (t — 1) /e. 0

3 Applications.

3.1 Towards a transasymptotic expansion.

The results of section 2 yield an estimate of the distance between two slow solutions of
a slow-fast differential equation. In this section, we will study this distance, first for
equations without parameter, and then for equations with parameter. Consider again
equation (19)

eu = f(t7 u) )

with the hypotheses 1, 2 and 3 in section 2.5 (f is C* and has a regular e-expansion and a
slow curve u = ug(t); we assume as above that this slow curve is attractive on a standard
compact T' = [t1, to]; the situation with a turning point will be detailed at the end of this
section).

Let u? be a solution close to the slow curve on a standard open interval containing
[t1,o] (for example, the solution with initial condition u?(; — &) = ug(t; — &) where § > 0
is standard sufficiently small). Consider now an initial condition ¢#* having an e-expansion
and sufficiently close to the slow curve such that the solution u#, issuing from c¢# at ti,
has a boundary layer at ¢; and borders the slow curve, at least, until ¢o (i.e. hypotheses
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2 and 3 in 2.5 for ¢y = °c#). These two solutions are exponentially close to each other as
soon as t > t1. Namely, it is easy to see that:

W () — v (t) = exp (g (/t 8o (1. o (1)) dr + @)) .

A more precise result will be given in this section. As the essential task is to introduce
the notations, the statement will be given after its proof.

If t = t1 4+ ex, theorem 8 provides two combined expansions:

u (1) ~ Y (un(t) +yf (@)e" , ui(t) ~ Y ualt)e”

n>0 n>0
where y# is the solution of the differential equation
9fo
Yo = af (t1, uo(t1) + yo)yo (36)

with y# (0) = c# — ug(t1). Moreover, § := u# — ul satisfies the differential equation (25)
rewritten below in a linear form:

e = a(t)j with a(t) := g(t, v (t) — ul(t)) (37)

with the notation g(t,y) = Aaf(¢,ul(t);y) of 2.5. Hence with ¢! = u¥(#;) one has:

w# () — ui(t) = (¢ — &) exp (% /t ja(T)dT> . (38)

According to the statement 3 of the proposition 7, the function ¢ admits itself a combined
asymptotic expansion a(t) ~ 3,,50(an(t) + bn(z))e™ whose first terms are clarified below

2
a0(t) = D0t u0(0) , ar(t) = i (1) S wo(e) + Pt o)), (39)
bo(z) = Aafo(ty,uo(t);ud (z)) — %(tl,uo(tl)) ; (40)

y# given by (36). According to the statement 4 of this same proposition 7, the primitive

of a has an e-expansion
/ )dr ~ 3 An( (41)
n>0

for ¢ €]]t1, 2], the first terms of which are:

Ao(t) = / Cao(r)dr . Aj(t) = / "oy (r)dr + /0 " bo(€)de . (42)

t1 51

Since ¢# — ¢ has also an e-expansion (its first term is c# - cg), formula (38) shows the
following result.

Theorem 10 — With the notations and hypotheses above, there is a standard sequence
of functions (ry)new+ such that the difference u# — uf satisfies for any t €]]t1, to]:
Ayt
(w#(8) — vi(®)) exp G%) ~ Y rat)en (43)
n>0

with ro(t) = (c# - cg) exp(A1(t)).
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REMARKS : 1 — Concerning values of ¢ close to ¢1, an analogous formula is available
with combined expansions. We do not mention it for simplicity.

2 — As mentioned in the introduction, the functions 7, can explicitly be computed with an
algorithm based on the previous proof (subject to compute the primitives of the occuring
functions). Instead of detailing this algorithm in the general case, we find it is more useful
to illustrate it on the Liouville equation, see below. We refer to the Maple package already
mentioned for the general case.

3 — If a standard ¢ is fixed, formula (43) gives immediately an asymptotic expression
of u#(t) — u%(t) with standard constants. If ¢ has an e-expansion, such an asymptotic
expression is also possible, but one has to expand each term A;(¢), i = 0,1 and (t), j > 1
with Taylor formula.

4 — As for combined asymptotic expansions in 2.5 (proposition 9 of remark 2), this result
remains valid if the slow curve is not attractive on the whole interval [t1,?]. The existence
of a solution close the slow curve on an open interval containing [¢;, °¢] and the assumption
that Ay is negative on |¢;, °t] are enough.

5 — Formula (38) allows to find an e-expansion of ¢# from an e-expansion of ¢ and
u#(t) — ul(t). More precisely, we have the following.

Corollary 11 — Denote by I =|cmin, Cmax| the set of all numbers ¢ € IR which satisfy
hypothesis 3 of subsection 2.5. Let t* €lt1,ts] c-expandable with °t* > t;. Denote by
u# = u¥(t,c) the solution of (19) with boundary condition u*(t;) = c. Consider the
function
v: I >R, c— (u#(t*) — uh(t*)) exp (—@) ,

Then ¢ is an S-diffeomorphism from the S-interior of I to its image.
(In classical terms: ¢ = @ is a diffeomorphism from I to ¢(I) and for any fized c € I
there is a constant M > 0 independent of € such that % <¢l(c)<M.)

As a consequence, given o € @(I) with ¢#(a) == ¢ (@) €]lcmin, Cmax|[, if @ is &-
ezpandable, then c*(a) is e-expandable and by theorem 8, u¥(-,c*(a)) has a combined
expansion on [t1,ts].

ProoOr — With (38) we get

ple) = (e = ¢ exp (1 [ i) - go<t,o)>dt)

t1

with § : (¢,¢) — u#(t,¢) —ul(t), g = Agf(-,ul,-) as before, and g is the first term of the
¢-expansion of g. Therefore,

¢(e) = (c — )M exp(J(c))

with
1t .
M = exp <g~/t (g(tay(ta C)) - g(t,O))dt)
1
independent of ¢ and appreciable, and
1t .
70 += [ (gt a(t.) — g(t.0))dt (14)
1
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The function ¢ is the solution of the b.v.p. ey = g(t,y)y, y(t1) = ¢ — ¢, hence is
monotonous on [¢;,t*] and can be used as a change of variable. For convenience we use
the notation y* := g(t*,c) (it is an exponentially small number which depends on c)
and ¢ = #(y,c) the “inverse” function of §. The change of variable y = §(t,c) yields
dy = Lg(t,y)ydt and

10 = [ vy
with B
_ Aag(i(y, ¢), 0;y)
9(t(y, ), y)

This function is not S-continuous, but is continuous and limited on [c — ¢?,y*]. Moreover,
for y % 0, one has

P(y) :

N _ Dog0(0,0;9)
"b(y) - dJO(y) - go(O,y) .

Hence J is S-continuous and its shadow satisfies
0
e [ oy
C—Ch

We will show later that J has a regular expansion. This implies that

°(J'(c) = (°J)'(c) = —to(c — ') = c_lch (go(gg((c){))ch) a 1) '

Since we have %(c) = CTICE + J'(c), we deduce that (¢ — ch)%(c) o~ #(,SQF) is appre-
ciable. Using M = @ and J(c¢) = £, this gives ¢'(c) = @ which shows that ¢ is a
S-diffeomorphism. Furthermore ¢ has an e-expansion (by composition of the expansion
(43) and the expansion of ¢*). Hence by a well-known result on classical epansions, ¢!
has an e-expansion, too. The consequence is clear, again by composition of the expansions

of o and ¢~ 1.

It remains to prove that J has a regular expansion. For that purpose, it is better to use
the change of variable t = t; 4+ ex in (44). This gives, with z* := (t* — 1) /e (independant
of ¢) and g(z,c) := y(t1 + ez, ¢):

() = /0 " Gz, ¢)dz (45)

with
G(z,c) == (g(t1 + ez, g(x, ) — g(t1 + €x,0))

At this scale, the function § has S-exponential decay in xz and a regular e-expansion
9(z,c) ~ Y ;>0 Yn(z, c)e™ with respect to ¢ (see the end of 2.3), where the y,, have expo-
nential decay in z (see the end of 2.3). Hence the same holds for G, and J has a regular
g-expansion w.r.t. c. 0

5 — Using classical results of Gevrey analysis, it is possible to give an exact meaning to
an expression like:

w#(0) ~ X un(te +exp (21D (df - ) exp(a1(0) (1 Y m(t)en> .

n>0 n>1
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This expression may be considered as a start of transasymptotic expansion. The first
expansion Y., o un(t)e"
term which follows arises from the boundary layer at t;. Thanks to Gevrey analysis,
— under analyticity hypothesis of f according to ¢ and a simple geometrical hypothesis
concerning the relief function a : ¢ — %(t, uo(t)) — it is possible to show that the first
expansion Y., <o un(t)e™ is defined up to exponentially small (of type strictly greater than
Ao(t)). Therefore, a summation ”to the least term” of both expansions accounts for the
boundary layer.

is the classical expansion of slow curves, and the exponential

Liouville’s equation — We consider here Liouville’s equation in its singularly perturbed
form
et = u® —t. (46)

This equation has a repulsive river u! which is asymptotic to v/¢. Consider a solution v’

that borders this river, on an appreciable interval, and join the attractive river. We will
give an estimate of u” — u! before the limit layer of u”. The first two terms r; and ro will
be explicited.

To set the ideas, we assume that u” links both rivers through 0 rather than infinity.
Choosing adequately the parameter £ and doing linear change of variables of u and ¢, we
can suppose that u’(1) = 0. Given ¢ fixed and standard in ]0, 1], we want to compute an
e-expansion of u’(t) — uf(t).

The first terms of the e-expansion turn to be:

ui(t) = Vit + e — %t_5/2€2 + got7ed + Le5 |
With the already introduced y(x) := u’(1 4+ ex) — u’(1 + ez), y satisfies the differential
equation:
y' = (2uf(1+ez) +y)y,
approximated by
Y =(2+@+De— (T +5+ )+ (E+ L+ L+ 8P+ £ —y)y

with the initial condition y(0) = —u?(1) = —1 — te+ 3%82 - é—ieg’ + £et.
We then deduce the beginning of the e-expansion y(z) ~ 3,50 yn(z)e" of y:

Yo = (2+y0)yo , o(0) =1,
hence yo(z) = —1 — tanhz,
yi=a(@)y+ (= + 30, v1(0) =—7

T
with a(z) = 2 + 2yo(r) = —2tanh z, hence exp (/ a) — coshou. ypig gives
u

cosh?z’

T
y1($):m(1+/0 (2u+1) (62”+1)du> zm(l+x+m2+xeh) :

Using the symbolic manipulation language Maple, we found It is possible to prove that y,

is of the form y,(z) = sz(fff)

. We do not explicit the rather long expression y» because

— 00
we need only the value of the integrals I, := / yn(z)dz. One finds for the first terms:
0

1
I()=1n2, Il:Z’
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Remark that, despite the complexity of the functions y,, their integrals on IR~ are very
simple. In particular, it is possible to show (using the associated linear Airy equation)
that these numbers are rational for all n > 1.

Then, v’ (t) — u(t) = (ub(l) — uh(l)) exp ( (t )) with

At) = /t( i(r )+ub('r))d'r

t—1

= 2/ d’r—l—&/OTy(w)dw
= 22 (/ dT>€ +Z (/ (m)dx) el 4 £t
— 4 (t3/2 —1) + (4mnt) e+ % (t32-1)+50-t3)e

+eln2 + i62 + 3%53 + £et
Hence, we deduce exp ( (®) ) and obtain finally:

W) —u'(t) = exp{4 (t3/2 )}2\/1? [1+ﬁ(5t_3/2+7)6
iy (49 + 704732 — 15547 ) &2 4 £€° |

REMARK. This formula is valid only for ¢ appreciable, but for Liouville equation, a formula

can be given for t infinitely small, for example for £ = 0. Indeed, only the computation of
¢
the integral / u!(1)dr of A(t) poses a problem. But here, u is linked to the logarithmic

derivative of the Airy function. This yields an answer to the following natural question.

Consider the Liouville equation
U=0%-T (47)

and its unique solution asymptotic to /T at +oc given by UNT) = —Ai'(T)/Ai(T). Con-
sider another solution U” with the initial condition U”(0) = U"(0) — 4, 0 < § ~ 0. This
solution vanishes only at an infinitely large value w. What is the asymptotic relation
between § and w ?

The change of variables T = wt, U = /w u, with € = w™3/2 leads to the previous
1 ) 2
equation (47). We deduce that exp (%/ Uh(T)dT) = (ﬁ‘l((‘g))) with w = ¢ /% (and
0
Ai(0) = 372/3/T(2/3)). The asymptotic expansion of Ai implies:

_ 1 s/ 3/2 3(n+1)/2
5—Wexp< )(1+a1w =+ .. +a6 —I—£w )
with a1 = %, g = 1‘1122

As mentioned above, concerning the associated Riccati equations to classical linear
equations, it is more judicious to solve the problem directly with the linear equation. Nev-
ertheless the method presented here can be applied to other types of equations. Liouville’s
equation is here only for illustration.
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3.2 The situation with a turning point.

Consider equation(19) ed = f(¢,u) with the hypotheses 1 and 2 below:

HypPOTHESIS 1 — The function f is S and has a regular e-expansion in an open subset
U of R? (cf. 2.2).

HyYPOTHESIS 2 — There is a C*®slow curve u = ug(t) in U on a standard compact interval
T = [tl, tz], i.e.
vVt € [tl,tg] s (t,UQ(t)) ceU andfo(t, U()(t)) =0. (48)
Now, the slow curve u = ug(t) is assumed to be attractive for ¢; < ¢t < ¢y and repulsive
for ty < t < t9, where tg is some standard point in Jt1, o[ called turning point:
HypoOTHESIS 3 — The function a(t, u) := %(t, u) satisfies:

Vit € [tl,to[ . a(t,uo(t)) <0,vt E]to,tg] , a(t,uo(t)) >0. (49)

Moreover, we assume that there is a canard solution u! that border the slow curve
from ¢1 to t5. We are interested in the input-output relation about this canard solution.

Let t. and t; be the input and output instants respectively such that t; < °t, < tg <
°ts < to. Let u, and us be the input and output values which are appreciably different
respectively from u%(¢,) and u?(t,), then

Vu € [ug(te), ue)], alte,u) <0 and Vu € [ug(ts),us], a(ts,u) >0. (50)

We assume that there is a solution u# of (19) with u# (t.) = ue, u*(ts) = us. In this
case, it is known [1] that the input-output relation is given by

fts alt,uo(t))dt =0 . (51)

te
Proposition 12 — With the previous notations and hypotheses, if three of the four quan-
tities te, ts, Ue, Us have an e-expansion, then the fourth one has, and this expansion can be
computed modulo an inversion of diffeomorphism.

PRrOOF — The quantities t., ts, ue, us are linked by the relation

s —uh(t) = (e — vt exp {1 [ Bf (1wt () - (0) dt}

te
The solution u# presents two limit layers. This integral is first splitted in two parts, for
example at t9. For each limit layer, we use the combined asymptotic expansions, more
especially proposition 8.

When the three quantities t., ts and u, have an e-expansion, proposition 9 shows that
u# (tg) —ul(to) is of the form exp (% + b) where Ay is standard and b has an e-expansion.
Hence, by corollary 11, us has an e-expansion. The case where the three given quantities
are te,ts; and ug is similar.

If the three quantities are t., u. and ugz, then the previous case is used as follows: we
set the change of variable t; = °t; + ez, where °t; is given by the input-output relation
(51). When ¢, and u, are fixed, the previous case shows that u, is of the form u; = p(t;)
where ¢ is S and has an e-expansion. Moreover, we have

o' (zs) = %u#(c’ts +exg) = f(°ts + sxs,u#(c’ts +exy)) = f(ts,us)

which is appreciable thanks to (50), to f(ts, u?(ts)) ~ 0 and to us % u(ts). Thus, ¢ is a
S-diffeomorphism (i.e. its shadow is a diffeomorphism) and its inverse is S*° and has an
e-expansion. We conclude that ¢, = ¢~ !(z,) has an e-expansion. 0
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3.3 Equations with parameter.

We prove here theorem 1. It is classical [2] to consider the associated Riccati equation by
setting v = % This leads to
e =U(t) — E —v*. (52)

Recall that the solutions of a Riccati equation are naturally considered on the cylinder
R x (R U {oo}), whose variable v is one chart among others. In particular, it is natural
to consider solutions with poles: the passage through infinity is perfectly regular.

The equation (52) is of slow-fast type and usual techniques are applied. For any
infinitesimal value of F, we have two repulsive rivers; the first one is close to —¢(t) for
t — —oo and the second one is close to ¢(t) for ¢ — +oo (here, repulsiveness does not
take into account the direction of ¢). For each river, there is a unique solution, called
”exceptional” which borders it and all other solutions join the attractive river (¢(t) for

t — —oo, —p(t) for t - +00). Moreover, the formula ¢ = exp(/ v/e) shows that to

each solution bordering an attractive river corresponds a subspace of solutions of the
corresponding linear equation with exponential growth. The subspace associated to an
exceptional solution is constituted by solutions with exponential decay.

For E fixed, the symmetry of the equation shows that if v is a solution of (52), then
¥ : t — —uv(—t) is. Hence, a solution bordering both repulsive rivers is necessarily an
odd function. The posed problem has two solutions, denoted by (E#,v#) and (E’,")
with v#(0) = co, v”(0) = 0, which are canard solutions. It is more convenient to work in
another chart. We therefore turn the Riccati cylinder by a quarter of turn.

leads to

The change of the unknown u := Y n
v

el — %(U(t) _E-1)(+ud) - (U®#) — E+1)u

with u#(0) = 1, u’(0) = —1 (and respectively with the values E# and E’ for E).

20

15+

10r

-20
-2

Figure 3: The solutions u#, u” and u? for the potential (2) and ¢ = L @y = g—:,
o . —e-l
- ==

The difference y := u# — u” satisfies the equation

ej = A(t)y — B(t)(B* — E") , y(+00) =0
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with

Yoty

(U(t) - B~ ) +4') - (U@t) - B’ +1), B@) =5

1
2
Here occurs a technical * difficulty: A and B possibly have poles with u# and u’, for some
values of ¢ near ¢* that satisfies p(t*) = —1. Therefore we consider some standard ¢; > #
close enough to to such that A and B are limited on [0,%], and we apply the variation of
constant formula between 0 and #;, in the form

y(0) = y(tr)exp (L [ A) — E#f_Eb /:B(t) exp (1[0 A)dt . (53)

Notice that, if ¢ €]]0, tl] then A(t) ~ % (p(t)? — 1) 2 ig%ﬁ — (p(t)? + 1) = —2¢(¢).

Furthermore, u# and v’ admit combined expansions and E’ has an e-expansion which is
the e-expansion of every canard value. Therefore A, B and the primitive of A have also
combined expansions. and the e-expansion of ft?) A begins with a given by (5). Notice

also that y(t1) = £ (E# — EI’) by item 2 of proposition 5 in section 2.3. Since we already
know that E# — E” is exponentially small of order a, and since ft? Ag ft?) A ~ a, the first

term of (53), namely y(¢1) exp ( ft ) is exponentially small (of order ftzl(—Zcp)). With
y(0) = 2, formula (53) then yields:

-1

E#_El’:28</0tlB()exp< fo ) ) (1—I—£e*@/s),

which can be rewritten:

E#*—E’ = 2eexp (- )exp( °(A —2p) (/ B(t exp(——ft0 )dt) (1+£e*@/s).

Now Laplace method (proposition 5 in section 2.3) shows that the integral

/0 " B(t)exp (1)t 4) at

has an expansion in powers of /¢ with a non-zero first term, i.e. is of order /¢ since
B(tp) =~ 3. This completes the proof of theorem 1.
3.4 Symbolic and numerical results.

Using the Maple package at http://www.univ-Ir.fr/Labo/MATH/DAC, we studied the
expansion (6) for several symmetric potentials. For instance, the potential

U(t) = (2 cosh(t) — 5/2)?

yields
BH_p— 372 1) L(5 In2 — 3 793, _ 534959 2 _ 2490060889 3 | ()
Y- = 4 <_E( ne= )) ( ~ 524 ~ 500052° — podorsss & T O (€ )) .

!This difficulty does not appear in theory if ones uses the Riccati cylinder, but in practice the cylindrical
coordinates are heavier to use.
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The polynomial potential with rational coefficients U(t) = (1 — ¢*)? yields an e-expansion
with irrational coefficients:

Concerning the potential (2), numerical simulations give the following results.

5923
) €+ (_ 8192

— ZSZSW + 20487'(' ) e+0 (83)) .

1 E# aF aF a¥F — &F

2 | 1.04614053857975 | 0.55129173849959 | 0.48140379823284379 | 6.9887940266753545¢-02

4 | 0.47412601902887 | 0.77628568820127 | 0.78582414285636237 | -9.5384546550459914e-03

6 | 0.31849701709428 | 0.86337190254735 | 0.86489626496798599 | -1.5243624205734108e-03

8 | 0.24157410341774 | 0.90083691890295 | 0.90122221612635955 | -3.8529722340752137e-04

10 | 0.19467902372582 | 0.92197555521048 | 0.92211728941364057 | -1.4173431353603494¢-04

12 | 0.16301207073454 | 0.93563721903319 | 0.93570146846291580 | -6.4249162023521933e-05

14 | 0.14019322986821 | 0.94521099381704 | 0.94524428532344362 | -3.3294627492352902¢-05

16 | 0.12297222653846 | 0.95229836641365 | 0.95231734220812347 | -1.9167873691716686e-05

18 | 0.10951599390792 | 0.95775964944788 | 0.95777035009855127 | -1.5709614252457094e-05

20 | 0.09871245541601 | 0.96211977655517 | 0.96210310789979525 | -1.1131846720080496e-05

22 | 0.08984800332140 | 0.96677395484234 | 0.96562888598378172 | 6.4151161602998830e-04

24 | 0.08244380009277 | 0.98149952135604 | 0.96855405281001050 | 1.5913609725020095¢-03

1 Eb (E# 4+ E)/2 Eb — (E# + E")/2 (3¢/8)In {(B# + E")/2 — E* }
2 | 0.72722933436087 | 0.87324733697904 | -1.4601800261816578¢-01 -3.6075475486339437¢-01
4 | 0.46065652094628 | 0.46216455343306 | -1.5080324867780548¢-03 -6.0908901250051395e-01
6 | 0.31773469668930 | 0.31774227863839 | -7.5819490883421992¢-06 -7.3685876598115652¢-01
8 | 0.24152668022043 | 0.24152671668585 | -3.6465415825803760e-08 -8.0282350955403137e-01
10 | 0.19467600946049 | 0.19467600963480 | -1.7430942800267246e-10 -8.4263209028256691e-01
12 | 0.16301187671876 | 0.16301187671959 | -8.3175133447355165¢-13 -8.6922633986239795¢-01
T4 | 0.14019321725968 | 0.14019321725968 | -4.3853809472693683e-15 -8.8554910440455414e-01
16 | 0.12297222571282 | 0.12297222571282 | 8.8817841970012523¢-16 -8.1228185221868587e-01
18 | 0.10951599385352 | 0.10951599385352 | 9.7144514654701197¢-17 -7.6813191588128382e-01
20 | 0.09871245541241 | 0.09871245541241 | -2.7755575615628914e-17 -7.1480802995244375¢-01
22 | 0.08984800332116 | 0.08984800332116 | -1.2490009027033011e-16 -6.2418779887535314e-01
24 | 0.08244380009275 | 0.08244380009275 | 1.6653345369377348e-16 -5.6767711658701470e-01

1)a# and a¥* = 1 — e —

is the same parameter value obtained by symbolic manipulations with

where o# is given by the relation E# — E’ = 16‘\/( exp (3

6299 62 2691107 63
18432 5308416

three terms in the asymptotic expansion. We can observe that a# — @# has approxima-
4 except for € < 1/20. Moreover, let us note that the results of
the second table are in accordance with our third conjecture: The last column seems to

tively the same order as €

tend to —1 (as we ask an exponential order 2 a, which is twice than for E# _ B’ only the
upper half of the table is relevant).
To determine E’, we initialize E := 2¢ and compare the values of the solutions v and

bl

v_, at t = 1, of the following Cauchy’s problems
(42 _1\2 _ a2
EVy = (t 1) FE ’U+ (54)

’U_|_(O) =0
(t?—1)2 - E —v%

(22 _ 1) -3. (55)

( )
For this purpose, we used an adaptative fourth Runge-Kutta method such that the com-
putations are valid for £ > 1/20.
Tf we denote by ¢(E) = v; (1) —v_(1), the computation of E’ consists in finding the zero
of ¢. This computation was performed with the secant method.
To compute E?, we consider the problems (54) and (55) respectively with the initial con-
ditions v, (—0.95) = ¢(—0.95) and v_(2) = ¢(2). Concerning the computation of E#, the
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initial condition v(0) = oo is replaced by w(0) = 0, where w = 1/v. This change of chart
produces a pole (for w) in the neighborhood of ¢ = 1, thus we return to the first chart at,
for example, ¢ = 1/2, with the initial condition v4(1/2) = 1/w(1/2). We compare finally
the values of v; (1) to v_(1) where v_ is the solution of (55) with the initial condition
v (2) = 0(2).

References

1]

2]

[10]

[11]

[12]

[13]

[14]

E. BeNoit, J.L. CAaLLoT, F. DIENER, M. DIENER, Chasse au canard, Collect.
Math., 31, 1-3 (1981) 37-119.

J.L. CALLOT, Solutions visibles de l’équation de Schrodinger, Mathématiques fini-
taires et analyse non standard, Tome 1, Publi. Math. de 'Univ. Paris VII n° 31 (1985)
105-119.

E. DELABAERE, H. DILLINGER, F. PHAM, Ezact semiclassical expansions for one-
dimensional quantum oscillators, J. Math. Phys. 38 (1997), no. 12, 6126-6184.

A. DELCROIX, Propriétés asymptotiques des champs de vecteurs lents-rapides, Thése
de doctorat de I'Université de Poitiers, N d’ordre : 254 (1989).

F. DIENER, Méthode du plan d’observabilité, Thése de doctorat d’Etat, prépublication
IRMA, CNRS, Strasbourg, France (1981).

A. GAIGNEBET, Equation de Schridinger unidimensionnelle stationnaire. Quantifi-
cation dans le cas d’un double puits de potentiel symétrigue, C. R. Acad. Sci. Paris,
t.315, Série I (1992) 113-118.

C. GERARD, A. GRIGIS, Precise estimates of tunneling and eigenvalues near a po-
tential barrier, J. Differential Equations 72 (1988), no. 1, 149-177.

F. KoubpJeTi, I. P. VAN DER BERG, Neutrices, external numbers, and external cal-
culus In F. Diener and M. Diener, editors, Nonstandard Analysis in Practice, pages

145-170. Springer, 1995.

C. LoBry, T. SARI1, S. TouHAMI, On Tykhonov’s theorem for convergence of solu-

tions of slow and fast systems, Electronic Journal of Differential Equations, Vol. 1998
(1998), No. 19, pp. 1-22.

E. NELSON, Internal Set theory, Bull. Amer. Math. Soc. 83 (1977) 1165-1198.

F.W.J. OLVER, Introduction to Asymptotics and Special Functions, Academic Press,
New York (1974).

R. E. O’MALLEY, JR, Singularly Perturbed Methods for Ordinary Differential Equa-
tions, Appl. Math. Sci. 89, Springer (1991).

A.B. Vasiveva, V.F. Butuzov, Asymptotic expansions of the solutions of singu-
larly perturbed equations, (in russian) Izdat. ”Nauka”, Moscou (1973) 272 p.

W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Interscience
(1965) section 40.

28



[15] J. ZINN-JUSTIN, Quantum field theory and critical phenomena, Oxford Univ. Press
(1989).

[16] J. ZINN-JUSTIN, From instantons to exact results, “Analyse algébrique des perturba-
tions singuliéres I : Méthodes résurgentes”. Travaux en cours, Hermann, 51-68 (1994).

Laboratoire de Mathématiques

Université de La Rochelle

Pole Sciences et Technologie

Avenue Michel Crépeau

17042 La Rochelle cedex 1, FRANCE

e-mail : ebenoit(or aelhamid, or afruchar)@univ-Ir.fr

29



Liste des prépublications

99-1 Monique Jeanblanc et Nicolas Privault. A complete market model with Poisson and
Brownian components. A paraitre dans Proceedings of the Seminar on Stochastic
Analysis, Random Fields and Applications, Ascona, 1999.

99-2 Laurence Cherfils et Alain Miranville. Generalized Cahn-Hilliard equations with a
logarithmic free energy. A paraitre dans Rewvista de la Real Academia de Ciencias.

99-3 Jean-Jacques Prat et Nicolas Privault. Explicit stochastic analysis of Brownian mo-
tion and point measures on Riemannian manifolds. Journal of Functional Analysis

167 (1999) 201-242.

99-4 Changgui Zhang. Sur la fonction g-Gamma de Jackson. A paraitre dans Aequationes
Math.

99-5 Nicolas Privault. A characterization of grand canonical Gibbs measures by duality.
A paraitre dans Potential Analysis.

99-6 Guy Wallet. La variété des équations surstables. A paraitre dans Bulletin de la
Société Mathématique de France.

99-7 Nicolas Privault et Jiang-Lun Wu. Poisson stochastic integration in Hilbert spaces.
Annales Mathématiques Blaise Pascal, 6 (1999) 41-61.

99-8 Augustin Fruchard et Reinhard Schéfke. Sursabilité et résonance.

99-9 Nicolas Privault. Connections and curvature in the Riemannian geometry of con-
figuration spaces. C. R. Acad. Sci. Paris, Série I 330 (2000) 899-904.

99-10 Fabienne Marotte et Changgui Zhang. Multisommabilité des séries entieres solu-
tions formelles d’une équation aux g-différences linéaire analytique. A paratre dans
Annales de UInstitut Fourier, 2000.

99-11 Knut Aase, Bernt @ksendal, Nicolas Privault et Jan Ubge. White noise general-
izations of the Clark-Haussmann-Ocone theorem with application to mathematical
finance. Finance and Stochastics, 4 (2000) 465-496.

00-01 Eric Benoit. Canards en un point pseudo-singulier nceud. A paraitre dans Bulletin
de la Société Mathématique de France.

00-02 Nicolas Privault. Hypothesis testing and Skorokhod stochastic integration. Journal
of Applied Probability, 37 (2000) 560-574.

00-03 Changgui Zhang. La fonction théta de Jacobi et la sommabilité des séries entieres
g-Gevrey, I. C. R. Acad. Sci. Paris, Série I 331 (2000) 31-34.

00-04 Guy Wallet. Déformation topologique par changement d’échelle.

00-05 Nicolas Privault. Quantum stochastic calculus for the uniform measure and Boolean
convolution. A paraitre dans Séminaire de Probabilités XXXV.

00-06 Changgui Zhang. Sur les fonctions ¢-Bessel de Jackson.



00-07 Laure Coutin, David Nualart et Ciprian A. Tudor. Tanaka formula for the fraction-
al Brownian motion. A paraitre dans Stochastic Processes and their Applications.

00-08 Nicolas Privault. On logarithmic Sobolev inequalities for normal martingales. An-
nales de la Faculté des Sciences de Toulouse 9 (2000) 509-518.

01-01 Emanuelle Augeraud-Veron et Laurent Augier. Stabilizing endogenous fluctuations
by fiscal policies; Global analysis on piecewise continuous dynamical systems. A
paraitre dans Studies in Nonlinear Dynamics and Econometrics

01-02 Delphine Boucher. About the polynomial solutions of homogeneous linear differ-
ential equations depending on parameters. A paraitre dans Proceedings of the 1999
International Symposium on Symbolic and Algebraic Computation: ISSAC 99, Sam
Dooley Ed., ACM, New York 1999.

01-03 Nicolas Privault. Quasi-invariance for Lévy processes under anticipating shifts.

01-04 Nicolas Privault. Distribution-valued iterated gradient and chaotic decompositions
of Poisson jump times functionals.

01-05 Christian Houdré et Nicolas Privault. Deviation inequalities: an approach via
covariance representations.

01-06 Abdallah El Hamidi. Remarques sur les sentinelles pour les systmes distribus

02-01 E. Benoit, A. El Hamidi et A. Fruchard. On combined asymptotic expansions in
singular perturbation.

31



