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Résumé

Cross-diffusion has been widely considered either in the mechanical description of
diffusion or in the stochastic point process description of interacting populations, in
the mathematical modelling of spatially structured epidemic or ecological systems and
for the geographical diffusion of innovation. In this paper, specific attention is devoted
to blowing-up solutions of some systems which may reflect either failures in the mo-
delling or genuine phenomena like aggregation of populations. Furthemore, necessary
conditions for local and global existence of solutions to the considered systems are
presented.
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1 Introduction

The role of spatial heterogeneities and dispersal for chemical reacting species or biological
interacting populations in the linear or nonlinear regime has been the subject of a sizeable
literature (see e.g. the authorative books of Aris [1] and Cussler [10]).
In particular cross-diffusion in modelling interactions among different species has attrac-
ted special attentions. Apart the above quoted books, one can cite [16, 18, 32, 33, 34] in
physical-chemistry, [7, 23] in epidemics, [19, 29] in ecology and population dynamics, [21]
in biology and very recently [8] in economics.
The recent papers [20, 23, 30, 31] on reaction-diffusion systems with ”non diagonal” diffu-
sion matrices are devoted to global existence and large time behaviour.



In this article we consider the system��������	��
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��LM�N��%��1

��LM���+�4�K�POQ��
P�N��%�OB�1
P��� ,
"C"D F , the constant ! may be positive or negative, ) and ; are given nonnegative func-
tions, the functions / � and /A@ may represent some ”noises”. The cross-term !,�R�$� % ��&����	%S�
gives a measure of the flux of one component engendered by the concentration gradient of
the second component.
Before announcing our main results, let us dwell for a while on the modelling part [12].
Consider, for example, two substances (species, chemicals, etc.) that are activating or inhi-
bating each other according to some law of reaction and diffusing in a spatial domain by
Fick’s law but the diffusion of one of the substances is influenced also by the other one and
vice versa. The density of the two substances at time � and place 
 are denoted by �,��

�����
and %P��

����� respectively.
On one hand, the substance � flows from places where its density is high towards places
where the density is low. On the other hand, % has an attracting or repelling effect on � , so
that � flows towards high, resp. low density places of % . In this situation the flow vector of� is given by TVU �XWZY �[� ���
�\%S��]^�_W<Y � @B���`��%(��]^%��
where Y �[� �K�
�\%S�.abL and Y � @0�K�
�\%S�.cdL , resp. e L according as % attracts, resp repels � .
Similarly, the flow of % is given byTVf �XWZYM@ � �K�
�\%S��]_�_W<Yg@[@Q�K�
�\%S��]_%h�
where Yg@[@0�K�
�\%S�iajL and YM@ � �K�
�\%S�ickL , resp. e L according as � attracts, resp repels % .
Then we obtain the reaction-diffusion system�lll� lll�

m �m � � ]onB��Y �[� �K�
�\%S��]_�p�*Y � @0�K�
�\%S��]_%S���bqr���`��%(�m %m � � ]onB��YM@ � �K�
�\%S��]_�p�*YM@[@0�K�
�\%S��]_%S���Hst�K�
�\%S� (1)

where qr�K�
�\%S� and st���
�\%S� are the reaction terms. In the particular case :

Y �[� �2uP� �0��� �'YM@[@:��v1% 6w��� �'Y � @x��YM@ � �2L(�:q��y% - and sz�y� > �
we obtain the system �lll� lll�

m �m � � ���K���V� �"%B-m %m � � �{3�%96|8.�"��> (2)

Note that the system (2) describes the processes of diffusion of heat and burning in two-
component continuous media with nonlinear conductivity and volume energy release. The
functions � and % can thus be treated as temperatures of interacting components of a com-
bustible mixture [15].
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When the cross-diffusion Y � @B���
�\%S� obeys to a similar law as Y �[� and Yg@[@ , say

Y � @B���`��%(�=��� % &'��� �
we obtain the system �lll� lll�

m �m � � ����� � � �*���K% & � �"% -m %m � � � 3 %g6 8 �"��> (3)

which concerns the present paper. With an aim of giving more general results, we consider
the case where the reaction terms also depend on � and 
 .

Section 2 is motivated by the paper [5] in which Baras and Kersner showed that the problem

��� �y�_�r� � ��
P�	� - � �,��

�\LM�=�y��OB�1
P� e LS�
has no nonnegative local weak solution if the initial data satisfies

������ 	
� � J
� � - ���O � �1
P�'�������
and any possible nonnegative local weak solution blows up at a finite time if

������ 	
� � J
� � - ���O � �1
P�B� 
=� @ ������n
We show similar results for a degenerated nonlinear parabolic system with triangular diffu-
sion matrix.

Section 3 deals with Fujita’s type results. Its aim is not only to generalize the results in
[9] to triangular diffusion matrix systems but also to weaken the assumptions on the data.
Indeed, we require nonnegative integrability of the initial data and of the nonhomogeneous
forcing terms while [9] requires their positivity.

2 Necessary conditions for local and global solvability

Consider the system

(P)

�llllllll� llllllll�
��� �1

���������R��� �=� �0���[�P��� �R��� % � &����	%S�?�*)+��

�����,� % � -.�"/ � �1

����� in ��� �dD F G�� LS�����
%B����

�������y� 3 � % � 6w��� % 8 �<;���

�����,� �=� > �</A@B��

����� in ���
�,��

�\LM�=�2��OB��
P� in D F
%P��

�\LM�=�2%0O0��
P� in D F

where � e�� ��� e � �!� e � � u e�� and v e�� , L#"$� c �%� , with the following
hypotheses on the data :
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(H1) � )���;(�xC�� - �6���� � ��� �VG�� > �6���� � � � � , ) e L and ; e L , where � �
	 � � 	 ���{� ��� � � W � �N� � � � � W � ����

(H2) /��`C��x�5� � � � and

����� /��BYV
 YV� e L , � � � ����

(H3) �K��O �\%0O$�:C��x�5��D F �:G��:�N��D F � , with

����� ��OPYV
 e L and
����� %�OhYV
 e L .

In the sequel, if �b�R�%� , the domain �%� will be denoted by � .

Definition 1. A pair of functions �K�
�\%S� is called a weak solution of (P) in � � if

(i) �
��%�� � � W�� D
(ii) ���`��%(�'C�� >6���� � ��� �:G�� - 6���� � � � �
(iii) for any  C"! ��D F G ��L(��� � � which vanishes at ����� if � " ��� or for any  C#! � � �

if �b�R�%� , one has�
�$� 3 �  �(� 3 � �=� �0��� � �X� % � &���� % 8 �  ��� )'� % � - �</ � �  8 YV
hYV� � ��� � ��OB�1
P�  �1

��LM��YV
 ��L
(4)

and � ��� 3 %  ��� � % � 6w��� %9�  �<;
� �=� >  �</A@  8 YM
hYV� � � � � %�O0�1
P�  �1

��LM� YM
 �2L(n (5)

We attempt to get insight into the relationship between local and global solvability of (P)
on one hand, and the behaviour at infinity of the data ) , ; , / � , /A@ , �hO and %�O on the other.
In this section we will confine ourselves to the following case : )+��

�����'�b�&%�'t�1
P� , ;?�1

�����=��)(+*i��
P� , / � �1

�����r� ��,.-&/ � ��
P� and /A@0��

����� � ��,&01/ @Q��
P� , where ' and * are positive and
continuous functions, �PO and %�O are nonnegative and integrable functions. We add the fol-
lowing assumption

(H4) � a �3254�6 v[� � ��v(�*!.���4�"!87 , � a �92:4$6 u#�\ui�<;=7 , and
� �?>$6 � �\u#��v�7 a � n

2.1 Necessary conditions for local solvability

Before stating our first result, we need to assume that, for @ sufficiently large, the estimates�
� 	
� A @CB *i��
P� � -D�EGF YV
 �IHKJ @ 0 DD�ELF�M � (6)�
� 	
� A @CB 't�1
P� � -NOELP YV
 �IHKJ @ 0 NNOELP)M � (7)

and �
� 	
� A @CB 'i��
P� � -N&EGQ YM
 �RH J @ 0 NN&EGQ M (8)

hold.
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Theorem 1. If the problem (P) has a nonnegative local solution defined in ��� , � "��%� ,
then the following estimates

�����#� > �� 	
� � J
� ��OB�1
P��� ��
P�:c
� ���� � �����#� > �� 	
� � J
� %0O0��
P��� �1
P�:c

� ���� (9)

and �����#�?> �� 	
� � J
� / � ��
P��� ��
P�xc � @
� � J ,.- J � � �����#�?> �� 	
� � J
� / @B��
P��� �1
P�:c �
	

� � J ,&0 J � (10)

hold, where

� ��
P��� ' - ��� -9��
P�
* > ��� >Q��
P�' - � � - �1
P� � * > � � > ��
P� �
� � � � �?> J � 
�� -N&E - � � � � -D�E - M �

and the constants
� � , � @ , ��	 are specified in the proof.

Démonstration. Let �K�
�\%S� be a nonnegative weak solution of (P) in � � . For any  C! � � LS��� � GED F � with  e L ,  � n|��� ���RL , one has� ��� �K�  �(����� � �*% & �S�  �H)h% -  �</ �  �(YV
hYV�
� � ��� �hOQ��
P�  ��

��LM� YV
 ��L(��
��� 3 %  � �<% 6 �  �<;9� >  �</A@  8 YM
hYV�?� ��� � %�OQ��
P�  ��

��LM� YV
 ��L(n
Then ��� � ��O  � LV�?� ����� )P% -  � �
��� / �  c �
��� �����  �\� �2��� � �<% & � �	W �  � J �N���� � %0O  � LV� � ����� ;9� >  � ����� /A@  c ����� 3 % �  ��� �"% 6 � WZ�  � J 8 �
where  � LM���  � n|��LM� and �	W �  � J � �92:4 � L(� WZ�  � . Furthermore, Young’s inequality
gives � ��� �=�  �\� c �� � ��� � > ��;  � ��� � � ��� �  �\� > ��� >���� � ��;  � ��� ��� >���� � �
and �
� � � � � WZ�  � J c �� �
� � � > �1;  � ���$@ �
� � � WZ�  � > ��� >��g� �J ��;  � ��� ��� >��g� � n
Hence� � � �hO  � LM��� � ��� � )P% -  �</ �  �:c � ��� 3�%
�  �\�N�X3�% 6 �"% & 8:�	W �  � J 8:���I�  ��;h��� �N�
where

�I�  ��;h��� �+��� � � � �  ��;h��� �����$@ � @0�  ��;h��� �N�
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with

� � �  ��;P� � � � � �$� �  ��� > ��� >���� � �1;  � ��� ��� > ��� � �
� @B�  ��;P� � � � � �$� � WZ�  � > ��� >��g� �J ��;  � ��� ��� >��g� � n

Similarly, Young’s inequality allows us to obtain���$� 3 %
�  �\� � 3 % 6 �"% & 8 �	W �  � J 8 c ����� )P% -  ��� �  �$)���� �
where � �  �$)h��� �=��� 	 �
	 �  ��)h��� � ����� � �0�  ��)h��� �?����� � �0�  ��)h��� �N�
with

�
	 �  �$)h��� � � �
� � �  �\� - ��� - ��� � � )  � ��� ��� - ��� � �
� ���  �$)h��� � � � ��� � WZ�  � - ��� - �96 �J � )  � �96 ��� - �96 � �
� �0�  �$)h��� � � � ��� � WZ�  � - ��� - �g& �J � )  � �g& ��� - �g& � n

Finally, we have ��� � ��O  �KLM� � �
��� / �  c �� ��� � �1� � � n (11)

Following the same idea, we show that there are positive constants Y�� , � � � �5n n
	 , so that��� � %0O  � LV� � �
��� /A@  c �� ��� � Y � � � n (12)

At this stage, the test function  is chosen as follows

 ��

����������
�� ���������� J 
@ M �
where

i) � C ! ��D F � , LIc � c � , supp ( � ��� 6 � "{� 
=� " ��7 and W � � c � ,

ii) 
tC"! ��D.J�� , L^c�
tc � , and


���� �=� �� � � if �rc �:� �9�
L if � e � �

iii) � � �3254 � � 	 � � 	 � and @ abL .
The choice of this test function is inspired by the paper of P. Baras and R. Kersner [5]. It
allows us to obtain interesting estimations connecting the initial data and the reaction terms.

7



Consequently, the integrals
� � , � � � � n|n
	S� are convergent, more precisely

� � c � > � � � 
 	 � � > ��� > � � �[� �D�E -
� W (> ���

��� � � J 
@ M *i��
P� � D �D YV

� � � W � � � > � � � 
 	 � � > ��� Wd� ; � � � � � � � -D�E - � � � � J 
@ M *t�1
P� � D �D YV

�

and similarly

� @ c � W u
� Wy� ; �<u � � D�E�� � �5F��D�ELF @ � 0 DD�ELF ��� � � J 
@ M *i��
P� � -D�ELF YV

�

�
	 c � � W � � � - � � � 
 	 � � - ��� Wd� ! � � � � � 
�� -N&E - � � � � J 
@ M 'i��
P� � N �N YM

�
� � c � W<v

� Wd� ! �"vK� � NOE�� 
��:P��N&EGP @ � 0 NNOELP � � � � J 
@ M 'i��
P� � -NOELP YV

�
� � c � W �

� Wd� ! � �o� � NOE�� 
��5Q��NOELQ @ � 0 NN&EGQ � � � � J 
@ M 'i��
P� � -N&EGQ YM

n
Let

� � � �92:4 � � � � � W � � � > � � � 
 	 � � > ��� Wy� ;t� � � � �$@ � � W � � � - � � � 
 	 � � - ��� Wb� ! � � � � n
In view of (11) and the above estimates we see that��� � ��OB��
P� � J 
@ M c � � ��� � � ��

��� � � J 
@ M � � @#� � �#� � �Q� (13)

and � � � �V��� J ,.-
� ��� � � � � / � ��
P� � J 
@ M c � � � � � � ��

��� � � J 
@ M � � @,� � �+� � � � (14)

where � ��

� � �=�R't�1
P� � N �N � � 
�� -N&E - � *i��
P� � D �D � � � � -D�E - n
Hence,	

�?> �� 	
� 
 B �hOQ��
P�� �1

��� ��� � � � � �1

��� � � J 
@ M c � � � � � � �1

��� � � J 
@ M � � @+� � �#� � �Qn
Finally, using the estimates (6)-(8), we have

�����B � J
� �?> �� 	
� 
 B ��OB��
P�� �1

��� � c�
 �
or ����� �?> �� 	
� � J
� ��OB��
P��� �1
P�Ac

� �� �?> J � 
�� -N&E - � � � � -D�E - M�� (15)

The second estimate in (9) and the estimates in (10) are obtained in the same manner by
setting

� @:�X� � ��� � � � � � � J ,.- and
�
	 �4� � ���9@$� � � � � J ,&0 . This completes the proof.
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Consequences :
The previous theorem asserts that if

�92:4 6 !'� ;=7 " W � and
�����#�?> �� 	
� � J
� ��OB��
P��� �1
P����RL then (P)

has no nonnegative local solution, as it can be seen from (15) by letting � � L . Further-
more, if (P) has a nonnegative global solution then, by letting �I� �%� , we have

i)
� �?>$6 !.�&; 7pa�W � ��� ����� �?> �� 	
� � J
� ��OB��
P��� �1
P� � �����#�?> �� 	
� � J
� %0OB��
P��� �1
P� ��L ,

ii)
� �?> 6 !'� ;���� � � �S@ 7ra�W � ��� ����� �?> �� 	
� � J
� / � �1
P��� ��
P� � �����#�?> �� 	
� � J
� / @0��
P��� ��
P� ��LSn

In the limit case
� �?>$6 !.� ;=7 �XW � , if

�����#�?> �� 	
� � J
� ��OB�1
P��� ��
P�:a � � , then there is no nonnegative

global solution.

2.2 Necessary conditions for global solvability

Before stating the main results of this subsection, we need to introduce some notations and
hypotheses. Let

� � � �?>
	 ! � �
� W � � ; � �� W � �

and � � � � >�6 ' N �N �1* D �D �1' -N&EGP �1' -N&EGQ �1* -D�ELF 7gn
We assume the following hypothesis
(H5)
� �?>$6 !.�&; 7pa�W � .

Theorem 2. If the problem (P) has a nonnegative global solution, then there exists � a L
for which the following limits

����� �?> �� 	
� � J
� ��OB��
P�
� ��
P�Q� 
=� �	� � �����#�?> �� 	
� � J
� %0O0��
P�

� ��
P�Q� 
=� �	� (16)

are bounded. The real number � is specified in the proof.

Démonstration. The inequality (13) implies that there is a positive constant C such that� ��� �hOQ��
P� � J 
@ M c�
�
 � @ ��� � � ��� �� ��
P� � J 
@ M � (17)

where


 � @ ��� �=� � % -@ (G- � � % 0@ (�0 � � %
�@ ( � � �� %
� � �� %�� �
! � � � Wd�K! �*vK�

� W<v � ; � � � �
� W v �

!
@ � � Wd�K! � �o�
� W � � ;�@x� � �

� W � �
! 	 � � Wy� ; �<u �

� W u � ; 	 � � �
� W�u �

! � � � �"!
� W � � ! �x� � �<;

� W � �
9



Note that under the hypotheses (H4)-(H5), the parameters ! � and ;
� are positive. Now, we
have to minimize the function 
 with respect to � . For this, one hasm 
m � � @ ��� �=� �� � � @ ��� �
where

� � @ ��� �=�2! � � % -@ (G- �*!
@ � % 0@ (�0 �"! 	 � % �@ ( � W ! �
� %
� W ! �

� %�� n (18)

Then m 
m � � @ ��� �=�2L�� � � � @ ��� �=��LSn
Moreover, it is clear that the function

�
is strictly increasing in � aHL and

�����
� � O � � � @ ��� �=� W � and

�����
� � J
� � � @ ��� �+�R�%���

which imply that for any @ azL there is a unique ���B� @ � azL such that
� � @ �����Q� @ ��� � L .

The implicit function theorem asserts that the function ��� is smooth in @ and

Y ���Y @ � @ ���zW m � � m @m � � m � � @ �����Q� @ ���:abL(n
Hence ��� is strictly increasing in @ and we easily see that

�����B � J
� ���Q� @ �'�2�%��n
Finally, m @ 
m � @ � @ � ���B� @ ��� � W �

� @� � @ � � � @ �����Q� @ ��� � �
���B� @ � m �m � � @ ����� � @ ���

� �
���B� @ � m �m � � @ � ���Q� @ ���xabLS�

implies that for any fixed @ a L , the function 
 has a unique minimum at � @ �����Q� @ ��� .
Now, we have to determine the asymptotic behaviour of ���B� @ � as @ tends to �%� . Recall
that � � � �?> � ! �B��! ��� and that the pair � @ � ���B� @ ��� verifies the identity

! � � % -� � @ �@ (G- �"!`@ � % 0� � @ �@ (�0 �*! 	 � %
�� � @ �@ ( � � ! �
� % �� � @ � � ! �

� % �� � @ � n
Then, there is 	 aHL such that

�����B � J
�
	
! � � % - J �� � @ �@ (G- �*!
@ � % 0 J �� � @ �@ (�0 �*! 	 � %
�	J �� � @ �@ ( � � � 	 n

Setting 
 �i� ;
� � � � �X! ��� , � C 6 � �.�S����7 , � � � �?>�6 
 � 
 � C 6 � �.�S�
��7 7 and � � 6 � C6 � �.�S����7�
 
 �P� � 7 , we have
	� ��� � ! � � ���B� @ �@���� � � J
% � � � ����� ! � � ���B� @ �@ � � � J
% � ��� � @ ��� �Nn (19)

10



Since the functions @ � W � � % � J �� � @ �@ ( � � � C 6 � �.�S����7g�
are bounded uniformly with respect to @ , we conclude that

�����B � J
� � � � � ! � � ���B� @ �@ � � � J
% � � 	 and
�����B � J
� �(� @ � � �=�yL(n

Let the function � � � �=� � ����� ! � � � J
% � n
It is clear that

�
is strictly increasing and

� �KLM�+��L . Hence

�����B � J
� ���Q� @ �@ � � �����B � J
� � ����� � � ���B� @ �@ � � � � ��� � 	 �xabL(�
because

� ��� is continuous, and consequently

���B� @ ��� � ��� � 	 � @ � for @ large enough n
Finally, using (17), there is a constant

� aHL such that, for @ large enough,��� � ��OB�1
P� � J 
@ M c �@ �	� ��� � �� �1
P� � J 
@ M n (20)

Using the fact that supp � � ��� 6 
 C D F � � " � 
=�
" ��7 , we conclude, for @ large enough,
that 	

� > �� 	
� 
 B �hOQ��
P� � �1
P�,� 
=� � � � ����� � 
=� � � �� ��
P� � J 
@ M c �@ � � ����� � 
=� � � � 
=� � � �� ��
P� � J 
@ M
c � � @ � � � �@ � � � � � � 
=� � � �� �1
P� � J 
@ M n

Whence the boundedness of
����� �?> �� 	
� � J
� ��OB��
P�

� ��
P�,� 
=� �	� is established.

The boundedness of the second limit is similar as above ; this achieves the proof.

Before stating the last result of this section, we will assume ��� a W � , � C 6 � �.��7 , and
distinguish the two hypotheses
(H6)
� �?> 6 ! ��� � C 6 � �.�S����7 7 a �	�#� � ,

(H7)
�3254�6 ! ��� � C 6 � �.�S����7 7 " �
�+� � ,

for � � � or � � � .
Theorem 3. Assume (H4)-(H5) and either (H6) or (H7) holds. If the problem (P) has a
nonnegative global solution, then there are constants � � and � � such that the following
limits �����#�?> �� 	
� � J
� /����1
P� � �1
P�B� 
=� �
� ��� � � C 6 � �1��7g� (21)

are bounded. The real numbers � � and � � are specified in the proof.
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Démonstration. As before, the inequalities (11) and (12) imply that there is a positive
constant C such that for � C 6 � �.��7 , one has

� , � J � � � � /�� �1
P� � J 
@ M c�
�
 � @ ��� � � � � �� ��
P� � J 
@ M n (22)

– If (H4), (H5) and (H � ) hold. Consider the function

�
 � @ ��� �=� 
 � @ ��� �
� , � J � n

The situation then is similar to that of the last theorem with
�
 instead of 
 . Following the

last proof we obtain � �:� � and � � � � � � ���
�Q�
where � and � are defined in the last proof.

– If (H4), (H5) and (H7) hold, let � � be the unique positive real number defined by

� � > � ;
�(� � ��� �
�+� � W ! �K�$� � C 6 � �.�9����7��+�X� �
�+� � � � � � �Bn
It follows from (22) that there is a constant 
4abL such that��� � /��0��
P� � J 
@ M c 
@ � � J , � J � � � ��� � ��� � �� �1
P� � J 
@ M n
Proceeding as in the end of the last proof, we show that

�����#� > �� 	
� � J
� /��0��
P� � ��
P�Q� 
=� � � J , � J � � � � (23)

is bounded. This achieves the proof.

The next section deals with the nonexistence of global (nontrivial) solutions to the problem
(P) from a different angle : We will present results of Fujita’s type. These results will take
into account the dimension

�
instead of the behaviour at infinity of the data and of the

nonhomogeneous terms. We refer the interested reader to the valuable surveys by Levine
[25], Bandle and Brunner [4] and Deng and Levine [11] for some background.

3 Necessary conditions for global solvability : Fujita’s type
results

The hypotheses considered in this section are (H1)-(H3). In order to simplify the presenta-
tion, we initially set ) �2; � � . We start with the following result.

Lemma 1. Let �K�
�\%S� be a weak solution of (P) in � . Then, if � � L or % � L , one has� ��% �RL .
We show this lemma in a general way in order to use some contained results in the sequel.

12



Démonstration. Let  �� C"! ��D'F G ��L(�$�%� � � be a nonnegative function such that

 � �1

������� � � � �?� � 
=� @@ � � � a � �
where @ abL and � C"! � � L(����� � � is the ”standard cut-off function”

L_c � ���V�:c � � � ���V���
	
� if L_c��rc � �L if � e �Sn (24)

Then the equation (5) gives :�
�  �� � �=� > YV
 YM��� � � @ � c �
� 3 � % � �  �� � � � � % � 6 � �  �� � 8 YV
 YV�
c � ��� � % � -  �� YV
 YM� � � � - � �
� �  �� � � - ��� - ��� �  ��� ��� -Q��� �� YM
 YV� �

� - ��� � � -
� � � � � % � -  �� YV
 YM� � 6 � - � � � � �  �� � - ��� -Q�96 �  �96 ��� - �96 �� YV
 YV� �

� - �96 � � - �
and (4) gives also :�
�  �� � % � - YV
 YV�?���0� @ � c �
� �$� �=� �  �� � � � � ��� � � �  �� � � � % � & � �  �� ���AYV
 YV�

c � ��� � �=� >  �� YV
 YM� � � � > � ��� �  �� � � > ��� >���� �  ��� ��� > ��� �� YV
 YV� �
� >���� � � >

� � � � � �=� >  �� YV
 YM� � � � > � � � � �  �� � > ��� >��g� �  �g� ��� >��g� �� YV
 YV� �
� >��g� � � >

� � ��� � % � -  � YV
 YV� � & � - � �
� � �  � � - ��� - �g& �  �g& ��� -Q�g& �� YV
 YM� �
� - �g& � � - �

where � � @ �=� ��� � %0OB��
P�  �� ��

��LM� YV
 � ��� /A@B�1

�����  �� �1

����� YV
 YV�$�
and

�0� @ ��� � � � ��OB��
P�  �� ��

��LV� YM
r� � � / � �1

�����  �� �1

����� YV
 YV�$n
If we set

� � @ �=� � � � � �=� >  �� YV
 YV� � � � > �	� � @ ��� � � � � % � -  �� YV
 YV� � � � - �
�2� � �
� �  �� � � - ��� - ��� �  ��� ��� -Q��� �� YM
 YV� �

� - ��� � � - � �X� � �
� � �  �� � - ��� - �96 �  �96 ��� - �96 �� YV
 YV� �
� - �96 � � - �


 � � �
� �  �� � � > ��� >���� �  ��� ��� > ��� �� YV
 YV� �
� >���� � � > ��
 � � �
� � �  �� � > ��� >��g� �  �g� ��� >��g� �� YV
 YV� �

� >��g� � � > �
� � � � � � �  � � - ��� - �g& �  �g& ��� - �g& �� YV
 YV� �

� - �g& � � - �
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we then have the following system of inequalities :�� � � > � @ �
� � � @ � c � � � @ � � � � 6 � @ �$�
� -9� @ � ���0� @ � c 
 � � @ � � 
 � � � @ � � � �p& � @ �Nn (25)

It is easy to see that if
�

is selected sufficiently large then the integrals � , � , 
 , 
 and
�

are convergent.
On one hand, if %�� L then

� >Q� @ � is bounded and increasing function of @ . Using the
monotone convergence theorem, we deduce that � �=� > is in � � � � � and

�����B � J
� � � > � @ � � � � @ ����� � � � ��� > YV
 YV�?� � � � %0O0��
P� YV
I� � � /A@Q��

����� YV
 YM�+��L(n
Then, we have necessarily � �RL , and consequently �K�
�\%S��� � L(�\LM� .
On the other hand, if � � L then there is a positive constant 
 O such that �Z-9� @ � c
:Ox� � � & � @ � . Since � " � , there is a positive constant 
 � such that �t� @ � c 
 � . Si-
milarly, the function � % � - is in �:�5� � � .
Note that instead of (25) we have more precisely�� � � > � @ �
� � � @ � c �

�

� � @ � � � �

� 6 � @ �
� -9� @ � ���0� @ � c 
 �� � @ � � 
 �� � � @ � � � �

�p& � @ �N� (26)

where

�� � @ �'� � �
� � � �=� >  �� YV
 YV� � � � > � �

� � @ �=� � �
� � � % � -  �� YV
 YV� � � � - �

and
� B � 6 ��

�����:C � 
 @ c �
� � 
=� @ cR� @ 7 . Indeed, as before, the equation (5) gives :�
�  � � �=� > YV
 YM��� � � @ � c �
� 3 � % � �  � � � � � % � 6 � �  � � 8 YV
 YV�

� �
� � 35� % � �  � � � � � % � 6 � �  � � 8pYV
 YV�

c � �
� � � %
� -  �� YV
 YM� � � � - � � � � �  �� � � - ��� - ��� �  ��� ��� - ��� �� YV
 YV� �

� -Q��� � � -
� � �

� � � %
� -  �� YV
 YM� � 6 � - � � � � � �  �� � - ��� - �96 �  �96 ��� - �96 �� YV
 YV� �
� - �96 � � - n

This implies that � > � @ � � � � @ �Ac � �

�t� @ � � � �

� 6 � @ �Nn
Similarly, we obtain the second inequality

� - � @ � ���0� @ �Ac�
 �� � @ � � 
 �� � � @ � � � �

� & � @ �Nn
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Now we return to the system (26). Using the dominated convergence theorem, we obtain�����B � J
� �

� � @ �=��L . Hence,

�����B � J
� � � - � @ � ���0� @ ����� �
� � % � - YV
 YV�?� ����� ��OB��
P� YV
r� ��� / � ��

����� YM
 YV�=�2L(�
which implies that % �RL . This completes the proof.

The following lemma gives a generalization of lemma 1.

Lemma 2. We use the same notations as before. If
� � @ � or � � @ � is bounded then � �% �RL .

Démonstration. If
� � @ � or �t� @ � is bounded, it follows via (25) that

� � @ � and � � @ �
are bounded. Then ��� % � > � � % � - � is in � � � � � G � � � � � . Finally, using (26) and the dominated
convergence theorem, we obtain the result.

Theorem 4. Assume that � a �9254$6 � �\v)7 and �ia2u , with � " � �?>�6 � �\u#�\v)7 . If one of the
following conditions is satisfied :

a)
� � �
� � � " � �?> � vhW �u W � � � u � � u � � � � c � � �

� W ui� � �ZW � u
b)
� u " � � �� � � " � �?> � vPW �uoW � � � u � � � � c �

� W � W � � W �
� W�u^� � � W � u

c)

	 vhW �u W � " � � �� � � " � u � �
	
� � �
� � � �� � u � � �*v

� �"u a � u � � � � c �
� W � W � � W �

� W�u^� � � W � u
d)

	 v�W �u W � " � � �� � � " � u � �
	
� � �
� � � �� � u � � �*v

�A�"u " � u � � � � c � �Ku^� �V�� � W�u?v W � � W �
� W�u^� � � W � u

then, the problem (P) has no nontrivial global weak solution.

Démonstration. Let ���
�\%S� be a nontrivial weak solution of (P) and  � C"! �1D'F<G � L(����� � �
be a nonnegative function such that �� �1

������� � � � � � � 
=� �@ � � � � a � �
where � abL , @ abL and � C#! ����L(�$�%� � � is the cut-off function defined before. Following
the same method described in the previous proof, we deduce the two systems (25) and (26).
We precise that the different terms appearing in those two systems depend on � .
Using the fact that

�����B � J
� � � @ � e L and
�����B � J
� �0� @ � e L and applying Young’s inequality

in the system (25) one has, for some � , L " � " � ,� � W � � � -$> c � ��� � � � 
 > � -N> ��� -$>���� � ���$@ � � � � 
 > � -N> ��� -$>��96 � ��� 	 � � � � > � - ��� - �g& �� � � � � � � � 
 > � -$> ��� -$>��g� � ����� � � � � � 
 > � -N> ��� -$>��g�56 � �
� � W � � � -$> c � 	 ��� � � � - 
p� -$> ��� -$>���� � ��� 	 @ � � � � - 
 � -$> ��� -$>��g� � ��� 	 	 � � 3 � - 
 6 8 -N> ��� -$>��96 �� � 	� � � 3 � - 
 6 8 -$> ��� -$>��g� 6 � ��� 	 � � � � - � - ��� - �g& � ��� 	 � � � � - � 6 - ��� -Q�g& � n
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At this stage, we introduce the scaled variables � � @ � � � and � � @ ��� 
 . It is easy to
check that for @ large enough

� c � � @ % - � � c �$@ @ % 0 � 
{c � 	 @ %
� �	
kc ��� @ %
� and
� c ��� @ %�� �

where

! � � � � � � W � ��� � � W � ��� � � W � � � � �!
@ � � � � � W<� ��� � � W�vK���5� � W<vK� � � �! 	 � � � � � W � � � � �ZW � ��� � � W � � � �9�! � � � � � � W<� � � � � W�u?���5� � W�u � � �9�! � � � � � � W<� ��� � � W �o���5� � W �o� � � n
Finally, we have�� �y� � W � � � � @ ��-$>Ac � �

� @�� - � � � � @�� 0 � � � � @�� � � � � � @�� � � � � � @�� � � � ��� �
� � W � � � -$> c � 	� � @ � - � � � � @ � 0 � � � � @ � � � � � � @ � � � � � � @ � � � � � � @ � � � � � � �

(27)

where

� � � � � � � � � �A� W � W � � �
� � W � �

� @B� � � � � � � �A� WZv � W � � �
� �ZW<v �

� 	 � � � � � � � �A� W � u^� � � � W � � u W<� � � �
� � W�u �

� �0� � � � � � � �A� � � � W � u�v�W<� � u W<� � � �
� � W�u�v �

� �B� � � � � � � �A� � � W � � W<� � �
� W � �

� � � � � � � � � � �	W � � W � �
� � W � �

� @B� � � � � � � � �	W � u W<� �V�
� � W�u �

� 	 � � � � � � � � � � � � W�v � � W<v � W<� � �V�
� � W<v �

� �0� � � � � � � � � � � � W � u�vPW<� � � W<�=v � �
� � W u?v �� �B� � � � � � W � �

� W � �� � � � � � � � � � � � � W � � W<�=vPW � � � ���o�
� W � n

The parameter � is fixed now such that � � � � ��� � 	 � � � , i.e.

� � � � �R� � � W �
� � � � � �#W u=� � � � � �
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with � � � � � �#W u=� � � � �xabL . Therefore,

� � � � � �#W � @0� � � � � � �Ku^� � u^� � W<v � W<vhW � � � �� � � W<vK� � W � �<u W � � � � u � �
� � � � � �#W � ��� � � � � W � �Kui� � u^� � W�v � W�v�W � �(u � ��	W � �"u W � �A� � u?�?� W � � �<u?vK� �
� � � � � �#W � �0� � � � � � �Kui� � u W � W � �o� � ��	W � �"u W � � � � u � � � W �o� n

Note that if � � � � � � � � � � � " � �?> ��� vhW � � � ��u W � �$� ��� u,� � � u � (case (a) in Theorem 1)
then � � � � � �'� �3254� A � A � � �	� � � � . In this case, if

� � �Icz� � � � �5� � W u � � �AW � u?� then � � � � � �xcyL
and there is a constant 
 such that

� � @ � -$> � � � � � % � -  �� YM
 YV� � > � � � � � � % � -  �� YV
 YM� � > c 

where � Bo� 6 �1

����� C � 
 L^cb�?� � 
=� � - cI� @ � - 7 . According to Lemma 1, we deduce that� ��% �RL . This contradicts our assumption.

Assertions b), c) and d) can be showed in the same manner.

Theorem 5. Assume that � a �9254$6 � �\v)7 and �ia2u , with � " � �?>�6 � �\u#�\v)7 . If one of the
following conditions is satisfied :

a)

	
� � � � �#W�v#a � � ��A� � a �92:4 � vPW �uoW � � v� � � � � � c � � �

� � � � W � vhW<v
b)

	
� � �
�A� � a �92:4 � v�W �u W � � v� �B� �{� � �#W<v � � � � � c � � W �W � � W � � ��v �"v � v � � W �

� W �
c)

	 v
� "
� � �
� � � " � �?> � v�W �u W � �B� �{� � �#W�v � � � � � c � � W �W � � W � � ��v��*v � �(� � �*vK�

� � W�u?v
d)

	 vPW �uoW � a � � ��A� � a �92:4 � v� �B� �4� � �#W�v � � � � � c � � > 6 � � � � @G7
where

� � � � � W �W � � W � � � v �*v � � � � �*vK�
� � W�u?v � u?Y � @x� � � W �W � � W � � � v(�*v � v�� � W �

� W � �
then, the problem (P) has no nontrivial global weak solution.

Démonstration. We follow the proof of Theorem 4 and choose the parameter � such that� � � � ��� � 	 � � � , i.e. � � � @A�R� � � � W � � � � �(� � � � �
W v � �x� � ��� with � � � � � �
W v � �.� � �xabL .
If � �z� � �`W v#a � � � � �5� �.� � �:a �3254 6 � vhW � �5��u W � �N��v � ��7 (case (a) in Theorem 2) then� � � � @N�:� �92:4� A � A � � � � � @$� . In this case, if

� � �tc � � � � �5� � � � � W ��v�W"v � then � � � � @N�ZcRL and

there is a constant 
 such that

� -$> � @ ��� � � � � �=� >  � YV
 YM� � - � � � � � � �=� >  � YV
 YV� � - c�
 n
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The result of Lemma 1 completes the proof.

Assertions b), c) and d) can be proved similarly.

Comments

1) Note that in Section 3, the positivity of the solutions of (P) is not guaranteed even if the
data are positive. It is then natural that the initial data �POB��
P� and %0O0��
P� may change signs as
well as the nonhomogeneous terms / � �1

����� and /A@B�1

����� . Now, our hypotheses are weaker
than those in the literature, i.e. the data may change signs but must have nonnegative inte-
gral. This difficulty was first solved in the scalar case in [22].

2) We are now able to treat the case where ) e L , ; e L , )��2� ,.- � 
=� � - and ; �2� ,&0 � 
=� � 0 for �
and � 
=� large enough. A slight change in the proof (Theorem 4 and Theorem 5) shows that
we have the systems (25)-(26) with

� � @ � � � �
� � �=� >  � ;xYV
 YV� � � � > �	� � @ ��� � �
� � % � -  � ) YM
 YV� � � � -
� � � �
� �  �� � � - ��� - ��� � �  �� )?� ��� ��� - ��� � YV
 YV� � � - ��� � � -
� � � �
� � �  �� � - ��� - �96 � �  �� )?� �96 ��� - �96 � YV
 YV� � � - �96 � � -
 � � �
� �  �� � � > ��� >���� � �  �� ;(� ��� ��� >���� � YM
 YV� � � >���� � � >

 � � � � � �  �� � > ��� > �g� � �  �� ;(� �g� ��� >��g� � YV
 YV� � � >��g� � � >
� � � �
� � �  � � - ��� - �g& � �  � )?� �g& ��� - �g& � YV
 YV� � � -Q�g& � � - n

This naturally changes the ! � , � � � � n n|n|� 	 into ! � �4� � � � W � ��� � � W � � � ; � �5� � W � � � � ,!
@ � � � � � W � �$� � � WHvK�#� ;�@$� � � W*vK� � � , ! 	 �j� � � � W � � � � � W � �`� ; 	 �5� � W � � � � ,! �:�4� � � � W � � � � � W u?�?� ; � �5� �ZW u � � � , ! �:�4� � � � W � �$� � � W �o�?� ;��$� � � W �o� � � ,
where; � � Wr� � � � � � � � � � � W � � , ;�@ � WZv � � � � � � � � � � � W�vK� , ; 	 � W � � @ ���S@ � � � � �_W � � ,; �:�XW u=� � @=���9@ � � � � � W�u?� , ;��A� W � � � � ��� � � � � � � W �o� .
3) This work can be easily generalized to higher order systems with triangular diffusion
matrices under the same type of hypotheses.

4) The method described above can also be used for the more general system :�� ����� ��

������� � 
=� % � �	W �^� % - � @ �  �K�P������� WZ�^� % 0 � @ ��� �K%S��� � �H)+�1

����� 
 �K�P�?�"/ � ��

�����%0���1

������� � 
=� ( � WZ�i�C%
� � @ ���.�K%S��� ��;?�1

������v ��%(� �</A@B��

�����
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where W � WZ�i� % � � @ is the fractional power of the laplacian. A suitable choice of the functions , � and � are required.

5) If the parabolic problem (P) is replaced by the hyperbolic one, i.e., ���?�	��%0�K� is replaced
by �����w�	��%0�w� � , our study remains valid. The nonnegativity assumptions on �K�?O5�\%�O�� are set on����O����\%0O�� � and the test function changes slightly ; for example

 �� ��

�����'� � � � � @ � � 
=� @@ � � � a a � n
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I. C. R. Acad. Sci. Paris, Série I 331 (2000) 31-34.
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