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Abstract

Problems of existence and nonexistence of global nontrivial solutions to quasilinear
evolution differential inequalities in a product of cones are investigated. The proofs
of the nonexistence results are based on the test-function method developed, for the
case of the whole space, by Mitidieri, Pohozaev, Tesei, Véron. The existence result is
established using the method of supersolutions.
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1 Introduction

The paper is devoted to condition for the nonexistence of global nontrivial solutions of
semilinear differential inequalities of parabolic type in a product of conical domains. Such
a formulation implies that the domain is unbounded and the corresponding problem has a
nontrivial local solution. Complications occur when one attempts to extend this solution
to a global one, that is, to find a solution of the Cauchy problem that is defined in the
entire domain under consideration. Here, even for semilinear problem of the form

there existes a so-called critical nonlinearity exponent (equal in the present case to the
Fujita ¢* = 1+ 2/N) such that for 1 < ¢ < ¢* no local (in t) solution can be extended
to a global one (by an ‘extension’ we mean here, of course, one keeping the solution in
some local function space). Results of this sort can be formulated also as theorems on the
nonexistence of global solutions. Surprising here is the fact that we make no assumptions
about the growth of the global solution at infinity. For a more detailed setting of the
problem and a survey of the literature see [22].

In place of the above equation one can consider the following differential inequality
without initial conditions in the local space of functions with continuous second derivatives:

%_Auzuq n ]RNX(OaOO)’
w(z,0) >0 in RV,

A critical exponent also arises here, which is equal to the similar-type exponent for equa-
tions. An interesting feature of inequalities is the fact that it is sometimes possible to



construct explicitly solutions for a supercritical nonlinearity, easily establishing in this way
the definitive character of the results obtained.
In the present paper we consider the differential inequality

*u

5 A (Ju™ tu) > |ul? in K x Ky x (0,+00),

(and its various generalizations) in the case when in place of the entire space RY one
considers a product of cones K; and Ko, m > 1, and k is a positive integer. Then the
critical exponent depends on a certain characteristics of the cones expressible in terms of
the first eigenvalue of the corresponding elliptic problem on the unit sphere. The first
results for this problem (with k£ = 1, only for positive solutions) were obtained in [23]. In
the present paper the initial and boundary data may change sign but have to verify some
integral nonnegativity.

The theory of linear elliptic boundary value problems in a cone goes back to Kondratiev.
The nonexistence of solutions of the corresponding semilinear and nonlinear elliptic and
parabolic problems is mainly studied by means of a reduction to an integral equation,
using results similar to comparison theorems and the maximum principle. For the case
of parabolic equations we point out the papers |2, 16| and the already classical book [29].
The state of the art is reflected in the surveys [14] and [4].

In the present paper we prove nonexistence of solutions using the test-function method
and do not use comparison principles which are characteristic for the theory of second-
order equations. The method enables us to demonstrate virtually immediately, using the
techniques of Mitidieri-Pohozaev [22], the nonexistence of solutions for the critical nonlin-
earity exponent (which previously encountered serious difficulties) and to consider systems
of differential inequalities and other classes of problems for which the maximum principle
does not hold. The central problem is now the choice of a test function and the estimate
of the corresponding integrals involving this function. The nonexistence of solution for the
single cone using this technique has been investigated in [8, 10, 12].

In order to show that our result is sharp in the parabolic case (m = k = 1), we show

that the problem

0
8_’: —Au=u|?! in K;x Ky x(0,00),

admits global nonnegative solutions for q great that the critical exponent. The proof of
this result is based on the method of supersolutions.

2 Notations and preliminary results

Let n > 1 be an integer, N; > 3,4 € {1,2,...,n}, and N = Y " | N;. The polar coordinates
in RYi will be denoted by (r;,w;). Let SYi~! the unit sphere in R and ; a domain of
SNi—1 with sufficiently smooth boundary 09;. We will denote by K; the cone

Ki={zi=(ri,w) € RYi; 7; > 0 and w; € Q;}

and K = K; x K9 X ... x K. The boundary of K; (resp. K) is designed by 0K; (resp.
O0K). The outward normal vector to 9€; (resp. 0K) is denoted by v; (resp. v).



Let A; > 0 be the smallest Dirichlet eigenvalue for the Laplace-Beltrami operator on
Q; and ®; the associated eigenfunction such that 0 < ®; < 1, and the function

n
D (wi,way ey wy) — H@Z(wz)
i=1
Let us introduce also the functions ®® = [15=1, oz @j(wj)-
Throughout this paper, the letter C' denotes a constant which may vary from line to
line but is independent of the terms which will take part in any limit process. For any real
number g > 1, we define the real ¢’ such that 1/g+ 1/¢' = 1. We will use the notations

Q=01 X Qy X ... xQy,

whose elements are denoted by w = (w1, we, ..., wy), and finally dw = dw; dws ... dwy,.
We shall construct the test function which will be used in our proofs. Let ¢ € C°(R™)
be the standard cut-off function

1 if 0<y<il,

((y) = and Yy € R, 0<((y) <1.
0 if y>2

Let po > k 4+ 1 and 7 the function defined by

Explicit computation shows that there is a positive constant C'(n) > 0 such that, for any
y > 0 and any p, 1 < p < po, the estimates

p

N0 < i), 1<i<k, 1)

hold true.
Consider the function t + n(t/p?), where p and 6 are positive parameters. We have

supp [(t/p”)| = {t € RY, 0<t <20}

and

dlc
supp |~ (¢/p")| = {t e R, o’ <t <2},

where "supp" denotes the support. It follows that

k
/ &R (/%) .
supp “;’:—g(t/p")‘ nP=1(t/p°)

‘ p

Now, consider the functions

n n

&i(ri, o) = [[ 5, &(ri,rn) = [ n(ri/p), and € =& x &,

=1 =1



where s; > 0,4 € {1,2,...,n}. Let us set, for any 7 in {1,2,...,n},

n

gi)(rl,...,rn): H r;j and féi)(rl,...,rn): H n(r;/p)-

J=1,5#1 J=1,5#1

We shall give estimates concerning 9¢/8r; and §%¢/9r2. Since

0F _  sim1gG
o = st 06 + il p)6reS),
there is a constant ¢, > 0 such that
o |P p, p(si—1) [ (i) ‘p Pep
5| <tV e g Tl eilorer 6]

Then, there exists C > 0, independent of p and 7}, j € {1,2,...,n}, such that

a§ psl 1) p—1 7‘5)
G| <o e e (Hﬁ .
Similarly,
0 5i—2 (i 28 5 i), 1 i
5 = silsi— e "6+ T i) + S il )

_ . T. L g2 .
= i i D0+ 25 (P + ot P
There exists C > 0, independent of p and r;, j € {1,2,...,n}, such that

0%’ (5:-2) [P o1 PP
Sl <ot ] g 1+pp+p2p

2
or;

On the other hand, we have

n

3) =Y Ai(a®) = Z{ 572 [5(s; 1)—|—sZ-(NZ-—1)—)\Z-]§1i)}<I>

=1

N;—2 N; —2\?
s5i=——5 +\/< > ) + X

be the positive root of s;(s; — 1) 4+ s;(IV; — 1) — \; = 0 and

Let

n
*

f*(’l‘l, T2y ey ’I"n) = 1_[7“;SZ .

=1

Then, one has
A(&D) = 0.

Finally, we introduce the test function (independent of ¢)

Pp(x) = &(r1,72, o0y ) E2(T1, 72, oy ) P(w1, W2, .oy W)



If v; denotes the outward normal vector to €2;, then

5¢p (5) 03 (wi)
ov;

= 6,600

The Hopf lemma implies that

8(I>i(wi) aiﬁp
— <L —=<0.
B S 0, and B = 0

Consequently, we conclude that
0
ok <0. 6)
v

Let us set A; the Laplacian operator with respect to the variable z; = (rj,w;) € RYi,
i €{1,2,...,n}, then

Aw)(z) = ZAi(W)(w)

2 .
- Z{a W) () M= 1000) () LA, ) )}

— 37" T or; Z
(92 N, —108
- { or2 T [”)m 2 } V()

(02 N;—-10 N
= ‘P(wla--awn)Z{@Jr a—m—r—g}(ﬁ*ﬁz)(ﬁa--ﬁn),

i=1 T
since Ay, (¥,)(z) = —Xi(1,)(x). Hence,

2 . .
{(9 N; 1i_)\_21}(£*£2)

37“12 ri  Ory T

p

|Ai(p)IP = P

p

2p
p,p(5i=2) [P sp-1 Yo"
< v e (15 )
rP 2p
< plg* ‘l‘ z_+_,r .
< ow ( i

Since n(r;/p) = 1 for r; < p and n(r;/p) = 0 for r; > 2p, if we set N; = {z € K; Ajp, # 0},
then N; C {z € K; p < r; < 2p}, and the expression

p 2p
N
is bounded for any z € N;. Consequently, there is a constant C > 0 such that
Vo € AL, 1A @)F < O o) S ®)

Recall, that A(y,) = 31 Ai(4,). Then from (6) we obtain

|A(4,) |p<cZ|A (Wp)|P < cCy2(z )p

=1



Futhermore,

p
K [Ty ;| P75 4

n

C 2p LN —1—(p—1)o;
[ o o T
o] -

1#i “’] j=1 l#1

n

Assume that
si+Nj—(p—1)0; >0, 1<j<n,

which is equivalent to

S; + N; .
0 < 1 <j<m,
then we have the estimate
/ |A (1) [P —dz < O p P HE N —(-1)ej),
K [Ty ;| P75 4

Finally, we consider the test function, which depends on the all variables,

ontart) =1 (5 ) vnlo)

Using (7) and (8), we obtain the first estimate concerning ¢,:

+o0 A . »
/ / " | ((plea- p—1 (‘Ta t) dz dt
¢ K Hj:1 |x]| J (pp

2pt9 A
0 p K II5-q =]~ b

< C p0—2p+2§‘:1(5} +N;—(p—1)o;)

IA

Similarly, using (7) and (2), we obtain the second estimate concerning ¢,,:

ok
Rl
// S dx dt
supp || 1= i 251705 o™ (1)

atk

dk p
G0

< / dm/ L
ITj- 1|””J|(p D73 Jsupp |2 /n)| PP

C p2i=1(85+N;)~(p=1); ,—6(kp—1)

IA

< O p Wk DT (554N~ 1og).

(10)

(11)



3 Nonexistence Results

Let us consider the nonexistence problem for weak solutions to the problem

( OFu -
5% — A (Ju™ ) > |u|qH |z;|, z €K, t>0,

k—1

lim inf o" u u(w,O) U(z)dr >0, z €K,
otk—1

(E) < Rf<—)—|—oo |z1|<R1 |Zn|<Rn i

Ry W
Jim inf / / / (s, )™ ) 22 g gt <0,
Riotoo )y Jim|<ry  Jizn|<Ra ov

0<i<n
\ T € 0K,

where 0; >0 (i=1,...,n),
U(z) = V(11 ey Try Wiy eeey W) = Ex(T1y ey T ) @ (w1, oeey i)

for any z € K.

Definition 1 A weak solution u of the system (E) on K x]0,+o0[ is continuous function
on K x [0, +00[ such that the traces ‘?); (z,0), 7 € {1,..,k — 1}, are well defined and locally
integrable on K and the inequality

w OFp
/ / (\u|m LuAp —u(-1)* otk +80|u|qH|ac |‘”> dr dt —

i=1

<,0 ok—1-iy o
/ /aK|u|m 1 dxdt+z = —(2,0) 57 (2,0)dz <0, (12)

holds true, for any nonnegative test functzon ¢ € C¥*(K x]0, +oo]) with compact support
such that ¢|ax x10,4-00[ = 0-

Theorem 1 Assume that

0<o;<T=2 (54 Ny), 1<j<n

and

2+>0,0)(1 +(k—1)m)
k (—2 Y, (sj +Nj)) +2

Then the problem (E) has no nontrivial global weak solution.

1<qg<qg"(k,m)=m+

We start by proving the following lemmas

Lemma 1 The assumption

k—1
hmlnf/ / 0 u(m 0)¥(z)dx >0
|z1|<R1 |

implies that

o o1y
lgﬁgof Ty (x,0)¢,(z) dz > 0.



Proof 1 Let us set k-1,
V(11,72 ey Tn) = =y (,0)¥(z) dw.

Then, we have

Bk 1 n
/ otk— 1(:3 0)tp(z )dz:/ (1,72, 0 T H ( )d’l“ld’l"g .dry,.

[0,2p]™

Using an integration by parts with respect to the variable r1 and the fact that n(ri/p) = 1
for 0 <ry <p andn(ri/p) =0 for ro > 2p, we have

2p 1 2p 1
/ V(T1,72, s )7 (r_1> dry ——/ (/ v(s1,r2,...,rn)ds1> n' (r—1> dry
0 P P Jo 0 p
1 2p 1
= __/ (/ 0(31,7"2, "'arn) dsl) 77, (,r_1> d?"l
P p 0 P
p1
= _77, (&) / U(311T27 "'aTn) d517
p 0

where p1 is such that p < p1 < 2p, according to the intermediate value theorem. Proceeding

in the same manner for the other variables, ro, r3,..., T, we obtain

k—1 P1 Pn
‘Zt“(xom()dw:(—) [ (2) [ [ vton o

where pj are such that p < p; < 2p, forj € {1,2,...,n}. Since the cut-off function n is
decreasing on [1,2] then
K <&> >0
=1 \P
On the other hand,
pP1 Pn ak 1
/ / (51, oy $0) dsp . sy = i U (x,0)U(x) de,

where D, = {z = (z1,...,x,) € K; |z;| < pj;, for1 < j <n}. Hence, the assumption

oF 1y
hmlnf/ / -7 (2,0) ¥(z)dz > 0,
Rl@<_)+°° |z1|<R1 |Zn|<Rn ot

implies that
o ak—lu
hmlnf/Dp W(w,O)\P(:c) dz > 0.

p—r+00

Finally, since the expressions

/D otk— 1(5"' 0)¥(z)dz and /KW(QU,O)Qpp@)dx

have the same sign, it follows that

p—r+00

ok 1u
liminf/ ———(z,0)9,(x) dz > 0,
[ S @0

which achieves the proof.



Lemma 2 The assumption

Ro
hmlnf/ / / lu(z, t)|™ tu(x, t ) ()da:dtgo,xef)K
R;i—+00 |$1|<R1 |Zn|<Rn

implies that

+oo Oy
lim inf/ / lu|™ 2L dz dt < 0.
o Jok ov

p—+oo

Proof 2 The same arguments used in the last proof give the result.

Now, we are able to give the proof of Theorem 1:

Proof 3 Assume that the problem (E) admits a global weak solution w. In definition 1,
we choose the test function ¢(z,t) = ,(z,t), defined in (9). Note that ¢, satisfies the
equalities _
o,
ot
Then, the inequality (12) implies that

/00/ ® |u|qﬁ|x-|”j dx dt _/00/ |u|m_1u%dxdt+
o Jk'" =1 ’ 0 Jok ov
ak 1

3
m— 1
firr= l(x O)gop z,0) dz </ / <|u| A(pp)+u( 1) otk ) dz dt.

Let ¢ be an arbitrary postive real number. Using Lemma 1 and Lemma 2, there is pg > 0

(z,0) =0, for je{1,2,...k—1}.

such that for any p > po,we have
00 n
| [ tultop [T le iz at
0o JK =1

/OOO/K (Mmlu(_AQOP)WL“(—l) aatk ) dedt +¢

o0 ak(p
[u|™ Ap,| + |ul | 72| | dzdt+e. (13)
o JK otk

o) n
= [ [ e, Tkl doa,
0 K j=1

W Aol B
- / / ]u%w%me
p

9" %p
otk
B, = / / L )q,_ldxdt.

IA

IA

Let us set

— dz dt,
-1

i1 24|75 ¢p(z, 1)

\

Applying the Holder inequality to fo fK |u|™|Ap,| dz dt, we have

o n
/ /|u|m|A¢,,|dxdth,,qA,Sm).
0 K



Similarly, the estimate

00 3k 1 L,
/ / Jul ‘—aﬁ”‘ dedt < IfBY,
0 K

holds true, and we conclude that

1
<17 AR {[3BY 4. (14)

Applying the Young inequality to the right-hand side of (14), there is a positive constant
C, independent of p, such that

I, <C (A, +By) +e. (15)
Combining the estimates (10), (11) and (15) we conclude, for p sufficiently large, that
I, <C(p™ +p™) +¢, (16)

where

o = 03 (2) 5 (5w () 1))

n
ay = —0(kq —1)+ ) (s5+N; — (¢ —1)oy),
j=1

and C is a positive constant independent of p.
At this stage, we choose the parameter 6 to equal the exponents of p in the last estimate.
Ezxplicit computation gives

1 (qg-1 - ' 1 2(g-1)+(m-1)3", 0
9—k<q_m<2+;az> Zoz>—k p—— .

Since k > 1 and m > 1 it follows that @ > 0. Now, the estimate (16) can be rewritten

IP S Cpk(qim) + €,

where

n n

a=qQk |2+ D (s5+N) | +2¢ —2—(m(k—1)+1)> oj—km > (s} + N;).
j=1 j=1 j=1

Now, we require

which is equivalent to

2+ 100 1+ (k—1)m)

q < q*(k,m)=m+ -
k(=24 X0 (5 + ;) +2




Whence, 1, is bounded uniformly with respect to the parameter p. Moreover, the function
I(p) is increasing in p. Consequently, the monotone convergence theorem implies that the
function

(z,1) = (r,w,t) — |ul(z,1)| U(z H|:1:J|UJ

is in L' (K x]0,+oc[). Furthermore, note that
supp(Ag,) C{teRT, 0<t <2’} x{z €K, p<lz;|<2p,1<5<n}

and

ak
SUPp(aﬁp)C{tEW, Pl <t<20’t x{z €K, 0<|zj| <20, 1<j<n}.

Whence, instead of (14) we have more precisely

I, <Is AS +I3BY 4o,
where

I,= / @, |ul? H |z;|%7 dz dt,

P 7j=1

and

ak
C, = supp(Ap,) U supp ( &ip) .

Finally, using the dominated convergence theorem, we obtain that there is pyy > 0 such that
I, <e, forany p> 96,
which is equivalent to

lim 7, =0.

p—+00
This means that u = 0, which contradicts the fact that u is assumed to be nontrivial weak
solution to (E).

4 Existence Results

In this section, we will limit ourselves to the problem

u _Au=wul in Kx|0,+ool,
(E)=¢ u(z,t) =0 on 0K x [0,+oq],

u(z,0) =ug(z) >0 in K,
>From Theorem 1, we know that if

2
Z?:1(Ni + 3*)

then the problem (E) has no global nontrivial solution. We complete this result by the

l1<g<qg"'=1+

existence one:



Theorem 2 If
2

4>¢ =1+ o
> i1 (N + s7)

then nontrivial global solutions of (E) eist.

Proof 4 The proof is based on the method of supersolutions [30, 81] and the arguments
used are inspired by the ideas of [15, 16, 23].
Let v be a positive solution of

—Av=0 in Kx]0,+o0],
v(z,t) =0 on 0K x [0,400],

v(z,0) =vo(z) >0 in K,

and let the function w defined on K x]0,+oo[ by w(z,t) = a(t)v(z,t), where the function
a has to be defined. If o is selected such that

o/ (1) = (a(t)" [jglgv(w,t)]q_l,

then w is a supersolution of (E’) on its interval of definition. Let us set a be the solution
of the Cauchy problem

o) = (at)o( )iy >0,
(17)
a(0) = ap>0.
It is easy to see that the solution of (17) is global if, and only if,
“+o0o
/ o )19 dt < 400 (18)
0

and

0<ao< ((a- 1)/0+°° o 172 ) )_

At this stage, we will construct the function v on K x [0,+oo[. Consider the function v;
defined on K;x]0,+o00| by

1 1 Ti r? +1
ot = gt e (aen) o (i) )

where x; = (rj,w;), v; = s} + % and I, is the modified Bessel function of order v; [32].
The function v; is a positive solution of
ov;
ot

(see, for example, [16]). Recall that the asymptotic behaviour of I, in the neighborhood of
0 and +o0 is given respectively by [32]

IUi (z) ~

— Av; =0 in K;x]0,+o00[

2Yi

S — 0" 19
Ty +1) = ° (19)



and

as z — +o0. (20)

Then, using the fact that ®; = 0 on 99Q; and (19), we conclude that v; vanishes on 0K; X
[0, +o00].
Let us set now
n
v(z,t) = Hfui(wi,t), for any ¢ = (x1,29,....,2,) € K, t >0
i=1

and

1 1 T3 ri+1
Vilrit) = —— I, [ s ~ 1 '

The function v is a positive solution of

B

% —Av =0 in Kx]0,+4o00],

which vanishes on K X [0,+oo[. Morover, if the following estimate

lim sup (t + 1)(1*%1 sup H Vi(ri, t)| < +o00 (21)
t——+o0 ;>0 i1

holds then the condition (18) will be satisfied for any q > q*. Indeed, it suffices to remark
that 0 < ®; <1 for 1 <i<mn, and

+0o0 -1
/ (t+1) -1 dt < o0, forany q> q*.
0

We will show now that the esimate (21) is satisfied. First, since

n n
lelin)O H‘/Z(T’Lat) = T}gnoo HVtL(T’Lat) =0, Vi >0,
1<i<n i=1 1<i<n i=1

then, for any t > 0, there ezists 0 < r}(t) < +oo, 1 <4 < n, such that

n n
[IVitr@),t) = sup J]Vilri,0).
i=1 121><0n =1
Let
1 n
V(t) = (t+ 17 [[Vilri (1), )
=1
Using the fact that
1 n




we can write

_T N EHON ri(t (rit)" + 1
V(t)—g (t+1)= (t—i—l) L, (2(t+1)>eXp (_ 4(t +1) )
If we set *(1)
%= 2541y
then

EX N;—2

(W) 77 Ly (1) ¢HV0 W} .

NS

n
V(t) = e 1D H {(t +1)
i=1
Let, for1 <i<mn,

Vi(t) = (t + 1)% (yg‘(t))*ﬁjw (y;k(t))ef(wl)(y;’ )
Suppose that there is a sequence (tg)xeny — +00 such that

lim V(tx) = +o0.

tp—+o0
Three cases can arise for each i € {1,2,...,n}:

e Case 1: There erists a subsequence, also denoted by (tx)ren, such that

lim (y;(tx)) = +oo.

tp—+00

In this case

s¥ N;—1 2

Vi(tg) ~ const- (ty + 1) 7 (yF ()~ % )=t D))" g5 ¢ — o0,
which implies that
Jim Vi(t) = 0.
e Case 2: There exists a subsequence, also denoted by (tx)ren, such that

lim (y; (t)) = 0.

tp—+00

In this case
Vi(te) ~ const - [(t + 1) (v} (t))?] T ) () g t — +oo,

which implies that V;(ty) is bounded, since the function z — 2% e is bounded on R*.
e Case 3: There are two constants A; and B; such that the sequence (y;(tx))ren satisfies

In this case, the expression V;(ty) is clearly bounded.
Whence, there is no subsequence of (tx)reny — +00 such that

lim V;(tg) = +o0,

tr—+0o0

which imply that there is no sequence (tx)gen — +00 such that

lim V(t;) = +oo.

t——+00

This ends the proof.
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