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Abstract

In this paper, we show an intriguish property of the eigen values of the global
monodromy operators associated to a complex polynomial map. AMS Classification
: 14D05, 14D07, 32520, 32535, 32540,58K10.

1 Introduction and notations

Let f : C**! — C be a non-constant polynomial map, there exists a minimal finite set :
By = {b1,--- , by}, the bifurcation set of f, such that if we denote by S = C\ By and
X = f71(S) then f : X — S is a topological fiber bundle. If s ¢ By, the generic fiber
F = f!(s) is a smooth algebraic hypersurface. Let D; be some smalls disc such that
D;N By = b;, we choose a regular value sy and we construct a set of m disjoints paths from
S to a point of dD; in order to obtain a set of generators of the fundamental group 7 (S, sg)
in the following way. A generator +; is the concatenation of the path from sy to a point
of dD;, of AD; itself and of the path going back to so. Let p : w1 (S, sq) — Aut(H*(F,C))
be the monodromy representation of f and Ty, = p(v;). We denote by T, the image of
a big loop around all the points of Bf. In the following we will only consider complex
coefficient homology and cohomology and so we will denote

H*(F) = HYF,C)
Hk(F) = Hk(F’C)

We will use the notation -
H¥(F)™ = () Ker (T, — Id)
i=1
We will suppose that f is primitive i.e. its generic fiber is irreducible or equivalently it is

not of the form go h with g : C — C and A : C* — C polynomial maps and degg > 1,
see |6].



I would like to thank Sabir Gusein-Zade for the ideas he has suggested, which led me to
the proof.

2 The result

Deligne proved the monodromy theorem in [4] which implies that the eigenvalues of the
operators T}, are some roots of unity. This result is in fact a local one in the base, we have
to study the fibration around a small disc sufficiently close to the singularity b;. However
this result can easily be extended to 7, in this way, if we think of the complex plane as
the Riemann sphere minus one point (the point at infinity), we see that a big loop around
all the points of By is homotopic to a small disc around the infinity point.

The aim of this article is to give a property of the eigenvalues of p (y) for any loop v €
m1(S, so), theses are no longer roots of unity in general but we have :

Theorem 1. With the previous notations, let X be any eigenvalue of p (7y) then

% is an eigenvalue of p () and the multiplicity of X and % in the characteristic polynomial

of p(7) are the same.

Remark 2. Let P be the characteristic polynomial of p(7y), the theorem implies that

rief p (1> =+P (z)

X

Example 3. If f = z + 2%y* + 2%y®, we have By = {O, b= —%} the monodromy repre-
sentation is generated by

111 0 1 000
_ 10370 0 /2100
To=1loo 20| ™hH=17 010

000 1 0001

where j = €% (see [1] for the details of this calculus). For instance we have

1-k

To (T,)* =

V)

J
0

o x> x|
=

o~
_— o oo

whose characteristic polynomial is x = (xz — 1)* (#2 + (k + 1)z + 1) which show that the
result is true in this case, and that in general, the eigenvalues of p () are not rots of
unity.

Remark 4. The previous example leads us to a question. If we are given two matrices A
and B whose eigenvalues are roots of unity such that their product also has this property.
Do all the elements of the group generated by A and B have the property of the theorem ?

The answer is no, as shows this counter-example :



Take

11 -1 1 0 0
A=101 1 and B = -1 1 0
00 1 2 -1 1
then
-2 2 -1
AB = 1 0 1
-1 1

whose characteristic polynomial is (x — 1) (x +1)°. But

6 -3 2
A'B=[ -3 2 -1
2 -1 1

whose characteristic polynomial is x° — 92% + 62 — 1.

We see here that the property claimed here is indeed in relation with our geometrical
situation.

3 The proof

Lemma 5. Let m be an isomorphism of CP then m is similar to its inverse if and only if
there exist a non-degenerate bilinear form ¢ invariant by m, i.e. such that

V(2,y) € (C), ¢ (m(z),m(y) = o (z,y)

Proof. We choose a basis and let M and B be the matrices of m and ¢ with respect to
this base. ¢ is invariant by m means

‘MBM = B
this is equivalent to
‘M =BM B!
It is well known that a matrix is similar to its transpose, and this ends the proof. O

Remark 6. One should think of finding a form on H* (F), non-degenerate and invariant
by the modromy operators (one can also say a non-degenerate "flat” form). As we will see
later, the monodromy operators are orientation preserving ( proposition 7) so if k = n we
have a natural form is given by the cup-product :

H"(F)xH"(F) — C
(e,d) — e~ d
but there is a problem, this form is degenerate in general, and most of all, the monodromy

is not trivial on its kernel, an example is given in [1], (remarque 4.4).

We will see that it is quite difficult to find a non-degenerate flat form in general, we will
need to use the variations of mixed Hodge structures. Nevertheless, in some particular
cases we have an elementary and explicit proof. We will first work these two cases, namely
the polynomials which are tame (good at infinity) and the polynomials of two variables.
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3.1 The tame case

A tame polynomial f : C**! — C is defined in [2]. (In fact, everything in this section
is also true in the more general case of M-tame polynomials defined in [9]). Such a
polynomial map has a lot of properties, for instance we have

Hy(F)=0for k#0,n
Let us consider the intersection form
(,.):H,(F)x H,(F) — Hy(F)~C
it is flat because the monodromy operators are orientation preserving (see proposition

7).Note that the last isomorphism explain why we have chosen f primitive.

For us the most important property implied by the tame hypothesis is that the kernel of
the intersection form is equal to the kernel of T, — I'd (see [5], example 4.3). Moreover in
[5] A. Némethi and A. Dimca show that the monodromy representation is determined by
T and a certain decomposition of H, (F'), in particular they prove that Ker (T — Id) =
Hn ( F)mv )

Let T = p(y) be any monodromy operator we have the commutative diagramm

0= Ker(,) — H,(F) ;T((F)> 50
Id] T T
0= Ker(,) — H,(F) ;T% 0

and the lemma 5 says that T ~ 7', we can then easily deduce the property claimed on
T.

3.2 The two variables case

In this section we take f : C* — C and we want to study the action on H! (F). As we
mentioned before, the monodromy is not trivial in general on the kernel of the intersection
from.

The Poincaré Duality Theorem states that the intersection form (or the cup-product)
is non degenerated on a compact oriented manifold. So we will make use of a smooth
compactification of F'. Let us consider

¢: P?(C) —— = PYC)
(x:y:z) —> (f : 2%
where f is the homogenization of f, and d is the degree of f. By a sequence of blowing-up
of the indertemination points of ¢ we define 7 : X — P?(C) such that ¢ = ¢ o7 is regular
on X, and such that the total transforms of the fibers of f are normal crossing divisors.
See [8] for a detailed construction. Let F' denote the strict transform of F' and A = F\F.
The Gysin short exact sequence give the following commutative diagramm

0— HYF) — H'(F) — H%A,) —0
T T\ T |
0— HY(F) — H'(F) — H%A,) —0
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where 7' is any monodromy operator, T and T° are the coresponding induced monodromy
operators. Now we have that 7'~ 7! so we just have to check that 7° ~ (7°)~". But A
is a finite set of points and T is just a permutation of theses points and so * (T°) = (7°) "

To complete the proofs of the two preceedings cases we will now prove the

Proposition 7. The monodromy operators are orientation preserving.

Proof. We consider
¢: P*H(C) —-— — PYCQ)
(o :---:xy) — (f : 29

Let 7 : X — PF*1(C) be a map such that f = ¢ o is regular on X, and such that the
total transforms of the fibers of f are normal crossing divisors. Let Fy = f~!(0) be a
non-generic fiber and let F' = f~1(¢) a generic fiber with ¢ sufficiently close to 0, it is clear
that we just have to prove that the property claimed is true for the monodromy operator
m coresponding to a small loop around 0. If we denote by 7 the operator on F' = f~ (t)
extending m, it is enough to proove that m is orientation preserving because the measure
of the set F \ F is zero. But now, we have the situation a family of algebric varieties
acquiring singularities studied in [3]. In this paper, the action of 7 is described in locally
by analytic formulas (p97), and so, it is orientation preserving. a

4 The general case

The proof is quite short but it involves much more theory. We will recall the basic
definitions (see [10]).

Definition 8. Let E be a Q-vector space and let V = E®Q C. A Hodge structure of
weight k on V' is the data of a decreasing filtration G = {GP} of V' so that we have

V=G"eGtlifp+q=k
where the “bar” denotes complex conjugation, equivalently

V = @ HP? where H?? = G N G4
p+q=k

The Weil operator
Cc: V-V

s given by the direct sum of multiplication by =7 on HP.
Definition 9. Let S be a complexr manifold. A wvariation of Hodge structure of weight k
over S, is the collection of data (V,G) where

1. 'V is a locally constant sheaf of Q vector spaces on S (we also say local system).

2. G ={GP} is a decreasing filtration by holomorphic subbundles of the bundle V = Os Q¢ V,
such that at each s € S, G induces the Hodge filtration G, of a Hodge structure of
weight k on the fiber Vi of V.



3. Let V be the flat connezion on V, we have for each p
vgr c Qt Qg

Definition 10. A polarization of a wvariation of Hodge structure of weight k is a non

degenerate flat bilinear form
P:VxV =Q

which is (—1)k symmetric such that the hermitian form on the fiber of V &), C
(v,w) = P (Csv,w)

s positive-definite. A variation of Hodge structure is said to be polarizable if it admits a
polarization.

Consequently, the first lemma says that we would be able to conclude if V =R*f,Qx was
the underlying local system of a polarizable variation of Hodge structure. Indeed the form

H*(F,Q xH* (F,Q) — Q
(v,w) — P (Csv,w)

would then be bilinear, flat and non-degenerate. In fact, if g : X — S is a smooth and
proper holomorphic map then R¥f,Qx has this good structure, but in our situation we
will need a more sophisticated notion.

Definition 11. A wvariation of mired Hodge structure on a compler manifold S is a
collection of data (V,W,G), where

1. 'V s a local system of Q vector spaces on S,

W = {Wy} is an increasing filtration of V by local subsystems,

for each p, VGP C QL Q GP !

With Wy, denoting Os @ Wi, (Gri¥ V.G (Wi, Wy_1)) is a variation of Hodge struc-
ture of weight k, (in particular on the fiber, (Vs, W5, Gs) is a mized Hodge structure).

If theses variation of Hodge structure are polarizable then the wvariation of mixed
Hodge structure is called graded-polarizable.

Proof of the main theorem. It is proven in [10] §5 that R*f,Qx the underlying local sys-
tem of a graded-polarizable variation of mixed Hodge structure. That means that we have
a filtration

0=W . ,CWyCW,C---C Wy =HF)
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such that there is a flat non degenerate bilinear form on . Using the following short
i—1

exact sequences '

i

—0

0—=W,y =W, —

i—1
we show easily by induction that all the restrictions of the monodromy operators on each
W; have the property claimed and so we proove it for T on H* (F), which concludes the
proof. O

G ={G"} is a decreasing filtration by holomorphic subbundles of the bundle V = O5 @V,



Let

f: X =S

be a morphism of algebraic varieties such that dim X =n+1, S is a smooth curve and f
is a topologically locally trivial fibration with a connected fibre F'. The proof of our main
theorem also applies to any representation

p:mi(S) = Aut (H* (F))

associated to f. The typical example is that of rational functions on P**! which includes
polynomial functions on C**!, see for instance [7].
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