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A continuous model of biomass size spectra
governed by predation
and the effects of fishing on them

Eric Benoit* Marie-Joélle Rochet!

Résumé

A new time-dependent continuous model of biomass size spectra is
developed. In this model, predation is the single process governing the
energy flow in the ecosystem, as it causes both growth and mortality. The
ratio of predator to prey is assumed to be distributed : predators may
feed on a range of prey sizes. Under these assumptions, it is shown that
linear size spectra are stationary solutions of the model. Exploited fish
communities are simulated by adding fishing mortality to the model : it
is found that resalistic fishing pressures should not affect the slope of the
size spectrum.

1 Introduction

Biomass size spectra, the distribution of biomass over body size classes in
a community, have been the subject of continuous interest since the first deve-
lopments by Sheldon and colleagues [Sheldon et al., 1972, Sheldon et al., 1977].
This is both because it appears as a very conservative feature of marine commu-
nities, and because of the strong appeal of summarising complex communities,
comprising numerous species with complex trophic interactions, within a simple
plot and one or two numbers such as the slope and intercept of the spectrum.

Biomass size spectra have been widely used both in marine and freshwater
ecosystems for estimating production at different trophic levels, especially
fish production [Sheldon et al., 1977, Borgman, 1982, Leach et al., 1987,
Sprules et al., 1991, Boudreau and Dickie, 1992, Cyr and Peters, 1996], predic-
ting the effects of various human perturbations [Borgman and Whittle, 1983,
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Cottingham, 1999], and for more basic purposes such as analysing eco-
system structure [Schwinghamer, 1981, Sprules and Munawar, 1986]
and dynamics [Denman et al., 1989], or estimating mortality rates
[Peterson and Wroblewski, 1984]. Moreover, as the concern grows that
fisheries management should consider ecosystems rather than isolated popula-
tions, there is increasing interest in using biomass size spectra as assessment
tools for multispecies fisheries [Caddy and Mahon, 1996]. Pioneering works
suggested that size spectra are regular and conservative within a fishery, but
vary between systems [Pope and Knights, 1982, Murawski and Idoine, 1992].
These variations may be ascribed to fishing. Several authors have hypothesised
that exploitation should decrease the slope of a fish community biomass
size spectrum, and reported decreasing trends of this slope in exploited
systems [Pope et al., 1988, Anonymous, 1995, Greenstreet and Hall, 1996,
Anonymous, 1996, Rice and Gislason, 1996], although this pattern is not
consistent across all systems ([Bianchi et al., 2000]).

These uses are mainly based on empirical observations. However, an under-
lying theory is needed to be fully able to predict and assess the effect of fishing
on the size spectrum, and also to determine reference points (how steep should
the size spectrum be or not be ?). This theory should explain why size spectra
are regular.

Existing theories of the biomass size spectra rely on the flow of biomass
from the smallest- to the largest-sized organisms through size-dependent pro-
cesses. Some of them consider discrete trophic levels and the considered pro-
cesses include growth, production, respiration, predation and even reproduc-
tion [Kerr, 1974, Borgman, 1982, Borgman, 1983, Thiebaux and Dickie, 1992,
Thiebaux and Dickie, 1993]. However, applying them to real situations is
complicated by the problem of defining trophic levels [Borgman, 1982]. A
continuous biomass flow model avoiding this difficulty has been developed
[Platt and Denman, 1978, Silvert and Platt, 1978]. In this model, the size-
dependent processes governing the energy flow in the ecosystem are loss (mainly
by respiration), and a "generalised growth function", which implicitly includes
growth and predation. However, to predict the effect of additional mortality on
a large community encompassing several size scales, it is desirable to explicitly
describe predation processes. Silvert and Platt [Silvert and Platt, 1980] develo-
ped a continuous, time-dependent, non-linear model of the size spectrum where
the energy flow is governed only by predation, and the associated growth and

mortality. They predicted that biomass size spectra can be linear, assuming a
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fixed prey-predator size ratio.

In this paper, this assumption is relaxed and a continuous model of the size
spectrum is developed, where the energy flow is governed by predation, with a
distributed prey-predator size ratio. This means that predators may feed not
only on preys of a given unique size, but on a range of prey sizes. In this model,
reproduction is assumed constant and independent of the biomass present in
the system. We first develop the model and establish some of its mathematical
properties : it is predicted that size-spectra can still be linear. We then perform
some numerical simulations to predict the effect of fishing on a fish community.
The model is developed for fish in the broad meaning of "animals swimming
and foraging in the open water".

2 The model

2.1 Notations

| Symbol || Definition | Unit |
w weight of a fish g
x logarithm of w In(g)
t time year=y
u(z,t) number of fishes at time ¢ by unit volume, by unit of | m =3
T
f:f u(x,t)dz || number of fishes with weight in [e®!,e®2], at time ¢, | m™3
by unit volume
g(z,1) growth rate y !
w(z,t) mortality rate y !
»(q) probability of predation when a predator size x meets
a prey size £ — q

TAB. 1 — Definition of the mathematical variables

The fundamental independent variables are time ¢ and x, where z is the
(natural) logarithm of the weight w of a fish. The derivative with respect to z
is related to the derivative with respect to w by

0 0
oz~ "ow
The fundamental unknown is u(z, t), the distribution of the number of fish with

respect to z. Then, the number of fish on the weight range [w, ws] is given by

In w2
/ u(z,t)dx
1

nwi

the formula
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The mathematical change of variable z = Inw shows that this expression is
equivalent to
w2 1
/ L n(w), t)duw (1)
w1 w
The mass of a fish is w = €*, so the biomass of all the fish the weight range in
[wy,ws] is given by

w2

/ e®u(zx,t)dr or, equivalently / u(ln(w), t)dw (2)

1 w1
The function u can be considered either as the distribution in z of the number
of fish or as the distribution in w of the biomass.
Consider a fish of weight W (t), and X (¢) = In(W (¢)). The growth function

g is given by
dX
— =g(X
= = g(X(),1 3)

or, using weight,
aw
dt
The function p(z,t) is the mortality rate of fish at weight e®.

= W(t) g(In(W(#)),1)

2.2 Balance

At time t, the number of fish in the weight range [e®!, e®2] is given by

/ u(z,t)dx
z1

Some fish die and at time ¢ + dt, the remaining number of fish is
T2
/ (1= u(, H)dt)ulz, t)dz
Z1
Because, in the same time, they grow, these remaining fish are exactly the fish
in the weight range [e?1T9(z1:t)dt gz2t9(22,)dt] gt time ¢ + dt. This number is

z2+g(z2,t)dt
/ u(z,t + dt)dz
z1+g(z1,t)dt

We equate these numbers and compute the derivative with respect to dt at the
value dt = 0 :
2 2 Qu
- [ e tyute, s = [ G t)ds + gloa,ulea,t) - glar, Ol
T1 1

Derive with respect to s :
Ou  0(gu)
ot or

(4)
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2.3 Predation

In this model, predation is the unique driving force of growth and mortality.
Each predation event implies two individuals. The larger one will grow, the
smaller one will die. The ratio of the weights of the two individuals is supposed
to be distributed independently of the weights of the individuals : when two
individuals of weights e” and e¥ meet, the probability that a predation happens
is given by a function ¢ which depends only on the ratio of the weights e¥~7.
We will denote y — z by g. The function ¢ (figure 2.3) will be dome-shaped,
positive, defined only for ¢ positive, having a unique maximum. For example,

for numerical simulations,

o) = e (L) e 5)

%

probability

0.4

10 100 1000 10° 10

ratio of the weights of the predator and the prey

Fi1G. 1 — Graph of ¢, the probability that a predator of weight ¥ meeting a
prey of weight V=7 will eat it.

This function ¢ peaks at 1 for ¢g. The parameter n determines the thickness
of the peak of ¢.

Let us consider a predator of weight e in a period of time dt. The volume
searched is supposed to be an allometric function of weight ([Ware, 1978]) : it is
given by Ae®¥dt. Then the number of encounters with possible preys of weight
in e, e*19%] is Ae®u(x,t)dtdr. The number of preys eaten in the weight range
[e%,e**2] is Ae®Yp(y — z)u(z,t)dtdz. The distribution of predation events is
given by

Ae*Yo(y — x) u(z,t) u(y,t) dz dy dt (6)
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2.4 Mortality

From the point of view of the prey, expression (6) gives the mortality rate
by predation :

o) = [ Aoty =) uly ) dy
which is equivalent to ’
o) = e [ eplq) e + a,1)da ©
In simulations, we will add the fishing mortality rate :
p(2,1) = max(0, a(z — b))

where a and b are parameters. It is a linear increasing function of log weight
with recruitment to fishing at weight exp(b).

2.5 Growth

From distribution (6), the mass of preys eaten by one predator is :

Ae*dt /y oy — x) u(z,t) dx (8)

—00

(e” is the weight of one prey).
The increase in weight of the predator is given by e¥g(y, t)dt (confer section
2.1). If the biomass eaten is used to grow with a constant efficiency K, then

y
evg(y,t)dt = K/ e®Ae“Yo(y — z) u(x,t) dz
which is equivalent to

g(y,t) = KAe™ /Ooo e 1p(q)uly —q,t) dq 9)

2.6 Conclusion

Combining equations (4), (7) and (9), we obtain the following model

%(w,t) = —% [K’Ae‘m /000 e 1o(q) u(x — q,t) u(x,t) dg (10)

_Ae / “U(q) ulz + ¢,¢) u(z, ¢) dg
0

—max(0,a(z — b)) u(z,t)
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It is an equation of evolution, ‘g—’; = A(u), where A is an operator on the
functions of one variable z. The difficulty lies in this operator being not local :

it includes convolutions.

3 Some mathematical properties of the model wi-
thout fishing

To allow a mathematical study, we first assume that the solution u(z,t) is
defined for all real z, i.e., for all positive weights. Actually, it is not realistic :
we need another model for lower levels (plankton or very small fish) in the
ecosystem (see section 5.4).

For the sake of generality, ¢ is kept as a parameter-function with only one
assumption : there exists a positive (maybe infinite) real v such that the integral
fooo ©(q)eMdyq is convergent if and only if A is smaller than + (with the explicit
© given, we have v = n/qo ; if ¢ has a compact support, we have v = +00). For
technical reasons, we also assume that v > «/2 (with our fixed values of the
parameters, this condition is satisfied).

3.1 Relationship between rate and concentration

As the operator A is homogeneous quadratic with respect to u, the following

lemma is obvious :

Lemma 1 If u(z,t) is a solution of the model, and if ¢ is a constant, then,

cu(z, ct) is also a solution of the model.

The biological meaning of this lemma is : if the concentration of fish, biomass
and nutrients is multiplied by a constant factor ¢, the biomass dynamics will be
similar, at a rate multiplied by ¢. Another consequence of this lemma is that
if we change the parameter A to cA, the solution u(x,t) becomes u(z,t/A),
or Au(x,t). Then, the parameters A and ug do not influence the qualitative
behaviour of the model, they determine only the speed of the evolution.

3.2 Stationary linear spectrum

Lemma 2 There exists a unique Teal A such that for any wug, the function

Az

u(z,t) = upe™ is a solution of equation (10). This X is the unique real so-

lution of

(2/\+a)K/ e~ M) dg + / et Nip()dg = 0 (11)
0 0
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Moreover, X\ belongs to |—y — 1, —a/2].

Proof The proof that a function e**

is a solution of the model if and only if
condition (11) is satisfied is easy.

To prove the existence and unicity of A, we study the function

F(A) =2\ +a) K/ ~(a,00) dg +/ el*tNigp(g) dg
0

and prove that

— the domain of Fis |-y — 1,y — o[, and it contains —a/2,

— for A > —a/2, the function F' is nonnegative,

— for A near —y — 1, the function F is negative,

— when F()\) =0, and 2\ + a < 0, the derivative F'(}) is strictly positive.
From this follows the existence and unicity of a real solution of F(A) =0. 1

Although this is not the only solution (even stationary solution : see be-
low), this shows that a lineary decreasing size spectrum can appear, even if the
predators are allowed to prey on a weight range rather than a single weight.

3.3 Other special solutions
3.3.1 Weak slope

Be C the constant
+oo
C= A/ (1 - aKe_(l_o‘)q) v(q)dq
0

(assuming that a < v + 1, the integral is convergent). It is easy to show that

uge~**

) = L€ "~
wat) = TG

is a solution of equation (10) with «(0,0) = ug-

If C is positive (which is consistent with parameters values plausible in real
ecosystems), the solution is decreasing towards zero. It is a linear spectrum with
a weaker slope than the stationary solution. This means that if for any reason
the slope of the spectrum becomes less steep (i.e., more large fish and less small
fish), there is a risk of all biomass being washed out of the system by predators
eating preys faster than they are created by growth. Only the input from the
boundary condition (recruitment) could save the ecosystem.

If C is negative, the slope will be greater than the slope of the stationary

solution, and the population will increase indefinitely and tend towards infinity.
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This solution is mathematically correct, but the input of biomass in the small
weights must also increase until infinity.

3.3.2 Gaps in the spectrum

Let us assume (for this section) that the function ¢ has a compact support,
i.e., p(q) is zero except for ¢ in some range [gm,gm]- In this case, if u is a
function which is zero except on some intervals of length less than ¢, and with
gaps of length at least g, then u is a stationary solution. It corresponds to
size spectra where no predation can occur, because the weights of the fish do
not match predators requirements. This solution illustrates a shortcoming of the
model : there is no mortality except by predation, so, if a fish has no food and

no predator, it stays at the same weight and never dies.

3.4 Total biomass

The total biomass in one cubic meter is :
—+oo

B(t) = / e’u(z,t)dz

—0
The integral is convergent only if the spectrum u is small enough for large z,
which is not true for a spectrum linear on whole R (the integral fjo(): e*e M dy
is infinite for all \).

When the density u is given by uge™® for x belonging to some range
[Zmin, ZTmax] (it is almost the case for the stationary solution computed above),
the biomass of fish of weight w in [wo, 2wo] is ue1ln 2, independent of wp : the
biomass is homogeneous with respect to the weight of fish. When u = e*?, with
A < —1, the concentration is higher in small weights.

To describe total biomass dynamics, we compute the derivative of B with
respect to time, using equation (10) :

dB oo du
o =/ ewa(w,t)dx =

—0o0

+oo b
= —/ [ez% (KAe* ) + Ae®e** I | dx

with
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Integrating by parts, using u(£oo,t) = 0, we obtain

B +oo
(il_t = / [e"K Ae®" I} — Ae®e®" 1] dx

—00

Changing = to y — ¢ in the integral [ e*e** I,dz gives

/ (002624 (q) u(z+q,t) u(z, t) dg dz = / (D)9 e (g) u(y, t) u(y—q, t)dg dy

Then we conclude that

dB oo oo _
o = AQ- K)/ / e e d0(g)uly — g, t)u(y, t)dgdy
y=—o0 J q=0

From this result, it follows that, if K = 1, total biomass is invariant. This
is a corollary of the model : if K =1, the biomass is conservative, including for
each individual predation event. In fact, there are losses when converting food
into body mass, hence K < 1 and the biomass decreases towards zero. To avoid
that, an external input of biomass in the small weights is needed : it is given
by small fish food (e.g. plankton). This is related to the boundary condition for

small z.

3.5 Individual life history

Here we give some consequences of the model for an individual fish : its
growth curve, life expectancy (average time the fish will live, given it is alive at
time t), and food ration.

We already defined the growth function X (¢) of an individual fish (equation
(3)). Combining with g (equation (9)), this gives a differential equation for X (¥)
which can be solved with the initial condition X (0) = zo. It gives the weight
W(t) = eX® as a function of time.

The food ration or instant amount of prey ingested is given by equation (8).

Equation (7) gives the function m(t) = u(X(t),t) which is the mortality rate
at time ¢ for the individual fish. The probability of living until time ¢ for a fish
is given by exp fo m(T)dr.

The distribution of the random variable "age of death" is given by p(t) =

t) exp ( Jy —m dT)

Then classwal formulae give the life expectancy : E(xo) fo tp(t)dt. An

integration by parts makes the computation easier :

Eao) = /Oooexp (— /Otm(f)df) dt
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Let us apply this to compute the life expectancy in the case of the stationary
exponential solution u(z,t) = uge®. We follow the procedure above : equation
(9) gives :

g(z,t) = KAC elotNe

where C) = uo/ e~ (q)dg
0

Equation (3) is now :
dX

dt
and we can compute the solution with initial condition zq :

= KAC,eletNX(®)

In(—C1 KA (a4 \) t 4 e—%o (atd)

X(t) = —
®) a+ A
W (t) = (—~CL KA (a + A) t + W, (*TV) -1/ (et (12)
The mortality rate at time ¢ for a fish of weigt W (t) is given by equation (7)
Cs
ml) = G+ Go

where 03 = ACQ 04 = KAC1(—a _ A) CO — WO—(OH-)\)

and C) = uo/ @+ (q)dg
0
Then, the life expectancy for a fish of weight Wy is :

Co
Cs3 —C4

This is valid only if C5 > C4. It is easy to check this when A is a solution of

EW,) =

equation (11).

4 Parameters

The values of the parameters were set as follows (table 2), based on publi-
shed literature. The parameters of the model are broad features of a food web
and cannot be measured for a given community ; rather, the values in table
2 are reasonable, given the available data on fish and marine organisms. The
parameters a and b of the fishing mortality function were estimated by linear
regression of fishing mortality rate F' at age versus log weight at age, combining
all stocks assessed by the International Council for the Exploration of the Sea
in 1) the North Sea and ii) the Ba of Biscay. Both sets of estimates were not
found to differ significantly.
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Para- Definition see Unit Ref. | Lower | Upper Sources
meter § value | limit limit

a Exponent of weight | (2.3) — 0.82 0.6 0.9 | [Ware, 197§]
in volume of water
searched

A Volume searched by | (2.3) | m3.y~! 640 [Ware, 1978]
unit weight

et Modal ratio of pre- | (2.3) — 100 10 1000 | [Daan, 1973, Ware, 1978,
dator size to prey Silvert and Platt, 1980,
size Borgman, 1982,

Cohen et al., 1993,
Thiebaux and Dickie, 1993,
Vignes, 199§]

n An inverse measure | (2.3) — 5 1 10 | guessed from  the  distri-
of the width of the bution of prey size in
predator-prey size predator stomach from
ratio distribution [Daan, 1973, Cohen et al., 1993]

K Growth efficiency (2.5) — 0.2 0.1 0.6 | [Paloheimo and Dickie, 1966,

Ware, 1978, Borgman, 1982,
Gurney et al., 1990,
Buckel et al., 1995]

ug Intercept of the | (5.2) [ m™3 0.01
spectrum at time 0
Slope of the plank- | (5.4) — A
ton size spectrum

b log weight at re- | (2.4) — In(10) 0 Estimated from
cruitment to the fi- [Anonymous, 1998b,
shery Anonymous, 1998a]

a Slope of the fishing | (2.4) [ 37! 0.1 0 0.5 | Estimated from

mortality as a func-
tion of log weight

[Anonymous, 1998b,
Anonymous, 1998a]

TAB. 2 — Values of the parameters used in model simulations. Lower and higher
limits refer to the range of values used in the sensitivity analysis.
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5 Numerical simulations

5.1 Slope of the stationary solution

The slope A of the stationary size spectrum was computed from equation
(11) with function ¢ given by (5), for different values of the parameters (table
3). The slope of the size spectrum is insensitive to the parameters of the model,

especially to the ones determining the shape of function ¢, n and qq.

(nler [ a [E] A ]
5 ] 100 | 0.82 ] 0.2 || -1.0439
10 | 100 | 0.82 | 0.2 || -1.0499
1| 100 | 0.82 | 0.2 | -1.0146
5 | 1000 | 0.82 | 0.2 || -1.0067
5| 10 | 08202 -1.1409
5] 100 | 0.6 | 0.2 || -0.9446
5

5

5

100 | 0.9 | 0.2 || -1.0799
100 | 0.82 | 0.1 || -1.1020
100 | 0.82 | 0.6 || -0.9521

TAB. 3 — Numerical computation of the stationary slope A

With any combination of the parameters, this slope is approximately —1,

which is consistent with published data :

— slopes of log numbers versus log length class ranging from —4 to —10
for weakly to heavily exploited fish communities [Anonymous, 1996,
Rice and Gislason, 1996, Bianchi et al., 2000]. Indeed, assuming that
body weight is related to body length by w o L3, the slope A\ of the
density of fish with respect to log weight is related to the slope o of the
log density of fish with respect to length by 3\ = o + 1.

— the slope of log biomass density versus log body mass in various aquatic
ecosystems being very close to 0 [Boudreau and Dickie, 1992].

— the slope of normalized biomass spectra (log biomass per range of weight
classes versus log weight) being close to -1 or steeper in various plankton
communities as well as in benthic fish assemblages in the Benguela System
[Macpherson and Gordoa, 1996, Zhou and Huntley, 1997].

5.2 Initial intercept of the spectrum

The intercept ug of the biomass spectrum at time ¢ = 0 was estimated from

average densities estimated from published size spectra (table 4). Fish densities
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are usually estimated from trawl surveys and reported in numbers or biomass per
swept area, i.e. per m2. Trawls usually have a vertical opening of a few meters,
but considering that most fish are found close to the bottom, the density per

m? can be considered very similar to the density in the first meter of the water

column, i.e. per m3.
For the stationary linear spectrum, the abundance of fish with weight in
[w1,ws] or length in [Ly, Ls] is given by formula (1) i.e., assuming that w =

0.005L3,

A A 3 3
o (“’i—“L) = 0.005 (Li\ —Li\ )

and the biomass is given by formula (2) i.e.

A+l A+l L33 303
wp 22— 2 = 0.005Mly [ 22— - =
A+1 A+1 A+1 A+1
Assuming that the values of the parameters are the reference values (and that
A = —1.0439), we can compute ug for each observation (table 4).
Spectrum Source Size range Density Estimated
intercept
Length | Weight | Number | Biomass
(m) | (» |(ishm?) | gm?) | (gm~)
Demersal [Rochet and Lembo, 2003] | 1-100 0.5 0.002
fish
All fish [Cyr and Peters, 1996] 0.2-790 1 0.13
Planktivorous| [Sprules et al., 1991] 5-20 6 1.5
fish
Piscivorous [Sprules et al., 1991] 30-80 0.2 0.09
fish

TAB. 4 — Intercepts estimated from published size spectra.

5.3 Individual life history

The weight of a fish that would not die from predation would increase ac-

cording to the equation
W (t) = (1.93t + 0.213)**7

if its initial weight is W (0) = 10~3g, according to the results of section 3.5 and
the reference values of the parameters ( Table 2).
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The annual food ration of a fish of weight W is
%% _ %%ex — AC, Wt M1

Hence the life history of a hypothetical individual fish according to the model
can be estimated in terms of growth, annual food ration and life expectancy
(Table 5, Fig. 2). The growth is comparable to e.g. North Sea cod, which would
reach 1 kg at 2 years and 10 kg at 5 — 6 years. According to Daan (1973), such
an adult cod would ingest about 2% of its body weight daily, hence about 7
times its weight in a year. On the other hand, fish larvae with weight around
1 g ingest 30 to 70% of their body weight daily [Pepin and Penney, 2000]. The
figures in table 5 are consistent with these data : the biomass spectrum model
consists of realistic individual fish.

e

ZlOOg

T10g

I PP T UL L
1 M’g,

—:(‘)'.’l’)lg

Timg

F1G. 2 — Growth curve of an individual fish.

Weight 1mg 1g 10g 100g 1kg 10kg

Age (from weight 1mg) 0 150d | 277d | 1y125d | 2y120d 4y
Annual food ration 0.59g | 43g | 257g | 1.53kg | 9.17kg | 54.7kg
Life expectancy 6d 26d | 44d 74d 124d 208d

TAB. 5 — Life history of an individual fish, for reference values of the parameters
(table 2)

5.4 Boundary conditions

As fish sizes have limits, the model has a biological interpretation only on a

weight range [Wmin, Wmax]. Simulations also can be performed only on an inter-
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val [Zmin, Zmax]|- Then equation (10) is not defined because of the convolution
integrals. Therefore function ¢ is truncated and the model is changed at both
ends of the interval. In addition, an input of biomass to the system is needed.
In the lower sizes, the input of prey into the system is simulated by a simple
equation for plankton growth combined to equation (10). Symmetrically, in very
large sizes, the loss of biomass is simulated by assuming that wu(¢,z) is inde-
pendent of time. Call 4 the operator describing the dynamics in the fish size

spectrum u in equation (10) :

Aw)@) =~ [KA / " e to(@) ule — g u() dg

XL
—ae [ ~ ep(q) ulz + q) u(x) dg
0

Similarly, B is the operator for plankton growth dynamics :

B(u, 1)(z) = — (up(z, ) — u(x))

Tp
where up(z,t) is the equilibrium density of plankton and 7, is the plankton
characteristic time for going back to equilibrium after a perturbation. C is the
operator for large sizes dynamics :

C(us8)(@) = - (um(z, ) — u(z))

Tm

with the characteristic time 7, large (3 years) and u,,(x,t) similar to the ini-
tial condition size spectrum. Transitions between the models A, B and C are
smoothed by simulating the equation

0
6—?(%0 = p(2)pm(z) A(u)(z) + (1-p(z)) B(u,t)(z)+ (1-¢m(z)) C(u, t)(z)
(13)
where 4, and ,,, are smooth functions with :
0<9p(z) <1 0<¢Ym(z) <1
Pp(x) =1 for x>z, Ym(z) =1 for =<3
Yp(z) =0 for z <z Ym(z) =0 for =>4

Hence the size spectrum governed by predation processes only is simulated in
the size range [z2, z3] only. For small sizes lower than z;, model B is simulated,
and model C for sizes larger than z4. Over ranges [z, z2] and [z3,24] transition

processes occur.
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In addition, function ¢ is truncated in simulations to ensure that ¢(g) = 0
while ¢ > 21 — Zmin and ¢ > Zmax — 4. This makes sure that the composite
operator in equation (13) is defined for all derivable functions over [Zmin, Zmax]-

5.5 Diffusion

From a strictly mathematical view, equation (13) may not have a solution
at any time t. At some time ty, the slope of the size spectrum may become
infinite in some point, then the solution would not be defined any more. This
is well known for the Burgers equation du/0t = uOu/dz. As a consequence,
in some simulations, the population of fish of weight e*® disappears at time
to. This problem was counteracted by introducing diffusion in the model. This
amounts to assume that two fish of similar weight, eating the same prey, will
not grow exactly by the same amount. Hence this will add realism to the model.
Mathematically, this introduces an additional term 8?u/dx? in operator A.

5.6 Simulated size spectra

Size spectra were simulated following equation (13) using C** on a Personal
Computer with an order 4 Runge-Kutta method and log weight x discretized
by an elementary method (dz = dw/w = 0.5). The process parameters were
selected in table 2 and the boundary conditions parameters and limits were
fixed according to table 6.

Parameter name Wmin wy Wa w3 W4 | Wmax
Value || 10712g [ 10=%g | 107 3g | 10%g | 10°g | 10'%g
Parameter name Tp up(z, 1) Tm U (2, 1)

Value || 3 days | woe?® | 3 years | woe?®

TAB. 6 — Parameters and limits of the boundary conditions fixed for all simula-
tions.

A first series of simulations was run to check that the results conformed to

the theoretical expectations. Linear spectra uge*®

were found to be stationary. A
weaker slope initial spectrum decreased uniformly for all weights, conforming to
section 3.3.1. An initial spectrum with appropriate gaps was stationary, confor-
ming to section 3.3.2 as well.

Further simulations were run i) to study the stability of the stationary so-
lution and ii) to predict the effect of fishing on the stationary solution (Fig.

3).
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When the initial spectrum is perturbed by a sine function around the statio-
nary slope, the peaks move downwards the spectrum and are rapidly damped,
especially in small sizes (Fig. 3.a). On the other hand, if the plankton input to
the spectrum oscillates in time following a sine function, the oscillations expand
while propagating through the spectrum and may result in infinite values if their
amplitude is too large (Fig. 3.b) . Note that the amplitude of the perturbations
added is very large as the figures span 14 orders of magnitude (from 10710 to
10**) on the y-axis. For example the input of plankton is assumed to double
in summer as compared to winter, which is translated by the thickness of the
size spectrum on the very left side of figure 3.b. Introducing diffusion stabilises
the solution (not shown). A strong fishing mortality results in a steeper slope of
the stationary solution in larger sizes. Introducing fishing mortality starting at
weight 1g causes a change in slope for weights larger than 10kg, and oscillations
between 1g and 10kg. Oscillations are damped when diffusion is added to the
model (Fig. 3.c-d). However, a more realistic fishing mortality (as estimated
from the North Sea and Bay of Biscay stocks) has no apparent effect on the
slope of the spectrum, and merely results in oscillations beginning at the size at
recruitment to fishing (Fig. 3.¢). This holds when perturbations and diffusion
are added to the model (Fig. 3.f).

6 Discussion

Relaxing the assumption of a constant predator-prey size ratio into a distri-
buted size ratio still results in a linear size spectrum. Compared to the Silvert
and Platt [1980] size spectrum model, the present model improves the regularity
of the stationary solution. Adding a diffusion term into the growth term results
in more stable stationary solutions. This means that improving the realism of
the assumptions does not necessarily increase the complexity of the solution. We
predict that an aquatic ecosystem where all processes are driven by predation,
and predation is primarily size-dependent, can have a linear size spectrum, even
if there is variability in prey sizes and in food assimilation. The slope of this
size spectrum will be insensitive to the magnitude of processes in the food web,
such as the width of prey size distribution, the volume of water searched while
foraging or the assimilation efficiency. Moreover, perturbations that are likely to
occur, such as seasonal primary production, can create oscillations in the spec-
trum. Size spectra observed from marine communities frequently show oscilla-
tions [Pope and Knights, 1982, Murawski and Idoine, 1992, Drgas et al., 1998,
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Saiz-Salinas and Ramos, 1999, Rochet and Lembo, 2003].

Introducing a simple model for fishing mortality as a function of size results
in a steeper slope of the spectrum, as inferred a long time ago by fisheries scien-
tists. However, this change of slope occurs in a range of sizes far larger than
the size at recruitment to fishing. In addition, given the parameterisation of the
model in the present study, a realistic fishing mortality as estimated from the
North Sea and Bay of Biscay does not result in a detectable change in the slope
of the spectrum. The North Sea and even the Bay of Biscay cannot be conside-
red as lightly exploited systems, hence this means that given the assumptions
of the model, even a high fishing pressure would not affect the slope of the
spectrum. The present model is rather theoretical and its parameters could not
be measured directly in the field. However, we put a large effort in getting as
"realistic" orders of magnitude as possible from published literature, and we
checked by various means that our predictions are comparable to broad ecosys-
tem or individual observations (predicted slope, individual life history). Hence
we predict that only unrealistically high fishing pressures would affect the slope
of fish communities size spectra. This result differs from the study by Gislason
and Rice [Gislason and Rice, 1998] who predicted based on a Multi Species Vir-
tual Population Analysis (MSVPA) model that the change in slope of the size
spectrum in the North Sea would be proportional to the change in fishing inten-
sity. This might be due to the completely different assumptions of the models.
MSVPA describes the age-structured dynamics of a few commercial species and
the less well known remainder of the food web is fixed. In the MSVPA model,
predation is mainly species-dependent, whereas it is exclusively size-dependent
in the present model. Both assumptions are extreme and what happens in the
field probably lies in between. What happens in a real community would de-
pend on the validity of each assumption in the food web. This would explain
why published evidences of fishing effects on size spectra are not consistent (see
review in [Rochet and Trenkel, 2003]).

The main predicted effect of a realistic fishing pressure in the present model
is to increase oscillations in the size spectrum in large sizes. These oscillations
are caused by the depletion of large fish, allowing the numbers in the lower
size-classes to increase due to decreased predation. This increased numbers in
turn exert an increased predation on the next lower size-classes, etcetera. These
effects then propagate backwards to large sizes as a depleted size class will
cause food scarcity for the next larger size class. Indeed, many published size
spectra from exploited fish communities show oscillations, but a comparison
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of the magnitude of these oscillations with less exploited communities or with
the predictions of the model would hardly be feasible. An interesting feature
of this model is that controls occur both top-down (predators controlling prey
numbers) and bottom-up (preys limiting predator growth) and in this way may
reflect the complexity of real food webs.
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Panel First Last | Time | Diffu- Initial Left boundary Fishing
time time step sion condition condition mortality
plotted | plotted parameters

) ) (d) a b

a) 0 2 2 no | uge**(1 +sinx) uger® 0 0

b) 0 2 1 no uge® 1+ 0.3sin(2wt) | O 0
c) 5 10 3 no uge™® uoge™® 0.5 | logl
d) 5 10 3 yes uge™® uge™® 0.5 | logl
e) 5 10 3 no uge™® uge™® 0.1 | log10
f) 5 10 3 yes | upe*®(1+sinz) | 1+ 0.3sin(27t) | 0.1 | log10

TAB. 7 — Parameters for the simulations plotted in figure 3.
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F1G. 3 — Simulated size spectra using reference parameters of Tables 2 and 6,
unless otherwise specified in table 7.

The dynamics of the spectrum is represented by plotting the model solution for
successive steps dt, 2dt,..., Ndt with a grey shading from white at dt to black
at Ndt.

Bold dotted line : initial condition.

a) Oscillatory initial spectrum.

b) Oscillatory plankton input.

c) Strong fishing effort.

d) Strong fishing effort with diffusion.

e) Realistic fishing effort.

f) Realistic fishing effort with diffusion, oscillatory initial condition and oscilla-
tory plankton input.

d)
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