T TE

IEI'-E
i
i:|
=
=

Prépublications du Département de Mathématiques

Université de La Rochelle
Avenue Marillac
17042 La Rochelle Cedex 1
http://www.univ-Ir.fr/labo/Imca

Markovian bridges and reversible
diffusions with jumps.

Nicolas Privault et Jean-Claude Zambrini
Juillet 2002

Classification: 60J25, 81520, 47DO07.
Mots clés: Lévy processes, bridges, time reversal, Euclidean quantum mechanics.

2002/05



Markovian bridges and reversible diffusion processes
with jumps

Nicolas Privault* Jean-Claude Zambrini
Département de Mathématiques Grupo de Fisica Matematica
Université de La Rochelle Universidade de Lisboa
Avenue Michel Crépeau Avenida Prof. Gama Pinto 2
17042 La Rochelle, France 1649-003 Lisboa, Portugal
nprivaul@univ-1r.fr zambrini@cii.fc.ul.pt

Abstract

Markovian bridges driven by Lévy processes are constructed from the data
of an initial and a final distribution, as particular cases of a family of time
reversible diffusions with jumps. The processes obtained in this way are es-
sentially the only (not necessarily continuous) Markovian Bernstein processes.
These processes are also characterized using the theory of stochastic control for
jump processes. Our construction is motivated by Euclidean quantum mechan-
ics in momentum representation, but the resulting class of processes is much
bigger than the one needed for this purpose. A large collection of examples is
included.
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1 Introduction

Euclidean quantum mechanics yields a probabilistic approach to Schrodinger equa-
tions, which relies on the construction of time reversible stochastic processes. A
probabilistic counterpart of a quantum system with symmetric (more precisely, self-

adjoint) Hamiltonian H is provided by considering positive solutions of two heat

*This work has been initiated during a visit of the first author to the GFM (Group of Mathematical
Physics) under a Grant conceded by the FCT in the “Programatico” framework.



equations which are adjoint with respect to the time parameter:

on; 0
—h antt (q) = Hn:(q) and h%(Q) = H"?t(‘]), te [T’ ’U], qc Rd’ (1'1)

where [r,v] is a fixed interval, and by postulating that the density of the law at
time ¢ of the system is given by the product n:(q)n;(¢), instead of the product of
the solution of the Schrodinger equation with its complex conjugate. This approach
allows moreover to construct time reversible diffusion processes which precisely have
the law 7;(q)n; (¢)dq at time ¢, see [29], [7], [2] when the Hamiltonian is a self-adjoint
Schrodinger operator of the form H = —%A + V(q) and V is a scalar potential in
Kato’s class. We refer the reader to [6] for a detailed survey of the relations between
this method, and in particular the Feynman path integral approach to quantum me-
chanics, when the processes have continuous trajectories.

In this paper we generalize this construction in the case where the above Schrodinger
operator is replaced by a pseudo-differential operator. Our motivations are of two
types: the first one is the study of the probabilistic counterpart of quantum mechan-
ics in the momentum representation and its relation with the one of the position
representation, the link between these representations being given by the Fourier
transform which maps position operators to momentum operators, and scalar poten-
tials to a pseudo-differential operators. This illustrates the more general aim of this
program of construction of quantum-like reversible measures. They provide (through
their Hilbert space analytical models) fresh structural relations between stochastic
processes generally regarded as unrelated. Our second motivation is to treat relativis-
tic Hamiltonians along the line of [15], but in a fully time reversible framework.
Lévy bridges have been studied and constructed by several authors, see e.g. [12]
and Section VIIL.3 in [4]. However, an absolute continuity condition with respect
to Lebesgue measure is generally imposed on the law of the process, thus excluding
simple Poisson bridges and many other more complex processes. Our construction
of reversible diffusions with jumps provides, in particular, a general construction of
Markovian bridges with given initial and final distributions ., and m,. For this we
use a result of Beurling [5] which, under the assumption of existence of densities with

respect to a fixed reference measure, asserts the existence of initial and final con-

3



ditions 7, and 7} for (1.1) such that =, = n,n} and m, = n,n}. This allows us to
construct forward and backward Lévy processes with Dirac measures as initial, resp.
final, laws. In this case we extend existing results on the martingale representation
of time-reversed processes, cf. e.g. [19]. We also show how time reversible processes
can be constructed from non-symmetric Lévy processes and generators.

We use the term “bridge” in the wide sense, i.e. a process which is determined from
its initial and final laws (which are not necessarily Dirac measures) will be called a
bridge. Bridges and more generally diffusions with jumps, reversible on [r,v], are

constructed via the forward and backward Markov semi-groups

(1)

p(t, k,u,dl) = h(t, k,u,dl),

( ) Wt(k) ( )
and (0

p(s,dj, t, k) = ——<h'(s,dj, t, k),

(o ) = gy (o 8 )

for s <t <win [r,v], j,k, 1 € R% where p(t,k,u,dl) and p*(s,dj,t, k) are the kernels
associated to exp(—(u — t)H) and exp(—(t — s)H'). In the time homogeneous case
(i.e. when 7, n* depend trivially on time) this construction of Markov semi-groups
in relation to time reversal seems to go back to [14] (see also [10] where it is applied
to conditioned processes), but does not seem to have been the object of systematic
studies when 7, and 7 are given as the solutions of “heat equations” for general H.
This also provides a construction of Bernstein process [3] in the jump case, i.e. we

construct stochastic processes (zt)te[m} that satisfy the relation
P(zzedk | PsVF,) =Pz €dk | 25,24), r<s<t<u<w,

where (Pt)te[m], resp. (]‘_t)te[r,v]a denotes the increasing, resp. decreasing, filtration
generated by (2¢)ie[r,)- When their paths are continuous, as we said such processes
have been constructed in the framework of Euclidean quantum mechanics. We also
show that the general processes constructed in this paper are essentially the only
Markovian Bernstein processes.

We proceed as follows. After recalling some notation on Lévy processes and their

generators in Section 2, the main results of the paper are presented in Section 3. The



construction of Bernstein processes with jumps is given in Section 5. In Section 6,
we compute the generators of Markovian bridges and derive the associated stochastic
differential equations driven by Lévy processes. The uniqueness of Markovian Bern-
stein processes with jumps is discussed in Section 7. A variational characterization is
obtained in Section 8, and the associated almost-sure equations of motion encoding
all the dynamical properties of these processes are stated in Section 9. In particular,
the construction provides time reversible jump diffusions whose law is given in terms
of positive solutions of “heat equations” associated to the Schrodinger operator in the

momentum representation.

2 Notation - Lévy processes and generators

We refer to the survey [17] and to the references therein for the notions recalled in
this section. Let V : R* — C such that V(0) > 0 and exp (—tV (¢)) is continuous in

q and positive definite. The function V admits the Lévy-Khintchine representation

1

| 1 . |
Vie) =+ (a +i(c, hg) + 5 (g, hg) 5 - /Rd(e haw) — 1 + i(hq, y>1{ny|51})V(dy)) :

where a,r € R, B is a positive definite d x d matrix, (¢, q)s = (Bq,q), v is a Lévy
measure on R?\ {0} satisfying [i..(|y[*A1)v(dy) < oo, and f is a fixed strictly positive
parameter which will be, later on, identified with Planck’s constant. In the following
we assume that a = 0, i.e. V(0) = 0. Then the Lévy process is conservative (i.e. it

has an infinite life time). We will write

. 1 _i .
Vi(g) =i{c,q) + 5(% q)rB — /d(e ey _ 1 4 4(q, ) 1y1<13)vn(dy),
R

where v; is A7 times the image measure of v by y — hy. Let & denote the Lévy

process with characteristic exponent V(gq), i.e. such that
E [e—i(&,qq — 6—tV(q)’ qe Rd, teR,
or

E [exp (—%@t,q))] = exp (—% <i<c, q) + %(q, 9)B
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- /Rd (7Y 1 +ifg, y>1{|hy|<1})V(dy)>) :

¢ € R% t € R, ie. the physically meaningful potential is AV (q/%). The process
(&)te[rp) admits the (forward) Lévy-It6 decomposition with respect to the filtration

(Pt)te[r,v]:

t t
=Wt [ [ wuldy.ds) -+ [ [ yptayds)+ e
0 J{Jyl<1} 0 J{lyl=1}
where W, is a Brownian motion with covariance matrix AB, and u(dy,ds) is the
Poisson random measure

pldy,ds) = > dae,(dy, ds)
A& #0

with compensator E[u(dy,ds)] = vi(dy)ds. Let u; denote the law of &, and let
pi(dk) = p_4(—dk) when t < 0. The (forward) generator of (&)t is the following

pseudo-differential operator
—V(V)f (k) (2.1)
= (e VIW) + 5Buaf () [ (F )~ F06) = (0 VF O oy,

R
where Azp = hdivBV. We shall also need the reversed Lévy process (& )icjo,] =
(—&v—t)tefo,v) Whose backward generator is

V(V)f(k) =V(=V)f(k) (2.2)

= (0 VFB) ~ g () = [ (Fh=3) = 1)+ 0 T nonld).

Note that when V(V) is not symmetric (i.e. V is not real-valued), the reversal of
(&)teo,0) is both in space and time, whereas in the symmetric (e.g. Brownian) case a
time reversal suffices.

In view of our applications to mathematical physics we consider a perturbation of the

generator of (&):cprv) by a potential U : R? — R, continuous and bounded below:

Definition 2.1 Let H =U + V(V), i.e. for u € S(R%):
Hf(E) = URIH) ~ e, VIH) — 5Dusf(h)

N /Rd(f(k +y) = f(k) = (4, VF(R)1y<)valdy), k€ R



The operator V (V) is obtained from the potential V' by considering (Euclidean) mo-
mentum V as a variable. The potential U is symmetrically deduced from a differential
operator, e.g. the quadratic potential %hU (%) = %kz/ 2 in momentum representation
correspond to the Laplacian A in position representation. The adjoint H of H with
respect to dk is given by H' = U + V(V) with V(q) = V(—q), i.e.

HU () = URII0) + e, V1) = 5Ansf ()
- [ FE =)= F0) + 0 T G nn(da), k€ R

where v (—dy) denotes the image measure of v under y — —y. If ¢ = 0, the operator

H is symmetric when V is real-valued, that is when v is symmetric with respect to

Y= —y.
Let Ti,, t < u, resp. Tj,t, s < t, denote the positive operator defined through the

Feynman-Kac formula

Touf (6) = B [f(€)e™ V1T | & = k| = B [f(h+&, e T V000] -y oy,
respectively

T (k) = B [f(€)e™ HVE | & = k| = B [f(k+&_)e b V0] s <.

Since —V (V) is the generator of (&)sepo,,; and V (V) = V(—=V) is the generator of the

reversed Lévy process (&)scio,] = (—&t—s)scjo,, We have

0 0
%,I;f,u = _T;f,uHa and %T;,t = T;,tHT7
for T} ,, = exp(—(u—t)H) and Tj’t = exp(—(t — s)HT), i.e. these semi-groups are time

homogeneous since V' and U are independent of time.
We denote by hf(s,dj,t,k) and h(t, k,u,dl), 0 < s <t <wu, j,k,I € R the “integral
kernels” of exp(—(t — s)H') and exp(—(u — t)H), defined by

eXp(_(t - S)Ht)f(k) = R f(])hf(& dj>t’ k),

and
exp(—(u — 1) H) f(k) = y fOR(t, &, u, dl).
Examples



1) Deterministic process.
Here, U does not necessarily vanish. Then B = 0 and v; = 0 but ¢ # 0. So
V(q) = icq and

Hf(k)=—cVf(k), H'f(k)=cVf(k),
with integral kernels
(s, dj, b, k) = Op—o(p_s(dj)e Js VkFelT=0)ar.
h(t, Ky, dl) = Oy equsy (dl)e™ I Ulktelr=thdr,

2) Poisson process (U = 0).
The kinetic term U vanishes, as well as B, and ¢ = 1. Moreover v; = 41, so

V(q) = —(e7™ — 1) and we have
~Hf(k) = f(k+1) = f(k), —H'f(k)=f(k—1)~ f(k).

The associated integral kernels reduce to

h(t, k, u,dl) Z ) Srp(dl),

=0

and

(5k_p(dj).

3) Lévy case (U = 0).

u—t)H (t—s)HT

In this case, e~ and e~ are respectively given by the convolutions

with the law pu; of the Lévy process

[ s, gt ) = s ), s <
R

and
/ nu(dD)RT(t, dk,u, 1) = ny * py_u(dk), ¢ < u.
Rd
If moreover n*(dj) = n:(j)A(dj) and n,(dl) = n,(I)A(dl), are absolutely contin-

uous with respect to A, then

RN = [ G s FAE)
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- /R ()R, 3.t dR) = o % oo (DNR), s <,
and
e"WDHp (K)A(dk) = /R (DAt K, u, d)A(dk)

_ /Rd (ARt Ay, 1) = o % e u(K)A(dR), < u,

hence

6—(t—s)HTn:(k) — ,r];k * lfft—s(k)7 s < t,

and

_(u_t)HUU(k) =T * Ut—U(k)a l <uw,

where the convolution of functions is with respect to A(dk). The formulas for

h(t,k,u,dl) and h'(s,dj,t,k) are given in Relations (2.3) and (2.4) below.

4) General case (U # 0).
We have, by definition

/R ko d) f(1) = e f(R)
- [f(£U)e_ 6= k} =B [f(&H 4 ke Jot Ulk+eryar
= /R E [f (Eurs + K)o Jo Ulkter)ar | ¢ l] )
= | SB[ N gy = 1] ()

u—t
= | f0E [e—fo Ulkte)dr g k] po(k + dl),
R

where pi,_¢(k + dl) denotes the image measure of y, ; under [ — k + [. Conse-

quently we obtain
h(t,k,u,dl) = a(u —t,1 — k) py_s(k + dl), (2.3)

with
alu—t,l—k)=E|e Jo Vktedar ¢ 1l



Similarly we have
/ ht(s,dj,t, k) f(5) = e £ (k)
Rd
= B[fE)e V| 6 = k] = B[f(h — g e Vs
= [ B [ph = e BT ] ()
Rd
= | =B | b 6 = ] e (d))
Rd
= | FGIE [ 8O gy = G k] e (k4 ),
Rd
Hence
hi(s,dj t,k) = af(t — s,k — §)pe_s(k + dj), (2.4)

where
oft—s,k—j)=FE e Jo™" Ulh—tr)ar [ §ut=17— k] .

We end this section with a lemma that will be useful in Section 3.2.

Lemma 2.2 We have, for all k € RY;

k— k
/Rd yuyh(dy) =7 ¢+ hBV log (k) + /Rd y1{|y|§1}vh(d’y)a

Nt(k)
and
pe—(k + ) k /
— Y up(dy) = — —c¢— hBV1 _o(k 1 dy).
/Rdy 1o (k) vi(dy) o_1 ¢ og fir—v (k) + Rdy (lyl<13Va(dy)

Proof. We have for k,q € R%:

—i/ ke ™*y,(k)dk = qu_tv(q) = —tVV(g)e V@
Rd

= —t/ e *,(k)dk <zc+ th—i—z/ y(e Y — 1{|y|§1})yﬁ(dy)>

= —zt/ / ~ay, (k — y)dkvy(dy)
R? JR4
—t(ic+ hBq) / ey (k)dk + ity (k) / L Yliw<yva(dy)

= —zt/ / we(k — y)dkz/h(dy)—zct/ e~ *4y, (k) dk
R¢ R4 R¢
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+Zt/de—zk‘1hBV/,Lt(k)dk+ zt,u,t(k) /d y1{|y‘§1}l/h(dy)
R R
For the second relation we have p;_, (k) = p,—+(—k) and

[V 10g piy—t)(—k) = =V log pry—t(—k) = —=hBV log s (K),

hence
,uft—v(k + y) / N’U—t(_k - y)
— " u(d = — Y’ u(d
/Rdy oy W) = Y Ry, )
k
- e BT logn 0+ [ (@
U—t Rd
k
=~ e hBVlogue, (0 + [ ylgyeldy)
U_t Rd

g

3 Construction of Markovian bridges - main re-
sults

Among the objectives of this paper is the proof of Prop. 3.1 below. Assume that

hi(s,dj,t, k) = hi(s,j,t, k)A(dj) and h(t,k, u,dl) = h(t, k,u,)A(d]) are absolutely

continuous with respect to A,
H and HT are mutually adjoint under X, i.e. hi(s,j,t,k) = h(s, j,t, k),
hi(s,j,t, k) = h(s, j,t, k) is continuous in (j, k) and strictly positive for all 0 < s < t.

Let z;- denotes the left limit of z at ¢ € [r, v]. The following proposition holds under
the assumptions A and B of Section 3.2, before Prop. 3.5.

Proposition 3.1 Let 7.(dk) and m,(dk) be two given probability measures on R*,
which are assumed to be absolutely continuous with a.e. strictly positive densities with
respect to a fized reference measure A. There exists a R%-valued process (2t)te[rw] with
initial distribution m,(dk) and final distribution m,(dk), driven by (&)scpr o, i-€. such

that (z¢)ieprv) Solves in the weak sense the stochastic integro-differential equation

dzy = cdt +dW, + / y(u(dy,dt)—w
d m(zt—)

1{|y|<1}'/n(dy)dt) (3.1)
R

11



Zi- +y) — (2
+/ Y ("t( = +y) —ma )> 1(yi<yvn(dy)dt + BBV logm, (z,-)dt,
R nt(zt—)

and the law of z; at time t is ny(k)n; (k)A(dk), where
W is a Brownian motion with covariance hB,

the canonical point process u(dy, dt) has compensator %Vh(dy)dt,
-

N = 67(1}77:)an; r S t S v,

n = e EH e e <t <y,

and n}, n, are two positive initial and final conditions which are determined from T,

and .

Moreover the process (2;)sc[ry] in question is a Bernstein process, i.e.
P(zy € dk | Ps V F,) = Pz € dk | zs, 24),
and the joint law P(z, € A, z, € B), for A, B two borelians of R?, is of the form
Plo €A e B)= / 02 (A (r, i, v, ) (m)A(di)A(dm).
AxB

Conversely we will also prove a uniqueness result, i.e. if (z)icp is a Markovian
Bernstein process with Bernstein kernel h(s, j, t,dk, u,l) = P(2; € dk | z5 = j, 2, = 1)
such that

h(s,j,t,dk,u,)h(s, j,u,dl) = h(s, j,t,dk)h(t, k,u,dl),

or

h(s,j,t,dk,w,))hi(s, dj,u,l) = hi(s,dj,t, k)hi(t, dk, u,1),

s <t <wu, jk € R’ then there exists positive density functions 5*(i) and n,(m)
such that
P(s € A, 2 € B) = / 0 () h(r, i, v, m)ny (m)A(di)A(dm),
AxB
cf. Th. 7.1. These results will be precisely stated in different forms and under weaker
assumptions in the following section. Proofs will be provided afterwards in several

steps, which consist of more refined statements.
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3.1 Existence of Markovian bridges

In the following result, h(t, k,u, dl) and h'(s, dj, t, k) need not be absolutely continuous

with respect to a fixed reference measure .

Theorem 3.2 Let A be a fived reference measure such that H and H' are adjoint
with respect to A, and let 7}, n, : R¢ — R, be two A-a.e. strictly positive initial and

final conditions such that for some t € [r,v] (and therefore for any sucht),

[ i @miar) =1

where
my (k) = e” (k) = / ()Rt (r, i t, k),
Rd

and

(k) = e’(”’t)an(k) = / ny(m)h(t, k,v,dm), r<t<o.

Rd
Then there exists a R%-valued process (2t)tefrw] whose density at time t with respect
to X is pi(k) = ni(k)m(k), which is forward and backward Markovian, with forward

transition kernel

_ ()

p(t, k,u,dl h(t,k, u,dl), 3.2

() = S k.. ) (32)
and backward transition kernel

p (s, dj,t, k) = —Sh'(s,dj,t, k). 3.3

(5.5, 1,) = T bl s .1 ) (33)

In particular, the initial and final laws of (2t)erw) are 7 (di) = ne(2)nk(4)A(di) and
my(dm) = 1, (M) (m)A(dm).

The above functions n; (k) and 7:(k) satisfy the partial integro-differential equations

_%(k)=HTn;‘(k) and %(k):Hm(k), t € [r,v]. (3.4)

The proof of Th. 3.2 follows from Prop. 5.1 and Prop. 5.2 below. Once Th. 3.2 is
proved, Prop. 3.1 follows from Prop. 3.5 and Th. 3.3 below which states that given
two probability measures 7, (di) = m,.(i)A(di) and 7,(dm) = m,(m)A(dm), absolutely

13



continuous with respect to A, it is possible to determine two positive initial and final
functions 7}, n, : R? — R, from the data of the initial and final laws ., 7, of the

process, such that

*

T (1) = mp(@)me(i),  m(m) = ny(m)n;(m),

where
ne(7) = / Ny (m)h(r,i,v,dm),
Rd
and

i (m) = / e (OO (r, di, v, m),
Rd

provided h(s, k,t,dj) and h'(s, dj,t, k) are absolutely continuous with respect to A:

h(s,k,t,dj) = h(s,k,t,j)\(dj), (3.5)

hi(s, dj, t, k) = BT (s, j, ¢, k)A(dj), (3.6)

with h(s,k,t,5) = hi(s,k,t,7) since H is adjoint of H' with respect to A. More
precisely we have the following result, cf. Th. 1 of [5], Th. 3.2 of [20], and Th. 3.4 of
[29]:

Theorem 3.3 Let m, and m, be two probability measures. Assume that h(s, j, k,t) is
a continuous in (j, k) and strictly positive function. Then there exist two measures
0t (di) and n,(dm) such that
. (di) = 7' (di) / h(r, v, my (dm),
R

and
o (dm) =, (dm) / h(r, i, v, mn’ (di).

RY
We present several families of processes satisfying the above hypothesis, starting with
the simplest examples. Note that in the first example, the mutual adjointness of H
and H' with respect to the (Lebesgue) measure ) is satisfied without requiring the
absolute continuity of h(¢, k,u,dl) and h'(s,dj,t, k) with respect to A. Also we will

present some examples where the initial and final laws can not be arbitrarily chosen,
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when the hypothesis of Th. 3.3 are not fulfilled. This list of examples includes the
classical Brownian bridges. However the aim of this paper is not to focus on the

Brownian case which has already been the object of several studies, cf. [20], [2], [29],
[7].

Examples

1. Deterministic process.
The adjoint relation between H and HT is satisfied in the deterministic case for

A the Lebesgue measure, i.e.
hi(s,dj,t, k) = e e U(HC(T_t))dT(Sk_c(t_s)(dj), r<s<t<uv,
h(t, k,u,dl) = e Jo Ulrer=tdrg, o o(dl), r<t<u<w.
Therefore, for any r < s <t <u < v,

i (k) =t (k — c(t — s))e Js Ulktelr—tar 3.7
t s

m(k) = mu(k + c(u — t))e Ji VlEFeC=0ar, (3.8)

Applying (3.7) and (3.8) successively in ¢ = s and ¢ = u we obtain several
expressions for the density of z; at time ¢ with respect to the Lebesgue measure
Al

m(k)ym(k) = mi(k—c(t — )k — ct —u))eJs VEmelt=rhir
= ny(k—c(t —s))ns(k —c(t — s))
= nm(k—c(t —u))nu(k — c(t —u)),

Note that here h(s,k,t,dl) is not absolutely continuous with respect to the
Lebesgue measure A(dl) and that it is clearly not possible to choose indepen-

dently the initial and final laws.

2. Poisson bridge starting from a € N at time r and ending at b € N at time v.

The standard Poisson bridge provides another example where the initial and final

15



laws cannot be chosen arbitrarily, this time because h(t, k, u, 1) is not everywhere

strictly positive. Take U = 0, a reference measure

“+o0
A=) 6,

n=—oo

c=1, vy =01, and

u—t)k
h(t, k., u, dl) — e‘(u—ﬂﬁl[o,l](k))\(d”,
, gy (t— 8)FT : .
Ri(s,dj,t, k) =e ¢ )ﬁl[o,k](ﬁ)\(d])-

The simple Poisson bridge with z, = a and z, = b is constructed from the

boundary conditions
7]: = C(T,’U, aab)l{a}a Ty = l{b}a

where C'(r,v, a,b) is a normalization constant. Then

k) = /R n R (r, di 1, )

(tr Lt =7k
= C(r,v,a,b)e” " )/1{a}(2)7((k_)
R

’i)! 1[0,k] (Z))‘(dl)

(tr t—r k—a
= C’(r,v,a,b)e (t )ﬁl{kza}

= C(Tv v, a, b)h(’l“, a,t, k) = C(n v,a, b),u't—’/‘(k - a)7

(k) = /R ()L, &, v, dm)

— e—(v—t)/Rl{b}(m)%l{m_kzo})\(dm)
—(”_t)%l[o,b](k)

= h(t,k,v,b) = py_e(b — k),

with the convention 0° = 1. The resulting density at time ¢ with respect to A
is, therefore,

e A Ul
(k—a) b—Fk)

n; (K)ne(k) = 110 (K)C(r, v, a,b)e"™
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(v(_br_)% we obtain

b—a\ (t—r\ " fv—t\""F
n:(k)"t(k):1[a,b](k)<k—a> (v—r) (v—r> TS

which is the expected binomial law on {a, ... , b}, with parameter (t—7r)/(v—r).

Note that here, A(t, k, u, 1) = e~ @10 (k) s not (A® A)(dl, dk)-strictly

positive, and the initial and final laws cannot be chosen arbitrarily, e.g. one

Taking the normalization constant C(r,v,a,b) equal to e’~"

cannot have b < a. Also this setting is not directly relevant to physics in the

momentum representation since U = 0.

. Brownian bridge.
The Brownian bridge starting at ¢ € R and ending at b € R is constructed by
taking U = 0, (k) = = —3k/(t) and

\/271'756
1 1 2 1 1 2
Y= —— = 3(k—a) /(ﬁ(t—r)), k) = o~ 3 (0=k)*/(h(v—t))
"7t( ) 271'(1?—7“) 77t( ) 271'(1)—15)

. Lévy bridges from a € R? to b € R%.
Take U = 0, and assume that p;(dk) has a density with respect to a fixed
reference measure A, i.e. uy(dk) = p(k)A(dk). Then

m (k) = per(k —a),  me(k) = po—s(b— k) = pe—o(k = b).

The resulting density at time ¢ with respect to A is

n; (K)ne(k) = per(k = a)py—s(b — k).

This example includes the Poisson and Brownian bridges seen above. Note that
the absolute continuity of 7;(dk) with respect to A at the origin t = r = 0 is
satisfied for the Poisson bridge but not for the Brownian bridge.

. Forward and backward Brownian motions (U = 0).
Let U =0, =0,¢c=0, B=1withd =1 and X\ the Lebesgue measure.
Taking ng(di) = do(di), n,(m) = 1, we have

L -ir2/)
e Mg,
V2t

17
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hence (2)se[rv] = (Wt)telrw) is @ (forward) Brownian motion.
If n,(dm) = dp(dm) and 7} (i) = 1, we have
1 1,2
Me(dk) = ny % ey (k) = p—o(dk) = ——==e"2" /0N,y (k) =1,
2n(v — t)
0 <7 <t <w,hence (z)ic[ is the backward Brownian motion (W}*) e, with

final condition W = 0.

. Forward and backward Poisson processes (U = 0 and the absolute continuity of

p:(dk) with respect to a fixed reference measure is not required.)

Let U=0,B=0,c=0withd=1,and let A\ =37 4, In the forward

Poisson case we have vy(dy) = d;. If n)(di) = 1503(¢)A(di) and n,(m) = 1, then

n; (dk) = 7 * py—r(dk) = py(dk) and

(t—r)*
k!

in this case (2¢)icjrw) = (Ni)tejo,0] is the (forward) standard Poisson process.

(k) = e ) lgsop, mk)=1, r<t<u,

The backward Poisson process (N;):e[r,] with final condition N; = 0 is con-
structed with vy (dy) = 6_1, 9y (dm) = 1oy (m)A(dm) and () = 1, i.e. n(dk) =
My * pi—y(dk) = pi—y(dk) and

t —k

nt(k) — 67(v7t) (’U — )

SR nk)=1, r<t<uw

. Forward and backward Lévy processes (U = 0).
This example includes the forward and backward Wiener and Poisson processes

as particular cases. Taking 7 (di) = u,(di) and n,(m) = 1, we have
g (dk) = ny « pe—r (dk) = pe(dk), me(k) =1, 1<t <w,

hence (2¢)sepr,] is the (forward) Lévy process (&)ieprop: 2t =& 7 <t <.
If n,(dm) = po(dm) and 7’ (i) = 1, we have

e (dk) = ny * pi—y(dk) = p—p(dk), ni(k)=1, r<t<w,

hence (zt)te[r,v] is a backward Lévy process. This is an example of process with
initial law p,_,(dk) and final condition z, = 0, resp. initial law yu,(dk) and final
law pu, (dk).

18



8. Processes with densities with respect to the Lebesgue measure.
Here, U does not necessarily vanish. From (2.3) and (2.4), the absolute con-
tinuity conditions (3.5) and (3.6) are satisfied if the law of &, ¢ > 0, has a
density with respect to the Lebesgue measure, e.g. in the case of stable pro-
cesses (namely such that V(q) = ¢|q|* for some a € (0,2] and ¢ > 0), and for
Lévy processes with Brownian component (B # 0). Moreover H is adjoint of

H' with respect to A when ) is the Lebesgue measure.

9. General case (U # 0).
The condition U # 0 is necessary in the context of Euclidean quantum mechan-
ics. If X is a given measure (not necessarily the Lebesgue measure), we may

work under the absolute continuity hypothesis

h(t,k,u,dl) = h(t, k,u, DA(dD),  N(dk) — a.e., (3.9)

Ri(s,dj,t, k) = hi(s,4,t, k)A(dj), A(dk) — a.e. (3.10)

which imply that H and H' are also adjoint with respect to X if h(s,j,t, k) =
h.l-(t7 k7 87 ]):

h(s,j;t, dk)A(dj) = h(s,j;t, k)A(dk)A(dj)
= hi(s, j,t, )MdR)A(dj) = h' (s, dj, t, k)A(dk).
In view of (2.3) and (2.4), the conditions (3.9) and (3.10) are satisfied in partic-
ular if p; s(j + dk) has a density with respect to A(dk), A(dj)-a.e. This relation

will hold e.g. if A is absolutely continuous under the translation 7 — j + &,

A(dj)-a.e., and p;_ is absolutely continuous with respect to A:

fi-s(dk) = p—s (k) A(dK).

This hypothesis is satisfied, in particular, for the Poisson bridge, cf. Example 2

above, with ,Uftfs(k) = 6_(t_8)(t_k—f)kl{k20} and \ = Z/Iziciooo 5]:-

19



3.2 Stochastic differential equations and generators

In this section we present the description of Markovian bridges of Th. 3.2 in terms
of forward and backward stochastic integro-differential equations driven by (&)sc(rq-

Let for f € S(R%) and g : R —]0, oo[:
Lof(k) = (e, VIR + 5 Aunf (H)

+/Rd(f(k+y) — f(k) =y, VF(B) Lgyi<1y)

g(k+y) —g(k)
* /R 9(F)

g(k +y)
g(k)

(y, Vf(E)) Ly <tyvn(dy) + (V1og g(k), Vf(k))ns,

vr(dy)

and

L3 () = e, VI () ~ 5B (K)

_ /Rd(f(k: —y) — f(k) + (v, Vf(k))l{mgl})%yh(dy)
* /Rd ne _gy()k)_ JUIRY (E))1yi<iyva(dy) — (V1og g(k), V f (k))nz.

The following result is a consequence of Prop. 6.2, which will be proved in Section 6.

Proposition 3.4 The process (zt)te[m,] constructed in Th. 3.2 has the forward in-

finitesimal generator, for f € S(RY):

Lof()) = (e V) + 5 Dusf(R)

# [+ = 10— (09O e ™
[ D) 9 1) eyala) + (7 Yog (), V1 W)
and the backward infinitesimal generator
L3 F(8) = (e, VI (K) — 3 Ans f ()
~ [ (=0 = 10 + 0T ) " o)
s [ R I )1 canla) = (7 Toga (), V1)
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The knowledge of the generators of (z;):c[r,.] provides the forward and backward rep-
resentations of (zt)te[m} as weak solutions of stochastic integro-differential equations.

We assume that (cf. p. 434 of [18]):
A) the functions
(8, k) = [ra(L A y[?) iy, (dy),

() = Jy ey v (),

(t, k) = Vlognmy(k),
resp.
(8, k) = Jra(1 A [y[2) 0y, (dy),

; (k
(t:K) = fyy <y ST ),
(tak) = VIOgnt (k)a

are bounded on compacts of R, x R,

The next proposition is a representation result that follows from Prop. 3.4 and Th. 13.58,
Th. 14.80 of [18], p. 438 and p. 481, using the results on martingale problems for
discontinuous processes of [21], [22], [26].

Proposition 3.5 The process (2t)ie[rv] s solution, in the weak sense and with respect

to the forward filtration (Pi)icpr, of

Z- +
dzy = cdt+dW, + / y (u(dy, dt)—u1{|y|§}uh(dy)dt>
R4 (2~
zi- +y) — (2
+/ ?Jm( e +9) — mlz )1{|y|g1}l/h(dy)dt+hBVlOg??t(Zr)dt,
R4 e (2-)

under a probability P for which W, is a (forward) Brownian motion with covariance

kB, and pu(dy, ds) is the canonical point process with compensator % w(dy)dt. In
t

terms of backward differentials we have as well, with respect to the decreasing filtration

(ft)te[r,v]’

. n; (ze+ —y)
d, = cdt+dW «(dy,dt) — ——==1 dy)dt
2t cat + t +/Rdy <H (dy, dt) = {yi<13vs(dy) >
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*( 5 _ — n¥*(z
n / G *y) i t+)1{|y\51}un(dy)dt—hBVlogﬂ: (2+)dt,
Rd m; (2¢+)

where W} denotes a backward Brownian motion with covariance hB, and p.(dy, dt)

15 the backward Poisson random measure with compensator ”%fgz— _)y ) vp(dy)dt.
o

This also provides the (Pt)te[T,U]—decomposition

2 = c(t —r)+ M,
778 25— +y) t
— 1yy<1y | va(dy)ds + h [ BV logn,(z,-)ds,
Rd 773 Rg— .

where (Mt)te[o,v] is a ('Pt)te[r,v]—martingale, and the (F;)scqr,.-decomposition

2 = zy—c(v—1t)+ M/

/ / <775 iai y) 1{|y<1}> vn(dy)ds — h/ BYV log 1 (z5+)ds,
Ré 773 Zs+ t

where (M )icpo,0) is a (backward) (F;)sefr»-martingale.

Examples and particular cases of Prop. 3.5.

1. Deterministic process.

In this case (2¢)scpr) satisfy the ordinary differential equation
dzy = d& = cdt,
both in forward and backward cases, hence
w=z+ct—r)=z+clv—1t), r<t<o,

with random initial condition z, and final condition z,. The influence of U lies

in the initial and final laws, not in the dynamics.

2. Poisson bridge starting at @ € N at time r and ending at b € N at time v.
If U =0, the forward (i.e. (P¢)sepr,u)-) stochastic equation (3.1) satisfied by the

Poisson bridge is written
dz = dN}, 2z, =a,
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where (N{)tcpr) is @ point process starting from 0 at time r, with compensator

b—a— N
= a = dt.

_ 1)
< t> nt(zt—) v—1

This means (see e.g. Th. 7.4. p. 93 of [16] and references therein) that (z; )]
can be constructed by a time change on a standard Poisson process (N ())cr., .
i.e. the sequence of jump times (T}')1<p<m i Of (2¢)tcir] = (@ + N{')tepry] can be

obtained by induction from the jump times (7%)g>1 of (N(t))icr,, as

Th—a—(i—1
Tk:Z/ o= (=D Y<k<b-a
The backward equation satisfied by (z:)c[r,] is
d.zy = d,NJ", 2z, =0b,

where (N} )iepro) = (— N/

v—t)te[r,v} is a point process starting from 0 at time v,

with backward compensator

_ iz — 1)dt _ _Nt”: +(b—a)

d. (N} dt.
SEATEn =
. Brownian bridge.

We have (k) = \/%ﬂe_%’&/ (") hence the forward and backward stochastic

differential equations satisfied by (2;)epr,0) are

—b
i tdt, Zr = a,

dZt = th -

and

doz = dW; + ”’f; —

dt, z,=0.

. Lévy bridges.

Take U = 0, and assume that p;(dk) = ps(k)A(dk) has a density with respect to
a fixed reference measure A. The forward stochastic integro-differential equation
satisfied by (2:)se[r is

Pi—v(2- +y —b)
pe—v(2e- — b)

dzy = cdt—i—th-l-/
R

Y (u(dy,dt) - 1{y|<1}'/n(dy)dt>
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(o Yy —b) — (2 =
+/ M (2= +y —b) — p—o(2- —b)
R4 fr—v(2= — b)
—hBV log py—y (2~ — b)dt,

Ly <iyvn(dy)dt

i.e. using the Lemma 2.2:

dZt = th +/

Rd

pio(ze- +y—b) > z- —b
dy, dt) — v (dy)dt | — dt.
y (u( y, dt) - n(dy) p—

The backward stochastic differential equation satisfied by the same process

(Zt)te [ry] is:

Hi—r (Zt+ +y— (J,)
dozy = cdt +d W (dy, dt) — 1 dy)dt
% cdt + d, W +/Rdy (u (dy, dt) PR p— {ly<1}¥a(dy) )
pe (2ot +y —a) — pyr(20+ — a)
1 dy)dt
+ /R Y e G = a) yi<iyvn(dy)

—hBV log iy (2e+ — a)dt,

i.e. by Lemma 2.2:

i+ —Qa

dt.

d*Zt = d*Wt* + /

2 t+y—a
Y (u*(dy,dt) _ tarlEr 4y )Vn(dy)dt> +
R

pi—r(2e+ — a) -

. Forward and backward Brownian motions (U = 0).
The forward Brownian motion (2;)tcjon] = (Wi)tejo,0] satisfies the forward “equa-
tion”

dzy = dWy, 2z =0,

and the backward (F;):e[-equation
doz = d W) + ?dt,

where (W)t is @ backward Brownian motion (starting from 0 at time v).
The backward Brownian motion (2)wcrw = (Wy)ierw satisfies the forward
equation

Zt

dZt = th -

dt,
t

and the backward “equation”
dizy = d W}, 2z,=0.
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6. Forward and backward Poisson processes (U = 0).
In the standard Poisson case, p;(k) = e~ (t — r)¥/k!, and we can compute
directly the backward compensator of the standard forward Poisson process

(2t)teio] = (Ne)eepo,0) a8

H(zpr — 1 —1
du(my = Ml =) _ e = 1) _ 7y,

i (2e+) phe (2e+) 14

The forward compensator of the backward Poisson process (2¢)sefr] = (N} )tepro] =

(=Ny—t)te[r] is similarly given as

d(z) = (2 +1) _ fy—t(—2e- — 1) _ "

Ne(2e-) Po—t(—2) v—1

This structure remains in the forward and backward Lévy cases described next.

7. Forward Lévy processes (U = 0).
Assuming that p(dk) = ui(k)A(dk) is absolutely continuous with respect to
A(dk) we have

dzy = cdt + dW; +/

Ly (u(dy, dt) = Lygy<yn(dy)dt) , - 2z =&,
R

ie. z =&, r <t <wv. Besides the forward generator —V (V) of (&)tcpru) (see
(2.1)) we obtain the backward generator

Ly F(R) = (e, VI (R) — 3 Ans f ()

= = 0) = £+ V£ 1) ()

" /Rd = _u?j()k; B8 ) 7 PR yryon(d) — (VT (). 9 £ ),

or by Lemma 2.2 above:

Lid ) = =5und )= [ (7= ) = 70+ (0, 070 L= ay)

R¢ pie (k)
ok VF(R))

The backward stochastic differential equation satisfied by (§t)te[r,v] is:

dz = cdt—i—d*Wt*—i-/

Y (u*(dy, dt) — ml{ym}'fﬁ(dy)dt)
R

,Ut(zt+)
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Dot — — z
+/ y,ut( o+ — 1Y) — e t+)1{‘y|§1},/h(dy)dt— RBY log i (2+)dt,
RY pue(Ze+)

i.e. from Lemma 2.2:

Zi+

Y (,u*(dy, dt) — wuﬂdy)dt) + Tdt.

deze = d W} +/
' ! Mt(3t+)

R
In other terms we have the backward martingale decomposition

v

z

zt:Mt*—I—/ ;sds, r<t<w,
t

which allows to recover and extend some results in [19].

. Backward Lévy processes.

Taking n,(dm) = po(m)A(dm) = po(dm) and 77(z) = 1, we have ny(k) = n, *
Pi—v(k) = p—v(k) = po—s(—=k), and nf (k) = 1, 7 < ¢t < v, hence (2)icp,v is the
backward Lévy process given by
dyzy = cdt + d Wi + /d y (pe(dy, dt) — Ly <iyva(dy)dt)

R/

which has same law as the reversed Lévy process (£;)scjop] = (—&v—s)scfo]- The

forward generator of (z;)sc[0,0) is

Lo () = (e, VF(R)) + 58 (H)
(k+y)

+ [0+ 9) = 10 = V1) ) =y

o [ e DR 9 )1 enntan) + (7 08 (1), 5 )

or from Lemma 2.2:

Luf() = 58mf®)+ [ (fe+0) = )
_ fi—v(k + y)
(. V) )

The forward stochastic differential equation satisfied by (2)sc[o,v] is, therefore,

(dy) — (k. V().

dzy = cdt + dW, -l-/

Rd

oz +
Y (u(dy, diy - B 7Y t y)1{|y|<1}'/n(dy)dt)
Ht—v (zt—)
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—v =) —v -+
—/d proln) — s 7 y)1{|y|§1}Vh(dy)dt+hBV]Og,utfv(zt—)dta
R

t—o(2e-)

where W, is a forward Brownian motion with covariance hB, and p(dy,dt)
ll't—’v(zt* +y)

is the forward Poisson random measure with compensator G ie. by
BN
Lemma 2.2:
dz, :thJr/ y (u(dy, dt) — Myh(dy)dt> -2 (3.11)
R¢ Mo (2t-) =1

and we have the forward martingale decomposition

¢
P
zt:Mt—/ * ds, r<t<w,
. U—S

to compare to [19] (note that here we have z, = 0). The forward compensator

of (zt)tefo,] is again
Zi—
d = — dt.
() v—1

4 Girsanov theorem

The next proposition shows that the law of the process (2):c[. of Prop. 3.1 is abso-

lutely continuous with respect to the law of the Lévy process (&)sc[r-

Proposition 4.1 Assume that ¢ = 0, v({|y| > 1}) = 0 and either B =0 or vy =0,
i.e. we are in the Brownian case or in the jump case. Under the hypothesis of Th. 3.2,
the law @ of (2t)eprw) @5 absolutely continuous with respect to P, with density given by

@h) _ &) v
dP"" n.(z) ’

r<t<w,

i.e. under Q, (2, + &)icpro) has the law of (2)ier) under P. Similarly we have

dQ M (2) _ pru(ena
- frd 27 )aT < t <
dP‘ﬂ ng(zv)e t I

i.e. (2o — &o—t)telrw) has the law of (2¢)tcpry) under P.
Proof. Let
L= () e~ UGy [y g,

Y Y
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Assume that under P, p(dy, dt) is the random measure with compensator vy(dy)dt in

the Poisson case, with

dz = /d y (u(dy. dt) — Lgy<ayvn(dy)dt) ,
R

or that (2¢)scpr is a standard Brownian motion in the Brownian case, with dW, =
dzy — RBV log n:(z- )dt, i.e.

dzy = dW, + hBV log m;(2- )dt.

Let us compute

niee) [ MO (g, I e

dn.(z) () ()

0
+ne(2e- )(V1ogme (2 ), AW, ) np + Lo, me(2e)dt + %(zt)dt

— Uz )z )dt +m(z-) /| . iCa ;t?(/zt__)nt(zt_)(u(dy,dt) — vn(dy)dt)

+ne (2 )(V1ogmy(2-), th>hB +(V1ogm(z- ), V(2 ),

where we used equation 6.1 and the forward infinitesimal generator

Lon(k) = —Hm(k) +U(k)n(k) + (Viegn(k), Viu(k))np
o [ (k) ) e+ G

Hence (L;)c[r,0) satisfies the (forward) stochastic integro-differential equation

_ _ M (ze- +y) — me(%-) _
iL, = L 4 BT et )~ vty

+Lt— ) <V log nt(zt—)a th + V log nt(zt—)dt>ﬁ3a te [Ta ,U]‘
Under P we have

1
L,-

d(Ly,2,) = / e +Y) = mE)  odt 4 BBV log m(zs ),
ly|<1 m(2e-)

and from the Girsanov theorem,

t 1 t
zt—/ L_d(Ls,zs) = Wt—Wr+h/ BV log ns(z,-)ds
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tq
T

+f [ vt ds) = tayis) - [ 2
= Wt [ [ (1t ) = 2E 0 s

for t € [r,v], is & (P¢)tejry-martingale under the probability @ defined by

aQ
P

d(Ls, z)

|'Pt:Lta TStSUa

hence under @, W, is a Brownian motion (in the Brownian case) and u(dy, ds) has

ns(2,— +y)
Ns (Zs— )

law of (2¢)tefr,) under P.

the compensator vp(dy) (in the pure jump case), i.e. (2 + &—)scpr0) has the
The proof in the backward case is similar and relies on the following calculations.

Using the definition of the backward infinitesimal generator,

ConiB) = HR) + U R (6) + (7 og (), V()
# [ (YEEED) ) nayan+ G
_onf

=~ (k) + UR)ni (k) + Vlogm (k), Vi (k) )ns

GPED o\ anan s O
w [ (L i ) e+ S o),

we have

) = (e n; (zer — y) — 0 (2e+) i —y)
dni(z) = mila) /| e (u*(dy, ) - e = h(dy)dt>

*

0
1 (20 ) (V 10} (200 ), AW Y + Ly (s)dt = ()t

= Ul et +ri(a) [ Grr =) =G (4 (ay, db) - vn(dy)dt)

lyl<1 nE (2t+)
+0; (24 )(V 1og n; (244 ), AW, ) s + (V log n; (ze+ ), V1og 0y (2+) ) -

Hence

ar; = ppe [ HEEZDEIE G Gy - iy
ly|<1 i (2e+)

+Lix - (Viogn; (z+), AWy + Vlogny (z+)dt)ns, t € [r,v].
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Under P we have

1 * o ok
iz = [ O DG iy hBY tog (a0),
Ls+ ly|<1 U (Zt+)

hence

v v v 1
W + h/ BV log n; (zs+)ds —|—/ / y(p«(dy, ds) — vp(dy)ds) — / N d. (L%, zg)
t t J{lyl<1} t st

=wi [ f y(uxdy,ds)—wuﬁ(dy)ds),
t J{yl<ty 0 (2s+)

for t € [r,v], is a backward martingale under the probability @) defined by

dQ

d_P|'7:t:L:7 TStSU.

We also use the (backward, i.e. (F3)scpr0]-) representations

dizy = /R L (1(dy, dt) = 1gy <iyvn(dy)dt)
in the Poisson case, and
d.zy = AW — hBV logn; (z+)dt
in the Brownian case. O
Examples for Prop. 4.1.

1. Deterministic process. In this case we have Q = P. More precisely, n;(z;) =

(), nf(2e) = M (20), v <t < w, and in fact (2)scpro) = (2r)tepro)-

2. Poisson bridge from a € N to b € N, a <b.

In this case the law of (2;)sc[r) is absolutely continuous with respect to P, with

@| o) ot (v —t)"* (b—a)!
dP

B - lag(ze), r<t<w,
" () (v=r)b=2 (b— 2z)! I v

hence
dQ — VT (b — a’)' 1
dP (v—r)b-ea {zo=b}>
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with z, = a, i.e. under @, the standard Poisson process (a + &, )tcjr,v) has the
law of the Poisson bridge (z)sc[r,.;- We also have

@| _mi(z) _ o () (t—r)* (b—a)
ap e My (Zv) 2! (’U — T)(bfa

v

)1[a,b](zt)’ A S t S v,

hence
d b—a)!
dQ _ oy =) o,
dP (v —17)-a)

with z, = b, i.e. under @, (b — &—¢)tcfrv) has the law of the Poisson bridge.

. Brownian bridge.

The law of the Brownian bridge starting from a € R at time r and ending at
b € R is not absolutely continuous with respect to the Wiener measure, since
r(di) = 8,(di) and p,(dm) = 6 (dm).

. Lévy bridges starting at a € R? and ending at b € R%.
Take U = 0, and assume that pu:(dk) = p:(k)A(dk) has a density with respect

to A. We have
dQ _ fo—t(b — 2t)

d—P'Pt_M(b_Z); TStSUa

and
dQ, (2 —a)

AP ol A A )
dP‘ft Po—r(2y — @)

. Forward and backward Brownian motion (U = 0).

We have either () = P or () is not absolutely continuous with respect to P.

. Forward and backward Poisson processes (U = 0).

In the standard Poisson case, backward Lévy processes give examples of jump
processes with z, = 0 and initial Poisson distribution p, (k)A(dk), k¥ < 0, on —N.
We have i, (k) = e (v —t)7%/(—k)!, t < v, and

1Q ) (=) (2)
dP'" " ey (z) (=z)! (v—r)==’
hence
dQ _ ev—r ( Z"‘)'
P (v—r)-zr =0



It follows from Prop. 4.1, under @ the process (z, + &—_r)cjry) has the law of
(2t)teprw), Where (&)icjo,+o00[ is the canonical Lévy process. Similarly we have, if

(2t)tefr) is a standard Poisson process under P:

dQ, p(z) (=) 2]
JplF — =€ ;
dpP oy (2) z! (v—r)®
hence
aQ . 2zl

D 7122) >0)
ap =€ (v—r)zv{’o} r>

i.e. under Q, (2, + & )iepo] = (20 — &o—t)te[r,0) has same the law as the standard

(forward) Poisson process (&;)scfr,u)-

. Forward Lévy processes (U = 0 and pu,, p, are absolutely continuous with
respect to A).

Here the probability @) is naturally equal to P, and the process (2)c[r. has
same law as the forward Lévy process (&)iero)- If (&)teirw] = (—&o—t)tefro) 15 a

backward Lévy process under P, the density %\ #, 1s given by

@| _ :U't(zt)
dP Ft — uv(zv)a
and
aQ _ pr (2r)
AP py(2)’

ie. (2y + & )tepro) (20 — Eo—t)tefry) is @ forward Lévy process under Q.

. Backward Lévy processes (U = 0 and pu,, p, are absolutely continuous with
respect to A).
The process (z:)ic[r,.) has the same law as the backward Lévy process (&)icfro] =

(=&—v)terp)- The density %\pt is given by

@| — :ut—’U(Zt)
dP Pt /J,T_v<Z7-)’
and
@ — MO(Zv)
arP Mrfv(zr) .

From Prop. 4.1, under @ the process (z, +&;r)ic[r,»] has the law of the canonical

Lévy process (& )tefr,v)-
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5 Reversible diffusion processes with jumps

In this section we prove Th. 3.2 and some extensions. This provides a construction
of Markovian “bridges” with given initial and final laws since from Th. 3.3, n; and
7, can be chosen so that the products n:n, and 7,7, equal any positive initial and
final distribution densities fixed in advance. Define the forward and backward Markov

semi-groups for s < r < ¢t < w and j, k,l € R%:

(1)
p(t, k,u,dl) = h(t,k,u,dl), 5.1
() = Mt ) (5-1)
and
p(s,dj, t, k) = —-<h'(s,dj, t, k). 5.2
(5.5, K) = TS (5. it ) (52)

The adjointness relation between H and H:
h(s, g, t, dk)A(dj) = B (s, dj. t, k)M(dk)
shows that the following reversibility condition holds

15 (d)ns(7)p(s, J, ¢, dk) = ni(dj)h(s, j,t, dk)m (k) (5.3)
= n;(])hf(sadj’t’k)nt(dk)
= p*(sadjvt’k)n:(dk)nt(k)

Let us stress that this property generalizes the one understood, since Kolmogorov,
as defining the reversibility of a probability measure (cf., for example, [9]). More

generally we have

g, (dk1)ne, (k1)p(te, ki, ta, dka) - - p(tn—1, kn—1, tn, dky,)
=, (dky)h(ty, Ky, ta, dks) - - - h(tn—y, Ky, to, dKn ), (Kn)-
= np (k)hi(tr, dky, ta, ko) - - WY (tao1, dkn_1, L, k), ().
= p*(t1, ki, ta, dk2) - p* (b1, dkp—1, tn, k)i, (k) (dKy),

hence the forward Markov process with transition p(s, 7, t, dk) and initial law 1} (dj)n,(7)
has the same law 0} (dk)n; (k) as the backward Markov process with transition p* (¢, dk, u, )
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and final law 7% (dl)n, (1), s <t < u.
This argument is made precise in the next two propositions, without assuming that

0t (dk), resp. n,(dk), has a density with respect to A(dk).

Proposition 5.1 Let n’(di) and n, : R® — R, be initial and final conditions such
that for some t € [r,v],

/Rd n; (dk)ne(k) = 1,
where
k) = [ @Gt ). )= [ n(mh ko, dm) = 0 (),
(5.4)

r <t <w, and let us define

plt, k,u, dl) = Z:‘((]gh(t,k,u,dl), (5.5)

Then
i) p(t,k,u,dl) is a forward Markov transition kernel,

i) the inhomogeneous Markov process (2t)ie[rw) With forward transition kernel p(t, k, u, dl)

and initial distribution ns(j)nk(dj) satisfies
P(zi€dk | PsVF,) =Pz €dk | 25,24), T<s<t<u<u, (5.6)
i.e. it is a Bernstein (or reciprocal, or “local Markov”) process,
iii) the law at time t of z: is py(dk) = m(k)n; (dk), t € [r,v].
If moreover H and H' are adjoint with respect to some fized reference measure \:
h(s,j,t, dk)A(dj) = hi(s,dj,t, k)A(dk), (5.7)
and X (dj) = ni(5)A(dj) is absolutely continuous with respect to A\, then

i) for all t < u, nf(dk) is absolutely continuous with respect to \, with density

(k) = / nE )R (s, dj,t, k) = e k), r<s <t
Rd
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v) (2t)tefr) 15 also a backward Markov process with transition kernel

n; (J)
n; (k)

vi) the law of z at time t is ny(k)nf (k) A(dk).

p*(s,dj, t, k) = hi(s,dj, t,k), r<s<t, (5.8)

Proof. The fact (i) that p(s, j,t,dk) is a Markov transition kernel follows from the
definition of n;(k) itself:

/ p(t k,u, dl)p(u, L, v,dm) = "”(m)/ h(t, k, u, dl)h(u, 1, v, dm)

R4 Ut(k) R4

_ Ml h(t,k,v,dm) = p(t,k,v,dm)
nt(k) b ) b b b b .

The existence of the inhomogenous Markov process (zt)te[m,] follows from e.g. Th. 4.1.1

Pt
~—

of [11] applied on the (complete separable) space R%. More precisely, [11] yields the
existence of the space-time homogeneous Markov process (%, z)sc[r») With transition
semigroup

p((t, k), s, (du, dl)) = p(t, k,u, dl)ds, s(du).

Let us show that (5.6) holds for this forward Markov process. We have, for r < ¢; <
to <---<t, <w,

P(Ztl S dkl,... , 2, € dkn)

= 0y, (dky)ne, (k1)p(te, kryta, dks) - - p(tn—1, kn—1, tn, dky)
= 0 (dky)h(ty, k1, ta, dks) - - - h(tn_1, kn_1, tn, dky)my, (Kn).

In particular, using (5.5),
P(z, € dj, 2, € dl) = n;(dj)ns(5)p(s, J, u, dl) = n;(dj)h(s, J, u, dl)nu(l),

and
P(zs € dj, z € dk, 2z, € dl) =n;(dj)h(s, j,t, dk)h(t, k,u, dl)n, ().

Hence P(z; € dk | z; = j, 2z, = 1) satisfies n}(dj)-a.e.:
P(z € dk | zs = j, zy = l)h(s, j,u,dl) = h(s, j,t,dk)h(t, k,u,dl).
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This gives, with s < 50 < -~ < 5, < t < u; < --+ < Uy, and introducing the
Bernstein kernel A(sy, jn, t, A,u1,l1) = P(2 € A | 25, = jn, 2u, = l1) of Sect. 3,

P(zs, € djry-- 25, Edny, 2t € A, 2y, €dly, ... 2, €dl,)
= [ s s i) (s sty 1)
h?t, kyuy,dly) - - h(um—1, b1, Uy Al N, (L)
= h(8n, Jn, t, A, ur, L) g, (dji)h(s1, g1, 82, dja) =+ - P(Sn—1, Jn—1, Sn, &jn) (S, Jin, w1, dly)
h(uy,ly, ug,dls) -« - h(tm—1, b1, Um, Al ), (b))
= h(Sn, Jn,t, A ur, l1)P(zs; € dj1,y ..., 25, € Ajp, 24, €dly, ... 2y, € dly),

hence
Pz € dk | Ps, V Fuy) = h(sn, 25, t,dk,u, 2y,) = P2z € dk | 25, 2uy)-
Finally, under the condition (5.7) we have
wa) = [ (st

= [ st @) = [ w A . dit RN

The process (z):c[r,.] being constructed from the forward kernel (3.2), we show that

its backward kernel is given by (3.3) when (5.7) holds; we have

P(ZS € A, 2ty € dkl,. c 2, € dkn)
- / nE (6Bt (5. djs 1, Kt) << B (b1, dl 1, s i), ()
A

= / p*(sa d]a t17 kl) T p* (tn—b dkn—la tna kn)"ﬁn (dkn)ntn (kn)
A
* 8, A7 t17 kl)p* (th dkl; t27 k2) te p* (tn—b dkn—l; tn; kn; )n:n (dkn)ntn (kn)

P
p*(s, A t1, k1) Pz, € dky, ..., 2z, € dky,),
hence (2)se[r,] is also backward Markovian with transition kernel p*(s, dj, t1,k1). O

Relation (5.4) can be written as

_ On; (dk)

) — Htpary and )= Huh),  te bl

ot
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The following similar proposition shows that Markovian bridges can also be con-
structed from backward Markov processes. Prop. 5.1 and Prop. 5.2 complete the

proof of Th. 3.2.

Proposition 5.2 Let 0 : R® — R, and n,(dm) be initial and final conditions such
that for some t € [r,v],

/Rd n; (k)n(dk) = 1,

where

wd) = [ mdmnd (o dtom), i) = [ OR i) = e ),
(5.9)

r<t<w, and

pi(s,dj,t, k) = ——<h'(s,dj,t, k). 5.10
(5.0, 1.) = e o, .1, ) (510)

Then
i) p*(s,dj, t, k) is a backward Markov transition kernel,

i) the inhomogeneous backward Markov process (2;)c[s,u] with transition kernel p*(s, dj, t, k)

and final distribution n,(dl)n; (1) satisfies
Pz € dk | Ps V Fy) = Pz € dk | 25, 24), (5.11)
i.e. it 1s a Bernstein process.
iii) the law at time t of z is pi(k) = m(k)n; (dk).
If moreover H and H' are adjoint with respect to a fized reference measure, i.e.
h(t, k,u,d)X(dk) = hi(t, dk,u,1)X(d]), (5.12)
and n,(dl) = n,(1)A(dl) is absolutely continuous with respect to A, then

iv) ny(dk) is absolutely continuous with respect to X, with density

(k) = / (DRt ko, dl) = e@=DHn (B, t<u<ov,
Rd
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v) (2t)tefr) 15 a forward Markov process with transition kernel

1 (1)
p(t, k,u,dl) = h(t,k,u,dl),
( ) n:(k) ( )

vi) the law at time t of z; is ny(k)nf (k)A(dk).

Proof. (similar to the proof of Prop. 5.1, and stated for completeness.) We have

P(Ztl € dkl, cee 2y, € dkn)
= p*(tr,dky,ta, k) - - D" (tn-t1, dkn—1, tn, Kn)nf (Kn)t,, (dKy)
= 7’):1 (k‘l)ht(tl, dkl, tz, kg) e hT (tn—la dkn_l, tn, k‘n)’lhn (dkn)

In particular,
Pz, € dj, zy€dl) = p*(s,dj,u, D) (Dnu(dl) = n; (7)Y (s, dj, u, D). (dl),

and
Pz, € dj, 2 € dk, 2, € dk) =} ()R (s, i, t, kAT (¢, dk, w, Dy (dl).

Hence 7, (dl)-a.e.:
P(z € dk | zy = j, 2y = D)hi(s,j,u,dl) = hi(s,dj,t, k)Ri(t, dk, u,1).
This gives:

P(zs, €dj1, .- 125, €Edjn, 20 €A, 2y, €dly, ... 2y, €dly)

= / s (j1)h! (s1, dj, 52, 52) -+ B(Sp, djn, T, K)
h?t, dk,uy,dly) (1, ALy 1, Uy L) D, (Al
= h(sn,Jn,t, A, ug, l1)n}, (j1)h' (51, dj1, $2,42) + - - W (Sn—1, djn—1, Sns Jin)
RY (8, djn, w1, 1) R (u, dly, s, o) - - hY (1, A1, Uy ) D,y ()
= Al (sp, gn t, A ur, 1) Pl2s, € djs, ... s 25, € djny 2uy € dly,. .. 20, € dly),

hence (5.11) holds. Finally under (5.12) we have
n(dk) = &) = [ @ e k)
Rd
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_ / (OB 2, b, u, D)
_ / I (B)(t, ., w, dDA(R),

It remains to shows that if (2)c[ry) is constructed from the backward kernel (3.3),

then its forward kernel is given by (3.2): using again (5.12) we have

Pz, € dky, ...z, € dkp, 2z, € C)
= / ni (k)R (tr, dk1, o, ko) -+ - B (tyo1, dkn—1, tn, Kn ) (dl)
C

= / 0y, (k) (dk1)p(ty, ki, ta, dks) - - p(ta_1, kno1, tn, dkn)p(tn, kn,u, C)
c

= 77:1 (kl)ntl (dkl)p(tla kla lo, dk?) o 'p(tn—l; kn—h ln, dkn’ )p(tna kn7 U, C)

= Pz, €dky,... 2z, € dky)p(tn, kn,u,C),

hence (2¢)sefr,» is Markovian with forward transition kernel p(t,, k,,t, C). O

Relation (5.9) can be written as

_Onf
ot

(k) = Hiyp(k) and 2P

= Hn(dk) telrv.

6 Generators

In this section we study the generators of Bernstein diffusions with jumps, solutions of
forward and backward stochastic integro-differential equations, under the assumptions

of Th. 3.2.

Definition 6.1 For f € S(R?) we define the forward generator (cf. Prop. 3.2) by
1
Lof()) = (e V) + 5D f(K)

_|_/Rd(f(k-{—y) — F(k) =, VE(k)Lgy<y)

ne(k +y) — (k)
" /R (k)

and its backward counterpart by

n:(k +y)
m(k)

(, V() 1gy<iyvn(dy) + (Viogme(k), V£ (k))np,

va(dy)

e f(8) = (& VIR) ~ 3B ()
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= [ =9 = 56+ ) ) " o)

N /Rd n; (k _77?2’5 )y, 9 £ )1 () — (9 ogai (), ¥ £ (B

Note that £;. is not the adjoint of £,,, which will be denoted, when needed, by (£,,)*.
t

The proof of Prop. 3.4 follows from the next proposition.

Proposition 6.2 The kernels p(t, k,u,dl) and p*(s,dj, t, k) of Props. 5.1, 5.2, satisfy
the partial integro-differential equations

Op

5 b dl) = (L3,)[p(t, K, u, di) (6.1)
(Kolmogorov forward or Fokker-Planck equation), and
op*

E(sadja t k) = (E;k];);p(s,d], t k)

The notation (Enu)zrp(t, k,u,dl), resp. (E;';;);r-p(s,dj, t,k), means that L£,,, resp. L.,
acts on the variable [, resp. k, i.e. Prop. 6.2 states that

0

9 [ p (e, kyu,di) = / Lo (b, dl),
8u R R¢

resp.
0 N ow . p :
o [ fOw itk = [ L rGps it k)
S Rd Rd

In order to prove Prop. 6.2 we will need the following.

Lemma 6.3 For f,g € S(R?), the carré du champ operators [24] associated to —H

and —H' are given respectively by

L(f,9)(k) = U(k)f(k)g(k)+(Vf(k), Vg(k)>n3+/ (f (k+y)—f (k) (g(k+y)—g(k))va(dy),

and
T(f, 9)(k) = U(k)f(kg(k)+<Vf(’f),Vg(k’)>n3+/Rd(f(k—y)—f(k))(g(k—y)—g(k))Vn(dy)-

Proof. An elementary computation shows that

—H(fg)=—fHg—gHf+TI(f,9),
and
~H'(fg)=~fHg—gHf +T'(f,9),
which is the definition of I'(f, g) and T'(f, g). O
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Let the operators D, and D; be defined informally by
1 /0
Dif=—\|(=——-H
tf = e ( ot ) (me.f)

Df—l(;+Hﬁ(f»

By an adaptation of the method of [1] one shows that D; and D are densely defined
operators in L2(R?, n;(k)n;(k)A(dk)). They will be called afterwards, the forward and

and

backward derivatives, respectively.
The following Lemma provides a decomposition of D, and D; which will be useful in

the proof of Prop. 6.2.

Lemma 6.4 We have

0 .0
Dt—a_i_ﬁﬂt and Dt a'i‘,c

Proof. We have

D) = (55— H) 5+

T (5~ #) ) + Tl )8

ot k)
= Dy vorne ) (V 10g (k) V £:(k)) 1
= a—J;t(k;) + (e, Vfi(k)) + §Aﬁ3ft(k)
i /Rd(ft(k' +y) = filk) — (¥, VL(R) L1y va(dy)
+(Viogn, Vfi(k))ns + /R = +ni/()k; M8 (e +-9) — k()

= k)4 (e VAR + L A i)
(P (k) = )~ VD) )
+(Vlogn, V fi(k))np

= %(k’) + (¢, Vfi(k)) + (V1ogne, V fi(k))np + %Atht(k)
# [l 9) = 109 = 0V A i) Mo o)
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" /Rd i (y, V [ (k) Ly <1y va(dy)

(k)
= (g5 £n) £il00
Concerning D} we have
Dul) = g+ #) 0+ 40 (S ) k) = s ror £
of,

= 8t( )+ V(V) fi(k) = (Viogn; (k),V fi(k))ns

Ny (k - y) - 77;(]“3)
_ /R d 0 (fi(k —y) — fo(k))va(dy)
0f

1

- a(k) + (¢, Vfi(k)) — EAtht(k)
- /Rd(ft(k = y) = fulk) +{y, Vfi(k)) L y<1y)vn(dy)

n; (k —y) —n; (k)

—(Vlognt, ¥ (k)5 — / ok — ) — fo(k))n(dy)

R4 n; (k)
= 0y 1 (e V) — L Ausfulh)
n; (k —y)
_/Rd< () k= )_ft““))+<yant(k)>1{|y|51}> va(dy)

—(Vlogn;, Vfi(k))ns

= Yy 1 e VAR — S Bns )
- /Rd mf:( )y) (Felk =) = fek) + (v, VA(ED L i<y vl dy)
+/Rd i (¥ ni:()k) i (k )<'!J V (k) 1y <yva(dy) — (Vdogn;, V fi(k))rB
— (%-ﬁ-ﬁ:);) £i(k).
O

Now we can easily prove Prop. 6.2.

Proof We have for any f € S(R?), using the decompositions of Lemma 6.4:

n(k) g [Tk, d)
— oo L FOM O k) = 5 [0 ) )]
ou o u '
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= /Rdf(l)aa%(l)h(t,k,u,dl)— RdHf(l)nu(l)h(t,k,u,dl)
_ /R )DLf R, K, u, dl)

= [ m@L O k)

= wl®) [ Lo fOplt. k.

= k) [ Ol kv d).

Concerning the dual statement we have

38/ fG)p*(s,dj,t, k)
9
= o /Rd ONOICARIESS [e—(tfs)H’r(fn:)(k)
R

= [ 1O GEO s it k) +
= [ i ®DI G st )
_ /Rd m (k) Lo f (), i t, k)
= (k) / C5 F(G)p(s. dj. . k)
= ik /f v )ip(s, dj, . k),

H(fn})(5)h(s, dj, t, k)

and so Prop. 6.2 holds. 0

Proof of Prop. 3.4. Prop. 6.2 shows that f(z,) — [; Ly, f(z4)du, v > 0, is a martingale
for f € S(RY):

Blf(a)~ fla) | 7] = [ 5hBlf(a) | Fldu= [ Bl 1) | Fldu

and f(z,) — [y Ly, f(zu)du, v > 0, is a local martingale for f € C*(R%). A similar

argument holds in the backward case. U
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7 Uniqueness of reversible diffusions

In this section we show that the processes constructed in this paper are essentially
the only Markovian reversible diffusions with jumps. As defined in Prop. 5.1 let us

recall that, more generally, a Bernstein process is a process (2):e[r] such that
P(zz€dk | PsVF,) =Pz €dk | zs, z), r<s<t<u<w, (7.1)

where (P;)icfr0, respectively (F;)sefrv], denotes the increasing, resp. decreasing, filtra-
tion generated by (2¢)c[r,]- Jamison’s construction of Bernstein processes [20] is still
valid in the jump case. It requires the data of a probability measure v on R% x R% and
a Bernstein transition kernel, i.e. a kernel h(s, j,t, dk,u,l) satisfying the counterpart
of the Chapman-Kolmogorov equation:

/h(s,j,t,B,u,l)h(s,j,u,dl,v,m) :/ h(s, j,t,dk,v,m)h(t,k,u, A,v,m), (7.2)
A

B

for A,B € B(R"). From [20] we know that there exists a unique (generally not

Markovian) Bernstein process (z¢)¢c[r») such that

a) P(z, € B, z, € C)=v(B x (),

b) P(z; € B | z5,24) = h(8, 25,8, Bu,2,), r<s<t<u<ow.
The finite dimensional distribution of (z;):cf,.) is given by

P(z, € A, 2, € By,..., 2, € By, 2, € () (7.3)
= / V(dja dl)/ h(raiatludkl)vam) o / h(tnflaknflutnadknavam)a
AxC B

cf. [20].

Our construction of Markovian Bernstein processes did not follow, however, the above
procedure. Instead, we started from the data of U and V, defining H = U + V (V)
(Def. 2.1), i.e. from the Lévy process (& )tcjr,], and from boundary conditions 7} and
7y, allowing to construct a Markov transition kernels with the solutions of the adjoint
heat equations (3.4). Then we showed that the corresponding Markov process is a

Bernstein process.
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Conversely, under the additional hypothesis (7.4), (7.5) on the kernel h(s, j,t, dk, u,1)
of a Bernstein process, it is possible to show that if a Bernstein process is Markovian
then it is the process described in Th. 3.2. This extends Th. 3.1 of [20] and Th. 3.3
of [29] to the case where h(t, dk,u, dl) and h'(s,dj,t, k) are not absolutely continuous

with respect to a reference measure.

Theorem 7.1 Assume that H and H' are adjoint with respect to a measure X. Then

the conditions

h(s,j,t,dk,u,l)h(s, j,u,dl) = h(s, j,t,dk)h(t, k,u,dl), Xdj)— a.e., (7.4)
and

h(s,j,t,dk,u, )hi(s,dj,u,1) = hi(s,dj, t, k) (t,dk,u,1), A(dl) — a.e., (7.5)
are equivalent. Moreover,

a) Let (zt)tcpr) denote the Bernstein process with kernel h(s, j,t,dk,u,l) satisfying
(7.4). Then the following are equivalent:

(i) the process (2¢)icprw) is forward Markovian and p(t,k,u,dl) is absolutely

continuous with respect to h(t,k,u,dl),
(ii) there exists a measure nf(di) and a positive density function n,(m) such
that

Pl A 2 e B) = [ np(aihiryi,v.dmym(m).
AxB

b) Assume that h(s,j,t,dk,u,l) satisfies (7.5). Then the following are equivalent:

(iii) there exists a positive density function nf(i) and a probability measure

Ny (dm) such that

Pz € A, 2 € B) = / w2 ()R (r, di v, m)m(dm).

AxXB

(iv) the process (z)ic[rv] s backward Markovian and p*(s, dj,t,k) is absolutely
continuous with respect to hi(s, dj,t, k).
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If nx(di) = nr(i)A(di) and n,(dl) = n,(1)A(dl) are absolutely continuous with

respect to a fized measure A, then (i), (i1), (447) and (iv) are equivalent.
Proof. Under the adjointness hypothesis of H and H' with respect to A:
hi(s,dj,t, k)A(dk) = h(u, j,t, dk)A(dj),
conditions (7.4) and (7.5) are equivalent since, then,
h(s,j,t, dk,w,)h(s, j,u, d)X(dj) = h(s, j, t, dk,u, ) (s, dj, u, )A(dl),

and

h(s, j,t, dk)h(t, k,u, d))X(dj) = h' (s, dj, t, K)M(dI) R (¢, dk, u,1).
The implications (i) = (i), (iv) = (¢i¢) follows from Propositions 7.4, 7.5, and (i) =
(11), (15i) = (4v) will follow from Propositions 7.2, 7.3. Under the self-adjointness
assumption (5.7), the equivalence (i) < (iii) follows from Propositions 5.1 and 5.2.
which show that the Bernstein process (z:):c[r,.) is forward Markovian if and only if it

is backward Markovian. O

Proposition 7.2 Assume that the Bernstein kernel h(s, j,t,dk,u,l) satisfies
h(s,j,t,dk,u,l)h(s, j,u,dl) = h(s,j,t,dk)h(t, k,u,dl), ps(dj)— a-e., (7.6)

where p, is the law of z,, v < s < v. If the Bernstein process (2)icr,0 15 forward
Markovian and p(t,k,v,dm) is absolutely continuous with respect to h(t,k,v,dm),

then there exists a measure nf(di) and a positive density function n,(m) such that
P(z, € di, z, € dm) = n;(di)h(r,i,v,dm)n,(m), = <wv. (7.7)
Moreover we have

p(rit, dk) = Zi((’;)h(r,i,t,dk), (7.8)

with

nt(k):/Rdn,,(m)h(t,k,v,dm), n:(dk)=Ldn:(di)h(r,i,t,dk), r<t<o.
(7.9)
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Proof. Let us assume that (2;)c[r»] is Markovian, with transition kernel p(t, k, u, dl).

Let p,(di) denote an initial law of (2;)sc[r). We have

P(z, € A, zz€ B, z,€ () :/Apr(di)/Bp(r,i,t, dk’)/cp(t,k,v,dm). (7.10)
On the other hand,
P(z, € A, zz€ B, z,€C) :/Apr(di)/Cp(r,z',v,dm)/Bh(r,i,t,dk,v,m). (7.11)
Equating (7.10) and (7.11), we obtain
p(r,i,t,dk)p(t, k,v,dm) = p(r,i,v,dm)h(r,i,t,dk,v,m),

which, using (7.6), gives

p(r,i,t,dk) p(t, k,v,dm)
h(r,i,t,dk) h(t, k,v,dm)’

p(r,i,v,dm) = h(r,i,v,dm) (7.12)

and

v(AxC) =

T~

pr(di) /Cp(r, i,v,dm)

A p(ry i, t, dk) ) p(t, k,v,dm)
= e (di) ——""—=h(r,i,v,dm)————~.
/Axcp ( Z)h(,r’z?t? dk) (T by m) h(t7kav)dm)

Let us fix (¢, ko) € Ry x R?, and define

p(t(); kO; v, dm)
h(to, k(), v, dm)’

1w (m) = c(to, ko) (7.13)

and

1 .
p(?“,z,to,dko)p (dl), (7_14)

X d — ,
nr( Z) C(t(), ]{,'0) h(’l",i,to,dk‘o)

where c(ty, ko) is a normalization constant equal to 7, (ko) after integrating in dm the
relation

My (m)h(to, ko, v,dm) = c(to, ko)p(to, ko, v, dm).

From (7.10), (7.12), (7.13) and (7.14) we have
P(z, € di, z, € dm) = p,(di)p(r,i,v,dm) = n;(di)h(r,i,v, dm)n,(m),
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i.e. (7.7) holds. Finally, from (7.3) and (7.6) we have
Pz, € di,z € dk) = / nr (di)h(r,i,v,dm)n,(m)h(r,i,t,dk,v, m)
Rd

- J/’ e (di)h(r, i, t, dR)R(t, k. v, dm)n, (m)
Rd
= 77: (dz)h(r, ia ta dk)nt(k)a

and P(z, € di) = n:(di)n- (i), which proves (7.8). O
In the backward Markovian case we have the following result.

Proposition 7.3 Assume that the Bernstein kernel h(s, j,t,dk,u,l) satisfies
h(s,j,t,dk,u,1)hT (s, dj, u,l) = hi(s,dj, t, k)h'(t,dk,u,l), pu(dl) —ae., (7.15)

where p, is the law of z,, < u < v. If the Bernstein process (z)icfr) 15 backward
Markovian and p*(r, di, t, k) is absolutely continuous with respect to hi(r,di, t, k), then

there ezists a positive density function nf(i) and a measure n,(dm) such that
P(z € di, z, € dm) = 1.())h! (r, di, v, m)n:(dm).
Moreover we have
p*(t,dk,v,m) = whf(t,dk,v,m), (7.16)

5 (m)
with

k) = [ nldm)hd (e dkov.m), i) = [ @ dit k), T <o,
R4 R4
Proof. (similar to the proof of Prop. 7.2, and stated for completeness.) Let us assume

that (2¢)s[ro] has the backward Markov transition kernel p*(t, dk, u,l). Let p, denote

the final law of (2¢)sc[r0) at time v. We have

P(z, € A, z € B, szC)Z/
A

p*(r,di,t, k) /

B

p* (¢, dk, v, m) / po(dm).  (7.17)
c
On the other hand,

P(z, € A, z € B, zUEC)z/
A

h(r,i,t, dk,v,m)/

Cp*(r,di,v,m)/pv(dm) (7.18)

B
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Equating (7.17) and (7.18), we obtain
p*(r,di, t, k)p*(t,dk,v,m) = p*(r,di,v,m)h(r,i,t,dk,v,m),

which from (7.15) gives

p*(r,di, t, k) p*(t,dk,v, m)

* . — pt )
D (’I”, di, v, m) =h (’I“, di, v, m) hT(’I“, di, t, k) hT(t’ dk, v, Tn)7

and

V(AxC) =

;\

prdzvm/pv
c

_ (r,di,t, k), _ p*(t, dk, v, m)
- /Axc Wit k) o e ) P L)

which leads to

p* (7", d'l, th kO)

i) = o R it o)

(7.19)

and
1 p*(to, dko, v, m)

C(th kO) h]L(tO) dk()a v, m)
where c(to, ko) is equal to 7} (ko). This shows (7.16). Moreover we have

to(dm) = puldm),
P(z, € di, z, € dm) = /Rd po(dm)p* (r, di, v, m) = 0} (i)hi (r, di, v, m)n; (dm),
Finally we have
P(z € dk,z, € dm) = /Rd 0t ()R (r, di, v, m)n,(dm)h(r,i,t,dk, v, m)
= /d i (1R (r, di, ¢, k)R (¢, dk, v, m)n,(dm)
= n?(k)h*(t, dk,v, m)n,(dm),

and P(z, € dm) = n}(m)n,(dm). O
The following is a converse to Prop. 7.2.

Proposition 7.4 Assume that there exists a measure 1} (di) and a positive density

function n,(m) such that

V(AX B)=P(z. € A, z,€ B)= /A an(di)h(r,i,v,dm)m(m). (7.20)
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Then the Bernstein process (zi)icrw) with kernel h(s,j,t,dk, u,l) satisfying the con-
ditions (7.4) or (7.5) is forward Markovian and p(t, k,u,dl) is absolutely continuous
with respect to h(t, k,u,dl), and given by (7.8).

Proof. From (7.3), (7.4) and (7.20) we have

Pz, € dky, ..., 2, € dky, 2z, € dl)
= / n:(di)h(r,i,tl,dkl)---h(tn,kn,u,dl)/ n(m)h(u,l,v,dm)
Rd Rd

Jra (m)h(u,l, v, dm)
Jra o (m)h(tn, kn,v,dm)’

= P(u, €dky,... 2z, € dk)h(tn, kn,u, dl)

hence
fRd My (m)h(u,l,v,dm)

Jra Mo (m)h(tn, kn, v, dm)

p(tn)knauadl) = h(tn,k‘n,u,dl)

Of course, it is also true that

Proposition 7.5 Assume that there exists a positive density function nt(i) and a
measure 1,(dm) such that
Pley € A, 2 € B) = / n ()t (., di, v, m)n, (dm). (7.21)
AxB
Then the Bernstein process (i) with kernel h(s,j,t, dk,u,l) satisfying (7.4) or
(7.5) is backward Markovian and p*(s,dj, t, k) is absolutely continuous with respect to
hi(s,dj,t, k), and given by (7.16).

Proof. From (7.3), (7.5) and (7.21) we have

P(ZS € d], 2ty € dk‘l, cee Rty € dkn)
= / n:(l)hT(Ta diasaj)ht(sadja tlakl) oo 'ht(tnladknlatnakn)/ nv(dm)hf(tnadknavam)
R4

Rd
Jga e (A (r, di s, 5)
X

= hi(s.di-t1.k
(5ot ) 3 5 T, i, o)

P(Ztl € dk]_,... s Rty € dkn),

hence
_ Jgam @RI (r, di, s, )

= : . hi(s,dj, t1, k1).
Jra ne(0)RF(r, di, ty, ky) (s, dj, tr, k)

p*(sadja tla kl)
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8 Variational characterization

In this section we use the approach to stochastic control for jump processes of [13],
[25], to obtain a variational characterization of the Markovian Bernstein processes
(or reversible diffusions) with jumps considered before. We consider the stochastic

control problem infy J(¢, k; f) with action functional

Itk f) = B [ / " L(z(s), f)ds — logm(=(v))] , (8.1)

where E; ) denotes the conditional expectation given {z; = k}, and the Lagrangian
L(k, f) is defined informally as

L(k, f) = Lylog f(k) + == Hf(K), feSRY), f>0,

1
f(k)
where L is defined at the beginning of Sect. 3.2. We have explicitly
fk) = flk+y)  flk+y), flk+y)
1
. ( O CEID
+5 (Vlog f(K), ¥ log £ (k) + UK

0f (k) !
[ o (20 ) wnta) + 5 (70 109, ¥ 105 £ 1)+ U

with g(z) = (1+x)log(1+z)—z and 6 f(k,y) = f(k+y)— f(k). In particular, when
f = T,

L(k, ) ) on(dy)

1
L(k,m) = Ly, logﬂt(k)‘i‘mfl??t(k)

1 0
= L, lognt(k)—kmam(k)

0
= L, logn(k)+ 5% log m (k)
= D;logm(k).

Proposition 8.1 The dynamic programming equation with final boundary condition

%(k) + mfin [[,fAt(k’) + L(k, f)] = O, Av = — ]Og Mo, (82)
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associated to the action functional (8.1) has the solution Ay = —logn;, the minimum
in f being attained on fi(k) = ny(k), i.e. when Ay is solution of the Hamilton-Jacobi-
Bellman equation

0A,

TELE) = U) = S (BanAdlk) = (VAR), VAR) ) (53

— [ (A 1y ), VAR () + e VAR
R

Proof. We first show that for g;(k) > 0:
b
g (k)

and that the minimum is attained for f; = ¢;. Let us define

fik +y) loggt(k+y) LSk +y) log filk+y) _ felk+y) gk +y)

mfin [—Ly,log gi(k) + L(k, fi)] = Hg,(k), (8.4)

F(k’y):_ ft(k) Qt(k) ft(k) ft(k) ft(k) gt(k)
We have
Lk, f,) — L7, logni(k) — ﬁwm
. Ut(k) 1 b
Lrlos iy Ry R — )
= [ Pt + 5 (20 = 0, T - )

> [ Flnatmla),

Now, for all a > 0,

| — )=
rzrgﬁl(za-l—aoga a+e?) =0,

hence taking z = — log(g:(k +y)/g:(k)) and a = fy(k +1)/fu(k), we have F(k,y) > 0,
and

1 1
L(k,f)— Ly logg— —Hg = —Ly, 10% '+ Hft - —Hg, > 0.
gt ft [t gt

the minimum (zero) being attained with f = g4, i.e.:
) 1
mfln [L(k, f) — Ly, log g:] = g—Hgt-
t

Letting A; = —log g;, the dynamic programming equation (8.2) becomes

0A,

8t +e e ,
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with solution A; = —logn;. Finally, from the relation

1 Vg, V
ApA; = _ABgt - <ia ﬁ> ;
gt gt gt B
we have
L _Hgh) = —— (UK — (. Vaulk)) — ~Anpulh)
gt(k) gt = gt(k) gt C, VGt 9 hBYt
- /d(gt(k +y) — g:(k) = (v, Vgt(k)>1{|y|51})vh(d?/)>
R
1
= U(k) + (c, VA(k)) — i(AhBAt — (VA:, VA)rB)
_/ (e AHA®) 1 1y VA dun,
R4 B
which yields (8.3). O

In the backward case we consider the action functional which is, informally, the time

reversed of (8.1):
t
J*(t,k; f*) = B [/ L*(z(s), f*)ds — logn:(z(r))| . (8.5)
with Lagrangian L*(k, f*) defined now as

L*(k, f*) = —L% log f*(k) + HYf*(k), f*eSRY).

1
f*(k)
We have

o [ () L o on 1 *
20 = [ o (TR )l + 5 (1010, 0 () + U

with 0*f*(k,y) = f*(k —y) — f*(k). In particular,
L*(k,n;) = =Dy logm; (k)-

Proposition 8.2 The backward dynamic programming equation with initial boundary

condition

OA;
ot
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associated to (8.5) has solution A} = —logn;, the minimum in f* being attained at
fi(k) =ni(k), and A} is solution of the backward Hamilton-Jacobi-Bellman equation
0A;
ot

(k) = U(k)+%(AhBAI(k)—(VAZ‘(k),VAI(k)%B) (8.7)

) AJG“‘“’”’”W =1 = iy, VAT (k) dvn(y) = (e, VA (k).

Proof. 'The proof, symmetric to the preceding one, is given for completeness. We

first show that for g;(k) > 0:

Htgt(k)v (88)

min | L7, log gu(k) + L (k. £7)] = — p

and the minimum is attained for f;" = g;. Let

. fitk—y), glk+y) fik—y) filk+y) filk—y) gk-y)
F*(k,y)=— 1 1 — .
e (B 1R () R T SR

We have
1
L*(k, f*) + L}, log gi(k) — megt(k)

_ : LIV gy - NI gy VO gy VI >

= [P emtman + 5 (52w - S, S - )

> [ Pk e,

R4

Proceeding as in the forward case we obtain (8.8) and letting A7 = —logg, the

dynamic programming equation (8.2) becomes

ot
with solution A} = —logn;. Finally we have
) = s (VR (e V) = e ()
PRy i (k) S
= [ =) = 0+ 0 DR el
1
= U(kﬁ) — <C, VAt(k)> + i(AﬁBAt — <VA¢, VAt>hB)
_/ (e—At(k_y)+At(k) —1= 1{\y|<1}<y, VA,))dvy,
R4 B

which yields (8.3). O
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In summary, we have shown here that the diffusion processes with jumps constructed
before can also be regarded as minima of some stochastic action functionals associated

with the starting H.

9 Equations of motion

In this section we derive the a.s. equations of motion associated to (z;)tcfr)- This is
useful in the context of physical applications, especially when AU (%) = %(k, k)c, i.e.
when H = U+ V (V) is obtained by the action of a Fourier transform with parameter
h on the Hamiltonian gAC + V(%). In this case, (2¢):c[rv represents the process
associated to the system in the momentum representation, and the expectations of
the equations of motion is the probabilistic counterpart of the Ehrenfest theorem in
quantum mechanics.

The forward and backward derivatives are given in terms of the generators D; =

% + L, and D} = % + L}, as the following limits of conditional expectations:

Dyfi(z) = lim E [f alitend) = JilE) Pt} =B [dt%ft(zt) | Pt} SENCRY
and
D:ft(zt) _ lAltrf(l)E |:ft(zt) - fgtAt(ZtAt) | ft:| - E [Clti_ft(zt) | f.t:| 7 (92)

for At > 0, and d% , dti_ f denote the right hand side and left hand side derivatives
corresponding to the formal limits of (9.1) and (9.2) when Planck’s constant # is equal

to 0 (cf. Sect. 2). In the next proposition we make the assumption:

/ ly|va(dy) < oo, (9.3)
Rd
and let D;z; denote Dikjj—.,.

Proposition 9.1 The process (zt)te[m,] which is the minumum of the action func-
tional of Prop. 8.1 solves the almost sure equations of motion

Vi
Up

Dyz =

(—iqu)(Vk)nt(Zt), Dt ( ) (Zt) = VU(Zt) (94)

ﬂt(zt)
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Proof. We have

—iVV(q) = ¢ —ihBq + /R (e =1 y)v(dy),

hence

(=iVV)(V)ne(k) = cng(k) + ABVn, (k) + /Rd y(ne(k +y) — ne(k) Ly <1y)va(dy).

On the other hand we have

Dtk = Eﬂtk:c+/ Yy

Rd

(m(k +y)
n:(k)

which proves the first relation. Concerning the second relation we have:

0 (V”f><k) L9 Gt = L om(i) 2 iy

- 1{|y|gl}) vn(dy) + hBV logn, (),

ot m Ot n ot
N mzk)véf;zt(k) n?tk)vm(k)%(k)
_ ﬁwmﬁ(k) - %Vm(k)H (k)
= ¥ CEm e+ VOmE) = s W) + V(D)) V)
= VU + - TV - n?ik) (V(V)e(k)) Vi (k)
= VU(k)
b5 (e T80 — S8 [ b 9) ~8) — (0,6 )

Vb (—<c,Vnt<k>>——Atht<k> [ ) = - <y,v7n<k>>>uh<dy>)

= vom - (v (357) ) -2 (555
(v G >)

k
i /Rd (Zi?zl(ijy) o A o
o (58 21,

ne(k)

)
) 77t
+/dm(k+ij() i (k <
= VU(k) = Loy (V"t( )

(k) )

where we used the relation

Ur
)

Vin(k)\ 1 _ Vin(k)
AﬁB( ) ) = ) VA (k) B0 Appn(k)
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1, 1
_2m<v ne(k), Vny(k))np — 2m<vﬂt(k), Vn(k) ® Ve (k) np

N Vnt(k)AhBﬂt(k) —2 <Vnt(k) v (Vnt(k)> >hB '

(k) ni (k) (k) (k)
O
In the backward case, similar calculations yield
* 1 .  / * * V ;
Dt 2t = " (lqu)(Vk)ﬂt (Zt), Dt ( i’t> (Zt) = —VU(Zt)
ni (2) t
The (forward) analog of the Newton equation in momentum representation becomes
Vﬁt) :
DDy | — ) () = —iVV) (V) (2).
D () (o) = S (i9V) ()

The relation with quantum dynamics is clearer when expressed in terms of expecta-

tions. For this purpose it is sufficient to observe that

Corollary 9.2 Under expectations, the a.s. equations of motion are:

SElf). = BID 0] = FIDflz)), € SR,

Proof. 'This follows from the 1t6 formula, written as

dfi(z) = Difi(z)dt +(V fi(z),dW,)
(2 +y)

+/Rd(ft(zt— +y) = fi(z-)) <u(dy, dt) — tm(zt—) 1{|y|§1}’/ﬁ(dy)dt) ;

and

dof(z) = Djfi(ze)dt +(Vf(z),d W)

+ [ (0ter) = 1o =) (i) = EE D),

O

If AV (%) = %q2, (B = 1d) we obtain DDz, = VU(z;) and Dyz; = hV logn,. This is
the purely diffusive case, already known.
A number of the properties of these processes remains to be investigated. Many

of those known to hold for pure diffusions should survive for the much richer class

o7



of diffusions with jumps considered here. In particular, a systematic study of their

symmetries, in term of a Noether Theorem, on the model of [27], [28], is possible and

should provide further informations on the general structure of the construction. A

more geometrical approach to these symmetries [23] can probably be extended as well

to this class. Moreover, the almost sure equations of motion could be more elegantly

deduced from an appropriate generalization of the stochastic calculus of variations
used in [8].
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