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Nonexistence of solutions to systems of higher-order
semilinear inequalities in cone-like domains

Abdallah El Hamidi & Gennady G. Laptev

Abstract

In this paper we obtain nonexistence results of global solutions to the following
system of higher-order semilinear partial differential inequalities

Titt lugy g (2, t)

* i i . .
{ s — Aas(w, tyui(x, 1)) > 1+ |a P, 1<i<n,
Up4+1 = U1,

in cones and cone-like domains in RV, ¢ > 0. Our results concern as well the nonneg-
ative solutions as the solutions which change sign. Moreover, general formula of the
critical exponent corresponding to the previous system is given. Our proofs are based
on the test function method, developed by E. Mitidieri and S. I. Pohozaev.

1 Introduction

This paper is devoted to nonexistence of global solutions to systems of semilinear higher-
order evolution differential inequalities in unbounded cone-like domains. Nonexistence
results concerning nonnegative solutions of parabolic equations in cones were obtained by
C. Bandle & H. A. Levine [1], H. A. Levine & P. Meier [18]. Recently, new nonexistence
results dealing with solutions with arbitrary sign were established by G. G. Laptev [11,
13, 14] and A. El Hamidi & G. G. Laptev [6] when the considered domains are cones or
product of cones. On the other hand, for cone-like domains, only nonexistence results
of nonnegative solutions to semilinear evolution differential inequalities, were obtained
[1, 6, 11, 13, 14]. Very recently, G. G. Laptev [15] obtained a nonexistence result for the
semilinear parabolic inequality

up = A(Ju|™ ) > |2]|ul?

with 1 <m < g and o > —2, in cone-like domains. It is the first result, to our knowledge,
dealing with solutions of evolution problems which are not necessarily nonnegative in cone-
like domains.

In this paper, we obtain nonexistence results for systems of semilinear higher-order evo-
lution differential inequalities in unbounded cones and cone-like domains. More precisely,
for n > 2, we study the problem

Ot — Alagug) > 0 |74 [up [P, 1< i <,

(P)

Unp+1 = U1,



where z belongs to a cone (or a cone-like domain), t €]0,4+00[, k > 1, ppt1 = P1, YTn+1 =M
and o,41 = 01.
For n = 1, we study the problem

k
0 T~ Alew) > o’ P,
where z belongs to a cone (or a cone-like domain) and ¢ €]0,+oo[. Such systems were
studied, in the whole space, by J. Renclawowicz [28|, M. Guedda & M. Kirane [7], N.
Igbida & M. Kirane [8] and M. Kirane, E. Nabana & S. I. Pohozaev [10].

Our results do not concern only the nonnegative weak solutions but all weak solutions.
Moreover, we obtain general formulas of the critical exponents corresponding to the systems
considered. These formulas are also valid in the scalar case of one inequality (n = 1).

Our approach is based on the test function method developed by E. Mitidieri & S. I.
Pohozaev [19], S. I. Pohozaev & A. Tesei [25], S. I. Pohozaev & L. Véron [27] and G. G.
Laptev [11, 13, 14].

Let Q ¢ S¥~! be a connected submanifold of the unit sphere Y1 in RV with smooth
boundary 0Q C SN~! and having positive N — 2 dimensional measure. By a cone in RY
with cross section ) with vertex at the origin, we mean the set

K={(r,w) eRY; 0 <r < +oo0 and w € O},

where 7 = |z|, z € RV. The boundary of K is

0K ={(r,w); r=0 or we 00}.
For ¢ > 0 fixed, the cone-like domain K. is defined as follows

K. ={z € K; |z| > ¢}

and its boundary is

0K, ={(r,w); r=¢ or we IN}.
The outward normal vector to the boundary 92 (resp. 0K) will be denoted by v, (resp.

v).

The restriction of the laplacian operator A to the unit sphere SY—! will be denoted by

Ay, it is the Laplace-Beltrami operator. It is well-known that the laplacian operator in

RY can be written, in polar coordinates (r,w), as follows

1 a(N_la) 1 7?2 N-10 1
r i el

A Ay

. —A, =L 1
rN=19gr or +7"2 Y o2 r Or r?

Throughout the remainder of this paper, we shall let A denote the first Dirichlet eigenvalue,
and ® the corresponding eigenfunction, for the Laplace-Beltrami operator, namely

—-A,®=X® in Q,
®=0 on 0.
Recall that A > 0 and ®(w) > 0, for any w € . We shall assume & is normalized so that

0<P(w) <1, Ywe.



The space of the C? functions w.r.t. the first variable and C7, j € N*, w.r.t. the second
variable, on K x]0,+oc[, will be denoted by C*J (K x]0, +00).

This article is organized as follows. In Section 2, we introduce notations and establish
estimates which we shall use in the sequel. Section 3 is devoted to nonexistence results to
the inequality (I), where the parameter v = 0. In Section 4, we generalize the results of
the Section 3 for n > 2, the parameters v; = 0, 7 € {1,2,...,n}. Section 5 concerns the
general system (P), with v; <0, 7 € {1,2,...,n}.

2 Preliminary results

Throughout this paper, the letter C' denotes a constant which may vary from line to line
but is independent of the terms which will take part in any limit process. For any real
number p > 1, we define the real p’ such that 1/p+1/p’ = 1.

We define now the weak solutions of the problems that we will consider in the sequel.
Let us consider the higher order inequality

ok
(Ix) e

where p > 1, 0 > —2, with the initial data

— A(au) > |z|7 |ul?, =z € K., tE€]0,+o0,

u(z, 0) = wp(z), in K

W (x 0) = ui(z), i€{1,2,...,k—1}, in K.

Definition 1 Let a be in L™ (K.x]0,+00[). A weak solution u of the system (I) on
K. x]0,4o0[ is continuous function on K. x [0,4+o00[ such that the traces %—]ﬁ@(w,O), Jj €
{1,..,k — 1}, are well defined and locally integrable on K. and estimate

/ / (auAgo—u( 1) %tk + |z|7|ulPe >dwdt—

. ok—1-iy e
— . < 1
/ /8Ksau dedt+z /K T ](lL‘,O) 50 (z,0)dz <0, (1)

holds true, for any nonnegative test function ¢ € C>*(K.x]0,+oo[) with compact support,
such that ¢l 10,400 = 0-

Similarly, we define the weak solutions of the system

Pu — Alagui) > a7 fuipr [P, 2 € K., t €0, 400, 1<i<n,
(S%)

Un41 = U1,

where p; > 1, 0; > =2, for 1 < ¢ < n, ppt1 = P1, Ont1 = 01, and the initial data
@ WV, Ly e (I (K)F 1< i<,

bRt ] kihat']

Definition 2 Leta;, i € {1,2,...,n}, be n bounded measurable functions in L>° (fsx](), +oo[).
A weak solution (uy,...,un) of the system (S}) on K.x]0,+o0[ is a vector of continuous



functions (uy,...,un) on K¢ x [0,+00] such that the traces a;g” (z,0), (4,7) € {1,..,n} x

{1,..,k — 1}, are well defined and locally integrable on K. and the n estimates

[T (asnito st L + ol usalony ) dwa -

j OF—1-dy, ajgo
/ /81(E a; 'U/z d.’ll'dt‘l‘ Z /I;'e OtF—1—j (37;0) o1 (fL',O) dr < 0; (2)

for any i€ {1,2,...,n — 1}, and

3
/ / (an UpAp — un( ) atk + |‘T‘01|u1|p1 ) dz dt —

/ /6 . anun dacdt+z 0 0 <0, @

hold true, for any nonnegative test function @ € C2’k(KEX]0, +oo[) with compact support,
such that ¢|ak, x]0,+00] = 0-

We shall construct the test functions which will be used in our proofs. Let ¢ € C§°(R") be
the standard cut-off function

1 if 0<y<l,
Cly) = and Vy € R, 0<((y) <1
0 if y>2

Let pg > k 4+ 1 and 7 the function defined by

Explicit computation shows that there is a positive constant C'(n) > 0 such that, for any
y > 0 and any p, 1 < p < pg, the estimate

™ )P < C)nP~(y), (4)

holds true.
We introduce the term of the test function which depends on the variable ¢. Let the
parameter p > ¢, the exponent 6 > 0 and the function ¢ + n(t/p’). Remark that

supp ‘n(t/p”)‘ ={teR", 0<t<2"}

and

dk
supp |z L(t/")| = {te R, o <t<2%,

where "supp" denotes the support. It follows that

ew/o")|

o ———dt < c p0tkp—1) 5
/supp‘%?(t//?")‘ nP=1(t/p°) ! ©)



Now, we construct the part of the test function in the space variable z = (r,w). Let
s # 0 a real number, then

A(r*d(w)) =¥ 20(w) (s> + (N —2)s — A) .
Denote by st and s_ the two roots of the equation
24+ (N —2)s — A = 0.

These roots are given by

N -2 N —2\? N-—2 N —2\?
S+:_T+ (T) + X and S_Z_T_\/<T> + A

Consider the function ¢ defined on K. by

(@) =¢rw) = ((5)7-(5)7) 2w

9 3

It is interesting to note that the function ¢ is harmonic in K, and vanishes on the boundary

O0K.. Moreover,

¢

= <
v |8K5 = 07

where v is the outer normal to the full surface 0K,. Indeed, thanks to the Hopf lemma,

a¢ T\ 5+ 7\5-\ 0®(w)
s - — [ = <
v, ((6) (5) ) ov,, =0,
holds true. Moreover, since s; > 0 and s_ < 0, then
0 S_—s
K= ") <0,

Let us consider now the function of r, for r > ¢,

o= (1) - () (5):

Now, we give estimates of 9¢/8r and 0?¢/0r?. First, we have

(OO ) OO ()

Whence, there is a positive constant C, independent of p and r, such that

o P sy (r\s+-1 s_ sry\s——1]F r

Sl<od |2 (2 _2=(L _

or| — {[e (8) 6(6) " P +
1 r/r\s+ =12, ([P
SO -O TG

Consequently, the estimate
o¢|P ) o1 [T rP

< QP+ hyp—l (—) (1+ —). 6
I T P (6)

the following inequality




holds true. Moreover,

- (OO )0
(2@ -s07)()
# (- (5)

Similarly, there is C' > 0, independent on p and r, such that

2 |P P 2p
¢ < CrPs+=2)pp—1 (%) (1 + % + :Tp) . (7)

We introduce now the final test function of the space variable

wota) = ¢t n (1) = (5= (5))n () 2@

then 0? N-108 1
apy(r) = S0 (@) + X200 4 5 A (),
where
T\ 5+ T\ 5- r
o= ((2) "= (2) ) (;) (FAD) = =Adh-
Whence
72 N-10 A P
el =07 [{ 5+ T - o)
< C PP (w)nP (g rP(s+=2) (1 + ;’—Ij + Z,) :
1\ —2 (r/e)*+ Pt P
SOy (x)r*r =7 ((T/g)er _ (r/g)s_> (1 + oP + pr> ’ (8)

where C is a positive constant, independent of p and r. Let us denote N' = supp (A,).
Since n(r/p) =1 for r < p and n(r/p) = 0 for r > 2p, then N C {z € K.; p <r < 2p}.
Moreover, since p > ¢, then the expressions
rP %P (r/e)s+
1+ —+— and
B e N

are bounded on {z € K; p <r < 2p}. We conclude that there is a positive constant C
such that

54

Vo € N |Ag,(z)fP < C ¢2 ! (x) ;219.

Finally, for p sufficiently large, we have the estimate

p 2p s++N 1
/ |,A1(¢p) ('T)| d.’E S 2 / / 1 d9 d’r,
Ny @)zl Py Jo o

pP+tN=o=1)=20 §f 5 L N —og(p—1)>0,
<C

5% In(p) it 5.+ N—o(p—1) =0, (9)
p= 2P if s;+N—-o(p—1)<0.



Consider the final test function of the varaiables z and ¢:

t
eolart) =1 (25 ) vola). (10)
On one hand, the same arguments used in (9) give the estimate
+0oo A t)|P 2p? 2p s++N 1
/ / |1‘p” 2O g / / do dr dt
N (Pp .’E t |;1:|‘7(P 1) Q ,rap 1
P+ tN=o=D)+0-2p if s 4 N —og(p—1) >0,
<C{ p~?PIn(p) if s;+N—-o(p—-1)=0, (11)
pf=2 if st+N—-o(p—1)<0.

On the other hand, if we denote C(e, p) := {z € K.; € < |z| < 2p}, then

/1

ak(pp p

"otk
|!E| p— 1)0

—dxdt <

dk D
/")

cep) 121®7D7 7 Jsupp |20 1/,0)] P (t/p%)
Furthermore,
1/7,,(:1:) B 20, rpy st 7 S— r\ V-1
/C(W) |z|(P—1)o de = /Q(I)(w) db’/E ((g) a (E) )77 p) r-1o dr
2
e+ Je
psrtN=oP=1) if 5. 4 N —a(p—1) >0,
< C1 In(p) if sy+N—-o(p-1)=0, (13)
1 if sy+N—-o(p—1)<0.
Combining the estimates (5), (12) and (13), we obtain
ky, [P
k
/ / 1‘% dz dt <
p |ac| p—1)o
pS+tN=—op—1)=0kp=1) §f s 4 N—g(p—1) >0,
c{ gD m(p) it 5.+ N—olp—1)=0, (14)

p~0tkp=1) if st+N—-o(p—1)<0.
In the following section, we consider the case n = 1.

3 Higher Order Evolution Semilinear Inequalities

In this section, we establish nonexistence results of global solutions to the semilinear prob-
lem (Iy). The weak solutions of (If) are defined in Definition 1.



Theorem 1 Assume that
V(z,t) € 0K, x [0,4+00[, a(z,t) >0, u(z,t)>0

and
k—1,,

atk 1

o+2 1
> N-2(1—-—].

po1 =t ( k)

Then there is no weak nontrivial solution u of the system ().

Vo € K; (z,0) > 0.

Let

Proof. Assume that (I;) admits a nontrivial global weak solution u with

o+ 2 1
> N-2(1—=]).
p—1_8++ ( k)

In definition 1, let us choose the test function ¢(z,t) = ¢,(z,t) defined in (10). Thanks

to the Hopf lemma, we have
/ / % gt < 0.
K. 61/

Moreover, the test function ¢, satisfies the equalities

&7
az'p (z,0) =0, for je€{1,2,....k—1}.
Finally, we have
oF 1y
K. W(m’o)(pp(xao) dz > 0.

Then, the inequality (1) implies that

/ / || [ulP o, dz dt </ / (—aA—l— 1) gt’“) ppdxdt. (15)
Let us introduce the notations
- / | lattupe, ot
0o JK.
A
e |$‘U<Pp
6 Lpp
/ / atk
- (lz[7p

Applying the Hélder inequality to (15), we obtain

and

1(p) < max (|lalloe, 1) 1(p)7 (A(p)?' + B(p)?) (16)



or equivalently
_1 1 1
1(p)' > < max (llalloc, 1) (A(p)7 + B(p) ) .

At this stage, we choose the real parameter # = 2/k and obtain

A(p) <CO(p) and B(p) < CO(p),

where
p5++N—U(P'—1)—2(P'—1/k) if s, +N-— O(p' —1) >0,
O(p) = p—2(p’_1/k) In(p) if s.4+N-—o@p —1)=0,
P_Q(IJ’_I/k) if s;+N—-o(p—1)<0.

If sy + N —o(p' — 1) > 0, then explicit computation gives , for p sufficiently large,
1-1
I'» < Cp*,

— 1 2
oz:p—l s+ +N-2(1—-— _at .
P k p—1

Now, we require that a < 0, which is equivalent to

2 1
ot >8++N_2<1_E)'

where

In this case, I(p) is bounded uniformly w.r.t. the variable p. Moreover, the function
I(p) is increasing in p. Consequently, the monotone convergence theorem implies that the
function

S S—
(2,8) = (ryw,8) — Julz, P2l ((2) 7= (2) ) o)
is in L' (K. x]0,+o0[). Furthermore, note that
supp(Ay,) C {t € RY, 0<t< 2p2/k} x{zx € Ke, p<lz|<2p}

and

ok
supp(aﬁp>c{t€]1§+, PPl <t <20y x {z e K., €< |z|<2p}.

Whence, instead of (16) we have more precisely

N
A

1(p) < max (|[alloo, 1) T(p) (A(p)” + B(p)? ), (17)

where

T(p) = /C 2| |ulP o, dz dt,
P

where

otk

Finally, using the dominated convergence theorem, we obtain

ak
C, = supp(Ayp,) Usupp ( 90,;) ;

lim I(p)=0.

p—+00



This means that v = 0, which contradicts the fact that u is assumed to be nontrivial weak
solution.
Now, if s + N —o(p' — 1) <0, then

lim p 2P "Y/Mn(p) =0 and lim p 2P~k =y,

p—+00 p—+00
Therefore the integral I(p) is bounded uniformly w.r.t. the variable p. The same arguments
used previously complete the proof. O

The previous result is also valid for cones instead of cone-like domains. Indeed, let us
consider the higher order inequality

ok
@) g —Alaw) > [2l” |uP, = €K, t€]o,+odl,

where p > 1, 0 > —2, with the initial data

’U,(.’I,‘,O) = uO(x)a in K,
Bu(z,0) = wui(z), i€{1,2,..k—1}, in K.

Then we have
Theorem 2 Assume that
V(z,t) € 0K x [0,+00[, a(z,t) >0, wu(z,t)>0

and

k:—lu

0
Vz € K W(w,ﬂ) > 0.

2 1
ot >s++N—2<1—E).

Let

Then there is no weak nontrivial solution u of the system (Ij).

Proof. Note that the cone K coincides with K, for € = 0. In this case, the test function
¢, given by (10) is not well defined. We choose the new test function

Golart) = Bylront) =r* oy () n ().

The function
K — [0, 4+00[

(ryw) — 1% d(w),

is also harmonic. Following the different steps of the last proof with ¢, (resp. K) instead
of ¢, (resp. K.), we obtain the result. O



4 Higher Order Systems of Evolution Semilinear Inequalities

We establish here nonexistence results of global solutions to the system (S}). The weak
solutions of (S}) are defined in Definition 2. In this section, the initial conditions a 5o+ (z,0)
will be denoted by uz(])(a:, 0), for (z,7) € {1,..,n}x{0,..,k—1}, and the vector (X7, Xg, ey X))
will denote the solution of the linear system

-1 P1 0 0

X1 o1+ 2
0 -1 P2 XQ O'2+2
g = | (19
0 SR D1 Xn-1 On—1+2
pw 0 ... 0 -1 Xn On +2

We have the following non existence result:

Theorem 3 Assume that

V(z,t) € 0K, x [0,4+00, Vi€ {1,2,...,n}; ui(z,t) >0, ai(z,t) >0

and P

Ve € K., Vi€ {1,2,....,n}; ST “(z,0) > 0.
Let

max{Xi, X9, ..., Xp} > s+ + N -2 (1 — %) .

Then the problem (S}) has no nontrivial global weak solution.

Proof. In order to simplify the proof, we treat only the case n = 3, the general case can
be established in the same manner.

The proof is by contradiction. Assume that (S%) admits a nontrivial global weak solution
(u1,u2,us) with max{X1, Xo, ..., Xp} < sy + N —2(1 —1/k). In definition 2, let us choose
the test function ¢(z,t) = ,(z,t) defined in (10). Thanks to the Hopf lemma, we have

o0 )
/ / aiui%d:cdtgo, for i€ {1,2,3}.
dK, v

Moreover, the test function ¢, satisfies

aj(pp _ .
56 (z,0) =0, for je{1,2,....,k—1}.

Finally, we have
8k lu
K. 8tk 1

Then, the inequalities (2) and (3) imply that

4
fooo fKE 2|2 |uz P2, < fooo fKE u1 (—a1A+ (—1)k 8_k) Pps

(m 0)¢,(z,0)dz > 0.

fooo st |;1:|03|u3‘193(pp < fooo st U (—G/QA + (— ) 6—k) Yo, (19)

N\

o)

k
{ fooo fKE ||t fur [Pre, < fooo fKE u3 (_613A + (_1)]6%) ©p-



For any ¢ € {1,2,3}, we use the notations

and

o0
- / / 2| P, d d,
0 Ke
A
= (|z|7ip) ”’

3k<ﬂp
/ / (1 |aatk i 1d$dt
e \|T|7"

Using the Holder inequality to the system (19), we obtain

(

Ii(p)

w*""

< max (||as|loer 1) T5(p) s (A3<p)1's 1 By(p)?

)
)

max ({lazlloo, 1) IQ(P)i (./42(/0)”1’2 + BQ(p);&) )

_.\|H
_.\|H

IA

max (||a1|]oo, 1) I1(p )pL («41( )"t + Bi(p)”®

IA

Whence, there is a positice constant C, independent on p and r such that

( o 1

Ii— pP1P2P3 S

1

I;_mpzps <

<

1

I;_mpzps <

\

C (A}/pll i Bi/pll)p;p:i (.Aé/p’? i B;/Plz)l’ls (_A;)/p’s n B;/pé) ’
C (A% 1 B (Y% B;/pg)pfpg (/s + B;/pg>£1 ,

¢ (4% B}/p'l)ﬁ (/% + B/ (/% 4 B;/pg)ﬁ_

At this stage, we choose the real parameter # = 2/k and obtain

Ai(p) < COi(p) and Bi(p) <CO;(p), for ie{l,23},

where

Oi(p) =

PP N=ai=)=20—1/k) if s 4 N —oy(p, — 1) > 0,
p=2Ei=1/K) In( ) if 54+ N—oi(p;—1) =0,
=2(F=1/K) if sy 4+ N —oi(p}—1) <0.

In order to estimate the expressions I;(p), 7 € {1,2, 3}, we start with the case

Case 1:

s+ + N —oi(p,—1) >0, forany i€ {1,2,3}.

Explicit computation gives , for p sufficiently large,

1

1—
I, P < Cp®, 1<i<3,




where

( _ 1 1 (01+2)+p1(02+2)+p1pa(03+2)
ar = (1 N :01:02103) (8+ +N -2 (1 o E) - p1p2ap3—1 ) ’
— 1 _ 1Y\ _ p2p3(0142)+(02+2)4p2(o3+2)
| @2 = (1 N plpzps) (8+ tN-2 (1 k) p1p2p3—1 ) ’
_ 1 1 p3(01+2)+p1p3(024+2)+(03+2)
[ @ = ( N :011)2:03) (5Jr +tN-2 (1 N E) B p1p2ap3—1 ) )

Now, we require that, at least, one of o, 7 € {1,2,3}, is less than zero, which is equivalent
to

1
max{Xl,Xg,Xg} >sy+N-2 <1 — E) ,
where the vector (X1, Xo, X3)? is the solution of
-1 P1 0 X1 01 +2
0 -1 P2 X2 = g9 +2 . (21)
D3 0 -1 X3 o3 + 2

In this case, there is ig € {1,2, 3} such that I;,(p) is bounded uniformly w.r.t. the variable
p. Using the systems (19) and (20), we obtain that both I;(p), I2(p) and I3(p) are bounded
uniformly w.r.t. the variable p. Moreover, the functions I;(p), i € {1,2, 3}, are increasing
in p. Consequently, the monotone convergence theorem implies that the functions

(2,1) = (r,0,8) — il P (5) 7 = (5)7) ().

€ €
is in L' (K. x]0,+o0[). Precise that these functions correspnd to
%

lim |u;(z,t)|P |z
o0

p—+ #o(@,1).

Furthermore, note that
supp(Ag,) C {t eRT, 0<t<2*} x {z e K., p<|z|<2p}

and

otk

Whence, instead of (20) we have more precisely

ak
supp( (p”)c{te]R*, PP <t <2p?*} x{z € K., e<|z| <2}

( 1

Lip) < max(laslloos 1) Ta(p) (A3<p>5'3+63<p>

e
~—

1

(A + B ). (22

3 |-

max (|[a1[os, 1) 11 (p)

o

>

N
AN

&

<

N
N

max ([laz]oc, 1) fZ(P)i (.AQ(P);’2 + Bz(p)f’l’z) )

where
Ti(p) = / (2% s, e dt,
Co



where

ak
C, = supp(Agp,) U supp ( 8;7;”) )

Finally, using the dominated convergence theorem, we obtain

lim Ij(p) =0, i€{1,2,3}.

p—+0o0

This means that (ui,u2,u3) = (0,0,0), which contradicts the fact that (ui,ue,us) is
assumed to be nontrivial weak solution.
We end the proof by treating the case

Case 2: There is 49 € {1,2,3}, such that sy + N — g4 (pj, — 1) <O0.

The same arguments used in Case 1 give, for p sufficiently large,

1

1— ~
I, e < Opfi 1<i<3,

where &; < «;, for i € {1,2,3}. Then, if there is i1 € {1,2,3} such that a;, < 0 then
@&;, < 0. This implies that I;, (p) is bounded uniformly w.r.t. the variable p, which leads
to the same conclusion as the Case 1. This achieves the proof. 0

If the problem (S}) is posed on the cone K instead of the cone-like domain K., our
result is also valid and the proof changes very slithly. Indeed, consider

(&) O — Alagus) > [o]7# [ugaPitt, @ € K, €0, 400, 1<i<n,
k
Up41 = UL,

where p; > 1, 0y > =2, for 1 < ¢ < n, pp+1 = p1, Ont1 = 01, and the initial data
@ WV uF Dy e [LL (K))*, 1< <.

The weak solutions of (SZ) are defined similarly as in Definition 1 with K instead of
K.. Then we have the following result:

Theorem 4 Assume that
V(z,t) € 0K x [0,400[, Vi€ {1,2,....,n}; ui(z,t) >0 a;(z,t) >0

and

k—l,u‘.

Ve K,, Vie{1,2,...,n}; %(gg,ﬂ) > 0.

Let

1
maX{Xl,Xg, ,Xn} > St + N -2 (1 - E) .

Then the problem (S'Z) has no nontrivial global weak solution.

Proof. It suffices to use the same arguments of the last proof with ¢, (resp K) instead
of ¢, (resp K.) to obtain the result. O



5 General case

Pui — A(ajug) > 9+ |z|70 uq [P, € K., t€]0,+o0], 1<i<n,

(P%)
Un+1 = U1,
where p; > 1, 0y > =2, for 1 <4 < n, ppt1 = P1, Yat+l = Y1, On+1 = 01, and the initial
data (ul?, 51),...,u§k_1)) € [Li, (KE)]k, 1 <4 < n. We will assume that v; < 0 for
i€{1,2,..,n}.
We start by giving the new estimates corresponding to (11) and (14), (for given p > 1
and v < 0)

A AP 2p0 2p s+N—-1
fN Md dt < E/ (-1 dt/ / rided'r
0 p YO

G o ro-D)

ps++N—U(p—1)+072p770(p71) if sy + N — U(p _ 1) >0,

< C{ pf=2=90=1) In(p) if st+N—-o(p—1)=0,
pf-2p—70(p—1) if s;+N—-o(p—1)<0.
PN DD i g LN o(p— 1) > 0,
< C{ pf 2001 n(p) if sy+N—-o(p—1)=0, (23)
pf—2—0p—1) if sy+N—-0o(p—1)<0.
and
ak(pp p
k
/ / . L ddt
supp | %% | (£7]2]7¢p)
ps+TN=o(p=1)=0(kp—1)—10(p=1) jf s;+N—-o(p—1) >0,
< CQ plke=1)=70(p=1) In(p) if s;+N—-o(p—1)=0,
p~0kp=1)=78(p=1) if s;+N—-o(p—1)<0.
PN OG=D 00D i s N op—1) >0,
< C{ p Wkp—1)=70-1) 1y(p) if s;+N—-o(p—1)=0, (24)
pOtkp—1)—70(p—1) if st+N—-0o(p—1)<0.
Let the vector (Y1, Y5, ..., Y,) be the solution of the linear system
-1 pr 0 ... 0 Y, o1+ 2+ 271 /k
0 -1 py . : Y, o9+ 242y /k
: L U 0 — (25)
0 .. .. Y, 1 On-1 +2+27n—1/k
: - DPn—1
pn 0 ... 0 -1 Yo on +2+ 2y /k

The we have the following non existence result:

Theorem 5 Assume that
V(z,t) € 0K, x [0,400[, Vi€ {1,2,...,n}; wui(z,t) >0, ai(z,t) >0

and

klu

Ve € K., Vi€ {1,2,....n}; yor=y

*(z,0) > 0.



Let

1
max{Y1,Ys,...,Yp} > sy + N —2 (1 — E) .

Then the problem (P) has no nontrivial global weak solution.

Proof. We follow the last proof and replace the expressions I;(p), A;(p) and B;(p) by

o
- / / 2% sl o, da dt,
0 K.

A
/ / | (PP| — dx dt
- t7l|x‘0”b(p p'z

6 cp,,
/ / i - da dt,
€ t7l|x|0'2 pl_

respectively. By setting the parameter 8 = 2/k, we conclude that

and

Ai(p) <COi(p) and Bi(p) < CO4(p),

where

pS+HN=(oit2vi/R)(pi=1) =20 =1/k) if s, 4 N — oi(pi — 1) > 0,
Oi(p) = ¢ p 2Wi=1/R) =20 —1)/k 1n(p) if sy +N—oi(p;—1) =0,
p_Z(p:;_l/k)_Z'Yi(p;_l)/k lf s+ + N — o'(p; — ]_) < 0’

forany i € {1,2,..., N}. Asin the last proof, note that the leading exponent in the previous
estimate is

54+ N = (054 27/k) () — 1) — 209} — 1/k).

In other words, the unique difference with the last proof is that the parameter o; must be
replaced by o; + 2v;/k. Which achieves the proof. O

Remark. If we consider the semilinear problem (I) instead of (Ix) with v < 0, then o
has to be replaced by o + 2v/k in Theorem 1 and Theorem 2.
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