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On a conjecture of Wolfgang Wasow concerning the
nature of turning points.

by Catherine Stenger

Abstract

For linear systems of singularly perturbed ordinary differential equations, the formal fundamen-
tal solutions are expressed as a formal power series in a rational power of the parameter ¢ with
coefficient functions in z, times a diagonal exponential polynomial in negative powers of ¢ and
also with coefficient functions in z. We prove that if all the coefficient functions in z of the formal
fundamental solution are holomorphic in x in some region D, then there exists a fundamental
holomorphic solution for z in D and for € in some sector. This settles a conjecture of W. Wasow
concerning the nature of the turning points.

Key words: Complex differential equation, singular perturbation, asymptotic expan-
sion, turning point, Gevrey theory.
Classification: 34E20, 34E15, 34M60.

1 Introduction.

Consider a system of n singularly perturbed ordinary differential equations

d
ol

Ir = Az, e)y (1)

where x is a complex variable, € is a small complex parameter, h is a positive integer
and A is a holomorphic function in a neighbourhood of (zy,0) of C x C. Under suitable
assumptions at the point x = xy on the leading matrix Ay(z) = A(x,0) and the leading
matrices Ag(x) which appear by transformations of the system (1), M. Hukuhara, Y.
Sibuya, H.L. Turrittin and W. Wasow [Was85| have shown the existence of a formal
fundamental solution of (1) of the form

V(z,e) = (Z n(mer/m) exp (Z_ Qr<m>e<’"mh>/m> , 2)

where the matrix-valued functions Y,(z) and Q,(z) are holomorphic in a set D to be
specified later. In general, the series (2) is divergent, and classically, we investigate the
existence of a basis of actual solutions of the above system that is asymptotic to Y (z, ¢)
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when ¢ — 0 in some sectorial region. The problem was partially solved by Y. Sibuya
[Was85], under the condition that the point x = xz is asymptotically simple, i.e. the
functions @, (z) satisfy certain restrictive conditions. According to the following definition
of W. Wasow of a turning point: a point z = x¢ is called a turning point for the system
(1), if none of the formal fundamental solutions (2) is an asymptotic representation of
a fundamental solution in a neighbourhood of x = xy, we deduce that an asymptotically
simple point is not a turning point.

In this paper, we study the nature of the points x = z for the system (1). As will be
shown in section 2, there are systems for which there exists a formal fundamental solution
of the form (2) with coefficients that are holomorphic functions in z in a neighbourhood
of z = x¢, eventhough x = z, is not asymptotically simple. Our purpose is to prove that
for such systems, x = 1z, is also not a turning point. Our main concern here will be to
redefine a turning point: "Only the points where some of the coefficients of the formal"
fundamental solution (2) "have singularities are turning points". This definition is W.
Wasow conjecture [Was85]. Therefore we claim that a point x = xq is a turning point for
the system (1) if and only if a coefficient of the formal fundamental solution (2) has a
singularity at this point.

If there exists a coefficient with a singularity at * = xzy, then by definition z; is a
turning point for the system (1). Therefore it remains to prove the converse. We suppose
that the system (1) admits a formal fundamental solution (2) where all the coefficients
Y,(z) and Q,(x) are holomorphic functions in a neighbourhood of = = x,, and we want
to study the existence of a fundamental solution Y such that

A

Y(z,€) ~ V(z,e) (3)

as € — 0 in a given sectorial region, uniformly in z in some neighbourhood of zy.

Our approach is based on Gevrey asymptotic theory and is as follows. In section 3.2,
we define the set V of the valuations in terms of /™

V= {Valgl/"‘ (gh%(x’g)) Gb e, ’n}z}

where the polynomials ¢'/™ <5hdg%(x, 5)) are those which appear previously in the def-

inition of asymptotically simple points of Y. Sibuya and which arise from the diagonal

matrix
mh—1

Q(JJ,&) — Z Qr(x)g(rfmh)/m

r=0
of (2). With this definition, we have

{+oo}
V=4 or
{517 .- '7SE} U {+OO}’
where the s; are integers. If the set V reduces to {+o0}, we call (1) an essentially scalar
system, otherwise the system (1) is said to have /¢ levels.
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Our method to prove the existence of an actual fundamental solution (3) is to split the
initial system (1), which we suppose to have £ levels, into a set of independent systems
having less than £ levels. In other words, we proceed by a induction of the number of levels;
but first in section 3.4, we use a theorem of simplification to connect the new coefficient
matrix A with the diagonal matrix @), and so the set ¥V which remains unchanged by
the transformation. Then, in section 3.6 to initialize our inductive process we prove the
theorem for essentially scalar systems.

A system of this kind is equivalent to a system where the parameter disappears on the
left hand side. Therefore it is not difficult to prove the Gevrey character of the formal
fundamental solution. The existence of an actual fundamental solution follows by using
formal Borel transforms and truncated Laplace transforms which provide quasi-solution
and to conclude we use Gronwall’s lemma as in the paper of M. Canalis-Durand et al.
[CDRSS00]. In our article, we write the proof for any Gevrey character whereas other
papers deal with the Gevrey order one.

In section 3.7, we begin the induction with systems having one level. The splitting is
done by sorting, in a precise way, the coefficients of the diagonal matrix Q(z,¢) into two
blocks and by using a holomorphic transformation to yield two independent systems of the
size of the two blocks. To prove the existence of this holomorphic transformation, we first
show that there exists a unique formal transformation satisfying all our properties. The
key of the formal existence rests in the way to split the diagonal matrix Q(z,¢) and the use
of the main results of the paper of M. Canalis-Durand et al. [CDRSS00]. In order to show
the existence of a holomorphic transformation, we again write our problem into a solved
problem of the article [CDRSS00]. Thus, we obtain either two independent essentially
scalar systems or systems of one level but of smaller size. Repeating this splitting process
we obtain a finite set of independent essentially scalar systems.

For systems with several levels the same idea works, the critical point is the splitting
of the systems in the right order. This will be explained in the section 3.8.

2 Preliminaries.

Consider a system of n singularly perturbed ordinary differential equations

d
ot = Ala,ely (4)
where x is a complex variable, € is a small complex parameter and h is a positive integer.
The function A is a holomorphic function of the variables x and ¢ in the open neighbour-
hood
D, (z0) X D, (0) C C x C of (x9,0) where 7, g9 are positive reals.

Here the notation D, (/3) means the open disk of radius « and center f.
As a first consequence, A admits a convergent power series expansion

Az,e) = A (x)e", € Di(xmp), € € Ds,(0), (5)
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where the coefficients A, (x) are holomorphic in D, (). We assume that

AO (.’E) 7_é Oa

since, otherwise, equation (4) could be divided by .

The structure of the leading matrix Ag(z) is of great importance in the construction of
the algorithm for the formal solution of the system (4). The reader interested will find all
the details in [Was85] (ch.IT). Here we only recall the theorem of the existence of formal
solutions, which is the result of the algorithm.

Theorem (M. Hukuhara, Y. Sibuya, H.L. Turrittin, W. Wasow) Let Y% A,(z)e" be
a formal series in which the A, are n X n-dimensional matriz-valued functions of the
complex variable x, holomorphic in a region D C C, and € is a complex parameter. Let h
be a positive integer. Then the formal differential equation

hdz _ (ZAr(x)5T> y

can be satisfied by replacing y with a formal expression of the form

+o00 mh—1
(Zn( ”m) exp (Z Qr(@)em ) : (6)
r=0
The symbols in (6) are defined as follows

1. The coefficients Y, are n x n matriz-valued functions locally holomorphic in D\Z,
where I is a set of isolated points, the same for all r, where they have branch points
or poles. The coefficients QQ, are diagonal matrices and have the same properties as
the Y,, and m is some positive integer.

2. The formal series for det ( ::og Y;(a:)sr/m) in powers of /™ is not identically zero.

The set T is the set of points of D where Ay or the analogous leading coefficient matrices
in the later stages of the computation of formal solution fail to satisfy the following
hypothesis

Hypothesis The Jordan matriz for Ay is holomorphic in V, where V is some subset of
D, and the multiplicity of the eigenvalues of Ay(x) is constant in V.

The singularities of Y, and (), are points of Z. A theorem of linear algebra for holomorphic
matrices is used to prove that there are no other singularities which appears in D, see
[Was85] (ch XII). Thus, in a region in which the coefficients A, of (5) are holomorphic the
only singularities of ¥, and @, in (6) are points of Z. It is known that the set Z has no
accumulation points in D and that the Y, and @), are analytically continuable along every
curve lying in D\Z and also on an appropriate Riemann domain (cf. [Was85], [SV90]).

Now, by the theorem above, we have the existence of a formal fundamental solution of
(4). We want to study the existence of bases of true solutions, i.e. fundamental solutions
which admit as asymptotic representation a formal fundamental solution (6). A true

5



solution of (4), is a holomorphic function of the variables x in an open neighbourhood
D, (xzo) C C of zy where 7 is positive and holomorphic for € in an open sector S of the
complex plane whose vertex is at the origin.

The expression asymptotic representation means here that if Y (z,¢) is a fundamental
solution of (4), then we have

mh—1

+o0
Y (x,€) exp ( Z Q. (x)g(r—mh)/m> ~ Z Y, (z)e"/™
r=0 r=0

as ¢ — 0 in 8, uniformly for x in a neighbourhood of 3. Remark that the fundamental
solution is not unique, because multiplication of the solution on the right hand side by a
power series in €, with the series 1 as asymptotic, yields an other solution of our problem.
The problem of the existence of a fundamental solution which admits as asymptotic
representation the formal fundamental solution given by the theorem above, was partially
solved by Y. Sibuya [Was85].

The sufficient condition he gives, is that the point zy be asymptotically simple. Before
we state the definition of an asymptotically simple point, we introduce some notations.
We denote by g; the j-th diagonal element of the diagonal matrix @

mh—1
Qz,8) = > Qu(z)e"™™/m = diag_, (q;(x,¢)) .
r=0
Moreover
ij($,5) = Qj(iﬂaf) - %(95,5),
and

da. , .
e (@, 6) = Age(@)e/™ + el ()M Ll (@)

where s is a non-negative integer and A (z) is not identically zero in case s < mh — 1.

Definition 1. A point xy will be called asymptotically simple with respect to q; if those
of the functions A\jp(x), j =1,2...,n, which are not identically zero are holomorphic and
different from zero at x = xy. And a point xo will be called asymptotically simple if for
all k the point xq is asymptotically simple with respect to gqy.

Or in other words, z( is an asymptotically simple point with respect to g, if the valuations

(in terms of £'/™) of €hﬂ($, g),j=1,2,...,n are constant in a neighbourhood of .

For such asymptotically simple points, Y. Sibuya proved the following main result on
asymptotic validity.

Theorem (Y. Sibuya) If the point xq is asymptotically simple, then the formal expression
(6) represents asymptotically a fundamental solution of the system of differential equations
(4) in a neighbourhood of xy.

Thus, if we consider the definition given by W. Wasow for a turning point, we deduce
from the above theorem that an asymptotically simple point for all g, is not a turning
point for the system (4).



Definition 2. A point xq is a turning point for the system (4), if none of the formal
fundamental solutions (6) is an asymptotic representation of a fundamental solution in a
neighbourhood of xg.

Our problem of the existence of fundamental solutions in a neighbourhood of a point z
is equivalent to the problem of the nature of the point zy, is it a turning point for the
system (4) or not. There are essentially two questions

- the hypothesis of asymptotic simplicity is it a necessary condition?

- a point in the set Z, of isolated points defined by the theorem of the existence of
formal fundamental solutions, is it a turning point for the system (4) or not?

Consider, for instance, the system

dy x0+0x2p+1
“az Lo o o o J°|Y

where p is a positive integer. Here the two eigenvalues of the leading matrix

o= (5 9)

coalesce at the point x = 0. At x =0, Ay does not satisfy the above hypothesis, so there
may or may not be a turning point there. The formal resolution, which involves divisions
by x, introduces in general poles at x = 0 into the coefficients of the formal fundamental
solution (6). In our example, however a fundamental solution is given by

_ 1 0 0 z% 0 2pz?—2 2 0 2°pl \ L1
Y(x,e)-[(o _1)-1-(0 0 )5-1—(0 0 e+l o )¢
ox ?/2 0\ 1
P 0 0)zf"

In this example, the point = 0 is neither asymptotically simple, because the holomorphic
function

e——(z,e) ==z

dx
is not constant in a neighbourhood of 0, nor a turning point.

Consider, on the other hand the system

w1 0) (0 )

The leading matrix Ag is the same as in the previous case. The formal computation gives
us the following formal fundamental expression

ff(x,a):[((l) (1])+(8 1(/)$)5+(8 _1()/$3)€2+...]exp{<$20/2 8)%}
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The dots indicate a series of positive powers of €. Here the coefficients of the formal
fundamental solution have a singularity at x = 0, so it is obvious that this point is
a turning point for our system, because there exists no holomorphic solution Y (z,¢)
satisfying

Y(x,s)exp{—(xQO/Q 8)%}"’((1) (1])+<8 1(/)x>s+<8 _1({9”3)52+...

as ¢ — 0 in a sector of the e-plane and for = in a neighbourhood of 0.

If we look at the construction of the set Z of isolated points which appears in the theorem
of the existence of a formal fundamental solution of (4), for all two cases the point z = 0
belongs to Z. Therefore based on the two examples above we remark that, it is not because
a point z( is in the set Z, that this point is or not a turning point for the system that
we consider. More, a point that is not asymptotically simple is not necessarily a turning
point.

It is W. Wasow’s conjecture [Was85], pp46, which gives us a way to answer the problem
of the existence of a basis of actual solutions. He writes that “ It is a tempting conjecture
that only the points where some of the coefficients of the formal solutions described in
” the theorem of the existence of a formal fundamental solution “ have singularities are
turning points.”

3 Proof of W. Wasow’s conjecture.

We recall the system
dy
h
—=A
2 = A ey (7)

and the form of the formal fundamental solution

V(z,e) = (Z ﬁ(ma/m) exp (Z Qr(x)a(’"_m'”/m) . ®)

Theorem 1. A point of the xz-plane is a turning point for the system (7) if and only if
there exists a coefficient }Afr(x) or Q(x) with a singularity at this point.

Proof: It is obvious that if a coefficient in the formal fundamental solution Y has a
singularity at a point of the z-plane, then this point is a turning point for the system.
Indeed as we said it above, there exists no holomorphic solution Y (z,¢) such that

mh—1

“+oo
Y (x,€) exp <_ Z Qr(x)g(T—mh)/m> ~ Zyr(x)gr/m
r=0 r=0

as ¢ — 0 in a sector of the e-plane and for x in a neighbourhood of this point of the
z-plane.

To complete the proof, it remains to check the reciprocal. For this, we consider the
contrapositive sentence. Our hypothesis is: We have a formal fundamental solution (8)
of the system (7) and any coefficient Y;(z) or Q,(z) has not a singularity at z, a point
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of the z-plane. It is convenient to make the following change of variable, we replace = by
xo + x, thus the new initial value is zo = 0.

In order to prove the theorem 1, we will show that there exists, for each sufficiently small
sector S (of sufficiently small opening), a fundamental solution Y where

Y~Y

as ¢ — 0 in S, uniformly for z in a neighbourhood of 0.

Our method to prove this statement is based on Gevrey theory.

3.1 Gevrey asymptotic expansions.

We recall two definitions about Gevrey expansions.

Definition 3. The formal series Z:r:og o, (x)e" is of Gevrey order s uniformly for x in D,
iof there exists two positive constants M and N such that

lap ()] < MN'T (rs+1)
for all r and for all x in D.

Here I" represents the usual Gamma function.

Definition 4. The function f(z,€) is asymptotic of Gevrey order s to the formal series

Z::og a,(x)e" as e — 0 in a sector S uniformly for x in D, if there erists two positive
constants M and N such that

p—1

‘f(x, g) — Z o, (x)e"

r=0

< MNPT (ps +1) e[’

for alle in S, all x in D and all positive integer p.

3.2 Notations and definitions.

We define the following set V.
Definition 5.

V= {val,:_l/m (eh%(gy,s)> (7, k) € {1,...,n}2}.

1/m

Here and in the sequel, val.i/» means the valuation in terms of € defined as follows.

Consider a polynomial

p(x,€) = po(x) + p1(@)e™ + ... 4 py_1 () V™ 4 py ()™ + ... + pa(x)e™
where d is a non-negative integer. We put
valym (p(z,€)) = v
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if and only if
pi(x) =0, i=0,...,0—1
# 0,

with the convention that
val,1/m(0) = +00.

The set V depends in fact on the variable z. If we consider the definition of an asymp-
totically simple point, then in a neighbourhood of this point the set V is constant. The
assumptions of our theorem imply that V is constant in a punctured neighbourhood of
the origin, and V is allowed to change at x = 0.

With the definition of the set V), there are two possibilities for the form of V. We have

{+o0}
Y=< or
{s1,---, 80} U{+00},

where / is a positive integer and where the s; are integers such that 0 < s; < ... < s, <
mh — 1.

Definition 6. An essentially scalar system is a system where )V is reduced to the singleton
{+o0}.

In the case of an essentially scalar system, the matrix () has the form

Q($, 5) = q(x, 8)],

1/m

where ¢(z,¢) is a polynomial in negative powers of ¢/ with holomorphic coefficients.

Definition 7. A system of £ levels is a system where V = {s1,...,8:} U {+00}.

It is convenient to make the following change of parameter

g +— et/™,
This substitution leads to a problem with integral powers of ¢, therefore without loss of
generality in the sequel we suppose that m = 1.

3.3 Outlines of the proof.

Our approach to prove our main result is to decompose the initial system (7), which we
suppose of £ levels, into a set of independent systems of less than / levels. First we start
the proof of W. Wasow’s conjecture with an essentially scalar system, then we go on to a
system of one level, and end with the generalization for systems of several levels. First of
all, however we need a fundamental step: the simplification of the problem.
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3.4 Theorem of simplification.

The proof is based on the nature of the set V. This means, by definition of V, on the
diagonal matrix () which appears in the formal fundamental solution (8). Subsequently,
informations about the coefficient matrix A of the system (7) will be needed, but at
this stage we only know that this matrix is a matrix-valued function holomorphic of the
variables z and e.

Theorem 2. Under the conditions of theorem 1., there exists a positive integer N, suffi-
ciently large, such that the transformation
y =Y (z,e)w with

N
Vo) = > e
r=0
reduces the system (7) into the following problem
1. the new system is

pdw

&= Az, e)w, Az, e) = Z[lr(m)a’, 9)

for all x in D,(0) and for all € in D(0),

2. the formal fundamental solution w of (9) has the form
. +o0 ) h—1

W(z,e) = (I + &t ZWT($)€T> exp (Z Qr(x)sr_h> (10)
r=0 =0

3. the coefficients of the formal solution W satisfy

(a) all the coefficients W,(z), A,(z) and Q,(z) have no singularity at x = 0,
(b) the matriz Q@ and the set V are unchanged,

dQ), ~
(c) for all integer r in {0,...,h — 1}, CZ () = A ().

Here, D, (0) denotes an open disk in the a-plane of center the origin.

Proof : We define H(z,¢) = "% V;(2)e". Then det (ﬁ(x, 5)) is of the form

det (ﬁ(x, s)) - Jr_fhr(x)sr (11)

where L is a non-negative integer such that hz(x) does not identically vanish. First we
prove that

hr(x) #0 for all z in D,(0).
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We consider the Wronskian w(z,e) = det (f/(x, E)), which satisfies the differential equa-

tion
dw

dx
The general formal solution of (12) is given by the expression

= e Mr (A(z, €)) w. (12)

w(z,€) = c(e) exp <s—h /0 e (A, e))dt) (13)

where c(¢) is a formal series in non-negative powers of . The definition of w(zx,¢) gives
us that

w(z,e) = det (ﬁz(x, g)) det (exp Q(z, ¢)) = det (ﬁf(x, 5)) exp (tr Q(z,e)).  (14)

The equations (13) and (14) imply that
det (H(z,e)) = h{zA,d—”,H.
et( (x 8)) c(e) exp [5 tr /0 (t,e)dt — e"Q(z,€)

As det (I:I (z, s)) is a formal series in non-negative powers of ¢, we have

r {hi (/0 Ar(t)dt> o h:: Qr(x)sr} =0.

r=0

Using (11), we deduce that c(e)e™ = ¢(¢), where ¢(¢) is a formal series in non-negative
powers of €. Therefore

&(e) exp [tr {2 ( /0 ' Ar+h(t)dt> EH - ghw(x)gh (15)

Let € = 0 in (15). We obtain

£(0) exp [tr { /0 ’ Ah(t)dtH = hy(2).

As the coefficient hp(x) is not identically null, ¢(0) # 0. This proves that hr(x) # 0 for
all z in D,(0).

Consider now H(z,¢) = SN V,(x)e”, where N is a positive integer that we will choose

later. We can write H in the form
H(z,e) = H(z,e) + eV R(z, €)

where R(z,¢) = S22V, n11(z)e”. Then, the determinant of this expression has the
form

det (FI(J;, e)) = det (I:I(x,s)) +eNtr(z,€)

12



where 7 is a formal power series in & with holomorphic coefficients in D, (0). Suppose that

N > L, then
det (ﬁ(x, 5)) =l (hL(.Z‘) + Z ﬁHL(x)ET)

where M is a non-negative integer. Applying Cramer’s formula for the inversion of ma-
trices, we find that e~"H (z,¢) admits as inverse matrix Inv(z, ), which is a convergent
series in powers of ¢, for ¢ sufficiently small. We use the property that 1/det H has a

sense, because
1

— = & P U—
det H hi(z) + ...
where hp(z) # 0 for all « in D,(0).

The transformation y = H(z,e)w of (7) yields the new system

€h+LCé_7;1 _ <€—Lﬁ(x’€))1 (A(:E,E)ﬁ(x’g) — gh%(a:,s)> w. (16)

The coefficient matrix of the system (16)

B(x,2) = Inv(z, ) (A(a:, VA (z,€) — gh%(m)) =3 B(a)e

is a convergent series in powers of ¢ for z in D,(0) and ¢ in D.(0).

A

If W is the formal fundamental solution of (16), then we have Y (z,¢) = H(z,e)W (z,¢)
and W is of the form

Wi(z,e) = (I MLy W,«(me’") oxp (Qz,))

r=0

A

where Inv(z,&)R(z,e) = Y75 W, (z)e™. Consider now w(z,e) = W(z,¢) exp (—Q(z, ¢)),
which is a formal solution of the system

dw dQ
h+L — _ ~h+L
et B(z,e)w —¢ W (z,¢).

If we rewrite this equation using the series and if we choose N such that

N+1—-L>h—-1+1L,

then we have necessarily

h—1+L 40 h—1+L
r—L
T — BT 'I'.
TX_; I (x)e Tz:; (x)e

Finally, by identification of the coefficients of " we have the theorem. &
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This theorem can be generalized to a system (7) where the coefficient matrix is asymp-
totic of Gevrey order 1/h to a formal series. The proof of this general case is analogous.

3.5 Our hypothesis.

By the considerations of subsection 3.4, we can assume that we have the system of
ordinary differential equations

d
= Az,e)y (17)
where the coefficient matrix A(x,¢) is a holomorphic function of the variables z and ¢,
for z in a neighbourhood D,(0) and ¢ in a sector S. Furthermore A(x,¢) is asymptotic

of Gevrey order 1/h to the formal series

Eh

as ¢ — 0 in S uniformly for z in D,(0). The system (17) admits a formal fundamental
solution Y of the form

o) = (14 3 5o ) o (S 00, as)
r=h r=0
where the coefficients A, (x), }A/T(x) and @, (x) satisfy the following properties

1. all the coefficients A, (z), Y;(z) and Q,(z) are analytic at z = 0,

2. the set V has the form

{+o0}
Y =4 or
{s1,...,80} U {400}

where 0 < s;1 < ... <s,<h-—1,

dQ, -
3. for all integer r in {0,...,h — 1}, dci () = A ().

At this stage, if V does not reduce to {+oo} it is convenient to make the following
simplification. For a system (17) of ¢ levels, using a transformation

y = wexp (¢;(z,e)1,)
for any 7 in {1,...,n}, the new system

d
5”‘51% = B(z,e)w

is always a system of Z levels, but the new set V is
{0,890 — 51,...,80— s1} U{+o0}.
Therefore we can suppose that for the system (17), s; = 0.
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3.6 Essentially scalar systems.

In order to show W. Wasow’s conjecture by a inductive process, we start with an
essentially scalar system. In this case, the system (17) satisfies the hypotheses enumerated
in section 3.5 and the set V is reduced to {+oo}. Therefore the formal fundamental

solution Y of system (17) has the form

V(€)= (I Y mm)s’") exp (g(z, ), (19)

where ¢(z,¢) is a polynomial in negative powers of € and with holomorphic coefficients in
D.(0).
By the transformation

y = wexp (q(z,€)I), (20)

the initial system (17) is equivalent to the system

d
% = B(z,e)w (21)
with the coefficient matrix
—h ndq
B(z,e) =" | A(z,e) —¢ %(:r,e)l , (22)

which is as A(z,e) asymptotic of Gevrey order 1/h to the formal series
B(z,e) = Z Apip(x)e”
r=0

as ¢ — 0 in S uniformly for x in D,(0).

Theorem 3. Let the system of formal differential equations

= B(z,e)w (23)

associated with the system (21).

Then, under the conditions above, there exists a formal fundamental solution W of the
system (23)

400
W(w,e) =1+ W(z)e".
r=h

of Gevrey order 1/h uniformly for x in D,(0).

Proof : According to (19) and the transformation (20), necessarily



is a formal fundamental solution of (23). If we use the formal series writing for (23)

and identify the coefficients, we yield

( B,(z) =0 forr=0,...,h—1
dy,

7 (@)

I

B, () forr=nh,...,2h— 1,

>

dy, - o= - .
Ir () =By(z)+ Y B, ()Y (x) forr=2h,2h+1,....

\ l

Il
>

To prove our theorem 3, we show that there exists one formal series 144 solution of the
system (24) and of Gevrey order 1/h uniformly for  in D,(0). Given a real M bigger
than 1 and a positive real N (we will define their later precisely), therefore we have

Il < M.

Let
+o0

W(z,e) =T+ W(x)e"
r=h

~

. aw, :
the solution of (24) such that W(0,¢) = I, then by integration of d—(x) we obtain the
T

dw,
T (xt) dt

following inequalities
= (xt
7 @t

. L Llaw,
‘WT(x)‘ < m/o dtgxo/o

for all z in D,4(0) and for all integer » > h, here xy represents the radius of the open

disk D,(0). By equation (24) and using the Gevrey property of B (z,¢€), there exists two
constants M and N such that for r = h,...,2h — 1,

N T
< T —
‘W,(x)‘ < 2yMN'T (1 + h)
for all z in D,(0). We deduce that
- ~ r
< T —
‘Wr(m)‘ < MIN'T (1 + h)

for all z in D,(0), where M and N satisfy N < N and oM < M.
By induction, we suppose that for [ = 0 to » we have

‘Wl(a:)‘ < MN'T (1 + %)

16



for all z in D,(0). According to the inequalities before, we can suppose that » > 2h. Then
using equation (24), we yield

r+1 l
. _ N 1—1 !
‘Wrﬂ(x)‘ < zpMMN" Y <N) r (1 + %) r (1 + 5)

=0

for all z in D,(0). Using the Béta integral [Bal94|, we show that

A - 1 1
Wr+1(ﬂ3)‘ < zgMMN™ (1+%) r (1+ T—;; )

r+1 l 1
N o
" {Z (N) JACEERES ”/hdx}

=0

for all z in D,(0). Finally, using the inequality

2h

_ Vi=0.,... 1
r+1+2h SRl

1
/ (1 _ .’L')l/h .’L'(T+1_l)/hd.7,‘ <
0

and rectifying the reals M, N and z, if necessary, we obtain

N ~ 1
‘Wr+1($)‘ < MN™'T <1 + T; >

for all z in D,(0). This proves our theorem. &

Knowing that the formal solution W of the formal system (23) is of Gevrey order 1/h
uniformly for z in D,(0), we prove the following theorem.

Theorem 4. There exists a fundamental solution W of the system (21), holomorphic in
x and ¢ for x in a neighbourhood D(0) of 0, £ in a sector S and which is asymptotic of
Gevrey order 1/h to the formal fundamental solution 1474 of theorem 3 as ¢ — 0 in S
uniformly for x in D, (0).

Proof: The two formal series W and B of theorem 3, are of Gevrey order 1/h uniformly
for z in D,(0). Thus we take their formal Borel transforms of Gervey order 1/h

(BW) (z,8) == ; F(Evii%tr

and

(BE) (x,t) := Z N%%tr

r=0
for all z in D, (0). The first series is analytic for |t| < 1/N, as the second is analytic for
t| < 1/Ng. We choose a real T such as 0 < T < min (I/N, I/NB) and consider for BW

and BB their truncated Laplace transforms of Gevrey order 1 /h

(E (BW)) (z,€) = 5_h/0(ei9/T) (BW) (z,u'") exp {—;h} du

17




o) (- 5) o { - ()]
(c(88)) rmet [ (88) (s {2}

€
R 0 RN
for z in D,(0) and for ¢ in S satisfying
e\ "
— 2
Re { (Ts) } >0 (25)

where 6 is suitably chosen. We suppose that the inequality (25) is true for all € in S,
otherwise we reduce the sector S. By Watson’s lemma we have

and

(E (BW)) (z,8) ~ W(z,e) = JiOWT(x)E’"

and
(c (BB)) (z,€) ~ B(z,e) = Z B, (z)e",

as ¢ — 0 in S uniformly for z in D,(0). We define the remainder term

L (BW) )
R(z,e) := —T(:U,E) + B(z,¢)L (BW) (z,¢€)
for z in D,(0) and ¢ in S. It is known (cf. [Bal94]), using Cauchy’s formula, that

w(BY) v
dm 33,6 d.’L' 33,6

ase& — 0 in S uniformly for z in D,(0). Therefore, we check that R(x,¢) is flat of Gevrey order 1/h,
this means that R is exponentially small. Thus there exists two positive constants K and
L such that

R(z,)| < Kexp (~LIe[™) (26)

for z in D,(0) and ¢ in S. Finally, £ (BW) is a quasi-solution of the system (21).

To find a fundamental solution W of the system (21) near the quasi-solution £ (BW),
we define

A(z,e) .= W(x,e) — <£ (BW)) (z,¢€).

18



Therefore the system (21) becomes

% = B(z,e)A + R(z,¢). (27)

Now we will show that there exists a solution A of (27) for z in D,(0) and ¢ in § which is
exponentially small. We fix € in §, then the theorem of local existence and uniqueness for
linear systems of ordinary differential equations proves the existence of a unique solution
A (z) :== A(z,€) of the system (27) satisfying the initial value A.(0) = 0, in D,(0). The
following stage consists in verifying that the solution A(z,¢) is exponentially small.

As B is holomorphic there exists a positive real v such that

|B(x,¢)| <7

for z in D,(0) and € in S. Using our estimation (26), we apply Gronwall’s lemma to

A
)

<y|A(w,e)| + Kexp (~LIe[™),
and obtain that :
Ae)| < Kexp (~Lle[™)

for some positive real K, for z in D,(0) and € in S. For more details, we can also see the
paper [CDRSS00| or |[Bal94|. This completes the proof. &

3.7 Systems of one level.

We still have the hypotheses enumerated in section 3.5., with a set V' of the form
{0}U{+oc}. To prove W. Wasow’s conjecture in this case, we will split the initial system
into a set of independent systems which are essentially scalar.

We define two sets

N :={ie{l,...,n} | qgi(z,e) = q1(z,¢)} (28)

and
N2 = {1, .. .,n}\Nl.

We denote by ny, respectively ng, the number of their elements. Without loss of generality
we can assume that the diagonal matrix () has the form

Qe = (25 0 ) (29)

where Q;(7,¢) = diag;cy, (¢j(z,¢)) fori=1,2.

With the following two theorems we prove that there exists a holomorphic transformation
y = P(z,e)w, that splits (17) according to the size of the matrices ); and (3. Remark
that in the case of a system of one level the matrix @); can be written as ¢, (z, ),

19



3.7.1 Formal splitting theorem.

Theorem 5. Under the assumptions of theorem 1., there exists a unique formal series P
of the form P(z,e) = I, + 375 P.(x)e", where the matriz P(z,¢) is a block-matriz

- I, P2(z, )
7 n2

and such that the formal transformation y = P(x, g)w changes the formal system

d A
"o = A,y (30)
into the new formal system
dw 4
h— =8 1
= Blr.ew, (31)
where
A~ +m A~
B(z,¢) := ZBr(x)s’",
r=0

with the following properties

(i) all the coefficients B, (z) are block-diagonal matrices

b= %7 g )

and for all integer r in {0,...,h — 1}, B,(z) = A,(z),
(ii) all the coefficients B,(z) and P,(z) have no singularity at z = 0,

(iii) the formal series P and B are of Geuvrey order 1/h.

Proof : If P is the formal solution of the system of ordinary differential equations

e"—— = A(z,e)P — PB(z, ¢), (32)

A

then the formal transformation y = P(z,e)w changes the formal system (30) into the

formal system (31). Insertion of the formal series > P,(x)e" into (32) and formal
identification of like powers of € produce the formulas

/

Z (AT_l(x)Pl(x) - Pl(x)Br—l(-T)) =0 forr=0,...,h—1,
) l_f r (33)
dl;rx—h( =S (A,n*l(x)ﬁl(m) _ I%(x)B,,l(x)) for r > h.
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With Py(x) := I, and By(z) := Ag(z), equation (33) is satisfied for r = 0. To prove our
theorem 5, we must choose

P (z):=0 forr=1,...,h—1,
B, (z):=A,(x) forr=1,...,h—1.

For r = h, formula (33) reduces to

Ao(z)Py(z) — By(x)Ag(z) = By(z) — Ap(x).

Using the following block-matrix notations

and

we obtain the system

With the notations
PE@) = (P()) | AR@) = (A2@)) o,
J i=

and
Af(2) = diaglt, (A} (@) ) . AP(2) = diagl?, (A7(2)a)

the solution P2 of the system (34) is given by
(1‘132(3?)13' - A(l)l(m)iz') Py (z)yy = A3 (2)y
fori=1,...,n; and j = 1,...,ny. We have similarly an expression for the solution P?!

of the system (34).
Let us remind that

dqi;
val, <sh%(m,e)) >0 fori=1,....m (35)
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and

dars
val, <5h%(x,s)> =0 for j=m+1,...,n, (36)
T
therefore the difference A2?(z),; — A (2); is not identically null for all 4 in {1,...,7,}

and j in {1,...,n9}. Observe that we have not supposed that z = 0 is an asymptotically
simple point, consequently b, () might have a singularity at = = 0.

Suppose that we know P and B, for | = h,...,r—1 and that they have the block-matrix
form of theorem 5. The system of equations for P, and B, is

~ ~ A

Ao(2) Py (2) = Pr(2)Ao(2) = B, () — F;(a)

where .
. . dP,_,, U R .
Fi(z) :== A (z) — - (z) + ) Ari(z)P(z) — P(2) B, (2).
I=h

The term Fr(x) contains only known coefficients. By using the block-matrix notation, we
obtain a system like (34) and an expression for P,(z) of the same form as for P,(z). So by
induction, P and B are uniquely determined but they might have singularities at x = 0.
Using the hypotheses of our theorem, we show that the coefficicents of P and B have no
singularities at x = 0.

A

We denote by Y (z,e) =: H(z,¢)exp (Q(z,¢)) the formal fundamental solution (18) of
the formal system (30). The formal system (31) which is a block-diagonal system, admits
a formal fundamental solution W of the same form

Therefore we obtain

A

H(z,e) = ]5(96, s)W(x, ) exp (—Q(z,¢€)) -

Writing H in block-matrix notation

i) = () pues):

according to (18), we have

H"(2,0) = I,,,
H?(z,0) = I,,.

Hence the formal matrices H'* and H?? admit formal matrix series as inverse. Now, if we
write H as a product of two block-matrices of the form

I, x * 0
*  Ip, 0 % )’
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then we find that

X B I, H?(z,¢) (FI?Z(%@))_I H'Y (z,¢) 0
H(m,s) N ﬁQl(a:,&?) (ﬁll(x’g))_l Im ( 0 H22($,6) >

and so by identification

P2(z,¢) = H(z,¢) (I:I”(x,e))l
P2 (z,¢) = H?(z,¢) (I:IH(:C,E))_ :

Therefore, the coefficients of the formal series P but also of B have no singularity at
z=0.

Using block-matrix notation for equation (32), we obtain the following system
(Bl — A1l 4 Al2p21

B2 = A2 | p21p12

\ ghd512 _ AUpi2 _ pl2j _ plajnplz  jio (37)
ua
dpm o o L R
gh, d — A22P21 o P21A11 o P21A12P21 + A21'
\ X

We consider the third system of differential equations (we can do the same for the last
system). Therefore we have the system

I ANT 1A AT+ A7, (38)
X

We denote by 7 the vectorial form of the matrix 7'

\ 7@ ) s/
where the T(x, €)i; are the elements of T and also we note by A" the vectorial form of
A2 Thus the system (38) is equivalent to the system
eh@ =A(z,e)T + ) folz,e)T" + A% (,¢) (39)
dz

v]=2
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where A is the matrix of the application

Mnl s12 Mnl 12

A

T — A'(z,e)T — TA®(z,¢).

Here M,,, ., represents the space of the matrices of n; rows and ny columns whose entries
are formal power series of ¢ with coefficients that are holomorphic in D,(0). We have
used the following notations

ninz

ﬁ:(Ul,...,Unlng)’ |/U|:Z/UZ
=1

where the v; are non-negative integer and

For the next step the structure of the leading matrix fl(:r, 0) = ./Zlo(x) is of great impor-
tance. The leading matrix is the diagonal matrix defined by

Ag(w) = diagl?, (diag?, (43! (@) — A (2)5) ) - (40)

Now, to prove the Gevrey property of 7 we are going to use results of the article of
M. Canalis-Durand et al. [CDRSS00]. They consider systems of singularly perturbed

ordinary differential equations with a vector & = (a1, ..., 4,,) of m additional parameters
dT = A(z,e)T + Bo(x)a+ Y folz,e)T" + A%(x,¢) (41)
dr 0 =

where B, is a matrix of the space My n, m. To determine in our case the integer m we
consider the determinant of the leading matrix Ay(x)

det (Ao ) 1111 (A” - A§2(x)jj)
=1 j=1
and write this determinant as
det (/Alo(x)) =2"k(z) (42)

where m is a non-negative integer and k(z) a holomorphic function in D,(0) with £(0) # 0.
According to [CDRSS00], the integer m of (42) will be the number of additional parameters
in equation (41). Remark that m is positive because we have a system of one level. Next,

we take the Smith normal form of Ay (z)
Ao(z) =: C(x)a"D(x)

where C(0), D(0) are invertible matrices and M is a diagonal matrix such that

M = diagi'}*(m;)

Ogmlﬁ---gmmnz

mi+...+Mpp, =M.
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Expression (40) can be rewritten as
Ag(x) = diag, (diagy?, (+5D(z),;) )
where for all ¢ in {1,...,m} and jin {1,...,ns} we have ™ D(x)s; = AL (x)u— A2 (z),;
with D(0);; # 0. Therefore, with
M := diag}!, (diag}2,m;) , D(z) := diag!, (diag?ilﬁ(x)ij) , C(z) = Inyn,,

we yield a Smith normal form of Ay (z).

For our method of proof, we choose a matrix By which satisfies the following hypothesis of trans-
versality : the m x m matriz with the rows [(S*By) (O)L, forl=1,...,nng if my #0
and
k=0,...,my— 1, is invertible.
Here S is the shift operator defined by

— f(0
Sfy = 10 =10
df "
S
£0)= 2 (0)
for f holomorphic in D,(0) and [ |, denotes the I*R row of a matrix.
Let Iy the non-negative integer such that for all [ in {1,...,ly} we have m; = 0 but
myy+1 7 0. Then, the matrix By(x) below satisfies the hypothesis of transversality
ml)oj—l ml/()\+2 mﬁlf% \
"0 0o 0 .. 0 "0 o
Do lo
0 0 0 . 0 0
wm10+1—1
(mig+1—1)! 0 0 .
Mlo+2
0 0 1 . 0 0
\O ... 0 0 ... 0 e 1 m/

m

In this case, the matrix of M,, ,, determined in the hypothesis of transversality is the
matrix identity I,,.

To the formal system (41), we associate the holomorphical system

9T A, )T + Bo@a+ Y folw, )T + A2 (2, ) (43)
dz 7/=2

where A, f; and A'? are defined by the coefficient matrix A of (17). Therefore, the
system (43), where we denote by F (x,T,a,¢) the right hand side, satisfies the following
hypotheses
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e the function F is holomorphic in the variables z, 7 and a in the neighbourhood
D = D,(0) x Dy(0) x Dy(0) of (0,0,0) and F(x,0,0,0) =0 for all z in D,(0),

e the function F is holomorphic for € in § and F is asymptotic of Gevrey order 1/h

to the formal series
—+o0
j{:j%($,7:a)€k
k=0

as € — 0 in S uniformly for z in D,(0). The functions F;, are holomorphic in D,

e the leading matrix is given by

oF
aT

and satisfies det (flo(ac)> = z™k(z) with £(0) # 0,

Ao(z) = 5= (2,0,0,0)

e the matrix By(z) satisfies the hypothesis of transversality.

Theorem (M. Canalis-Durand, J.P. Ramis, R. Schifke, Y. Sibuya) The systems (43) and
(41) have a unique formal solution

+00 0
e)=> T(x)e", ale)=) é&e, (44)
r=1 r=1

where the T, are holomorphic in D,(0) and the ¢, are in C™. More, T is of Gevrey order
1/h uniformly for x in D;(0) and a is of Gevrey order 1/h too.

This theorem is a key of our proof, I encourage the interested reader to look for more
details in [CDRSS00].
Thanks to the previous result, we know that the formal system (41) admits a unique couple

(7’, &) of solutions. But in the first part of our proof we have checked the uniqueness
of the formal solution 7 of the formal system (39). If we choose & = 0, system (41) is
formally equivalent to (39), therefore (7’, 0) is the unique formal solution of (41). Using

again the theorem above we conclude that 7', consequently P is of Gevrey order 1/h
uniformly for z in D,(0).

Consider the block-diagonal matrix B. The two independent systems for B are

Bl = Al 4 A12p21
{ B2 = A2 4 A2 p12, (45)
As the coefficients P, () of the formal series P have no singularity at z = 0, it is obvious,
according to (45), that the coefficients B, (z) of the formal series B have also no singularity

at x = 0. By means of the Gevrey properties of the series A and P, we obtain that B is
also of Gevrey order 1/h uniformly for x in D,(0) (cf. [Bal94]). This yields the theorem. &
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By this formal splitting theorem, the initial formal system of ordinary differential equa-
tions of one level

d N
gh% = A(.I, E)y
is reduced to the formal system
d .
h% = B(z,e)w

where B(z,¢) is a block-diagonal matrix. The formal fundamental solution W of the new
system has the form

This reduction of the initial problem is however only formal, we need more to prove the
conjecture. So in the following paragraph we are going to prove a similar splitting theorem
in the holomorphic setting.

3.7.2 Holomorphic splitting theorem.

Theorem 6. Under the assumptions of theorem 1., there exists a block-matriz P, holo-
morphic in x and ¢ for x in a neighbourhood D;(0) of 0, € in a sector S (of sufficiently
small opening), of the form

P(z,¢) = ( pzf(”gi,a) Pljf(nf’g) )

and which is asymptotic of Gevrey order 1/h to the formal series P of theorem 5 as
e — 0 in S uniformly for x in Dy(0). With the following property: the transformation
y = P(x,e)w changes the system

dy
h= =4 4
= Ay (46)
into the new system
6hd—w = B(z,e)w (47)
dx ’

with B a block-diagonal matriz, holomorphic in x and € for x in Dy(0), € in S and

asymptotic of Gevrey order 1/h to the formal series B of theorem 5 as ¢ — 0 in S
uniformly for x in D.(0).

Proof : If P is solution of the system of ordinary differential equations

5hcjl—i = A(z,e)P — PB(z,¢), (48)
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then the transformation y = P(z, e)w changes (46) into (47). Using the same block-matrix
notations as those of the proof of theorem 5, we show that the system (48) is equivalent
to the following system

( Bll :A11+A12P21

BQZ — A22+A21P12

< dP12 11 pl12 12 422 12 421 pl2 12
gl v =A"P* P A —-P* A" P“+ A
dP21
gh y — A22P21 - P21A11 - P21A12P21 + A21_
\ X

As in the proof of theorem 5, the third system of differential equations (similarly for the
last), written in the vectorial form, gives the following new system

shﬂ = A(x,e)T + Z fo(z, )T + A¥%(z,¢). (49)

dx -
5=

Exactly as for the system (39), we associate to (49) the following system with a vector

a = (ai,--.,ay) of m additional parameters
9T A, )T + Bo@)a+ Y folw, )T + A(z, ) (50)
dx et

Theorem (M. Canalis-Durand, J.P. Ramis, R. Schifke, Y. Sibuya) If (50) satisfies the
hypothesis of transversality, then for S a sector in the e-plane of sufficiently small opening,
there exists a solution (T, a), holomorphic in x and € for x in a neighbourhood D,(0) of

0, € in the sector S, and asymptotic of Gevrey order 1/h to the formal solution ('7', &) of
(41) as e — 0 in S uniformly for x in D,(0).

This theorem is the main result of the paper [CDRSS00]. The proof of this theorem uses
the same tools which appear in section 3.6 for the proof of theorem 4.

We recall that in our case the formal solution () is the null series ;L:og 0.€". According
to [CDRSS00| by using the formal Borel transform of Gervey order 1/h on () and then
the truncated Laplace transform of Gervey order 1/h, we construct a quasi-solution a(e)
which is here the identically null function. Therefore thanks to the above theorem we
obtain the existence of a solution 7 of (49) and so consequently a matrix solution P
satisfying the properties of theorem 6. Now, we define the matrix B by

B'(z,¢) := A'(z,e) + A*(z,) P*(,¢)
BQQ(x’s) = A2(z1,¢) + A% (z,e)P%(z, )
B2(z,e):=0
B?*'(z,¢):=0
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for z in D,(0) and for € in S. Then this block-diagonal matrix B is holomorphic in z and
g, for z in D,(0), € in S and B is asymptotic of Gevrey order 1/h to the formal series B
of theorem 5 as ¢ — 0 in S uniformly for z in D,(0). The holomorphic splitting theorem
is then proved. &

Applying this holomorphic splitting theorem, we deduce that the system of one level

Eh% = A(z,e)y

is equivalent to the following two independent systems :

- The system of ny singularly perturbed ordinary differential equations

VB B, e (1)
with B'' a matrix-valued function, holomorphic in z and &, for z in D,(0) and
for ¢ in S. The coefficient matrix B! admits the formal series B!, defined by
theorem 5, as asymptotic representation of Gevrey order 1/h as ¢ — 0 in the
sector S uniformly for x in D,(0). Furthermore the system (51) admits a formal
fundamental solution W1 of the form

+o0
Wi(z,e) = (Im + Z Wl,r(x)er) exp (q1(z,€)1n,) -
r=h

Therefore, the system (51) is an essentially scalar system.

- The system of ny singularly perturbed ordinary differential equations

dw

h W2 22

— = B**(x,e)w 52
2 = Bz, ), (52
with B? a matrix-valued function, holomorphic in z and ¢, for z in D,(0) and for
£ in 8. The coefficient matrix B?? admits the formal series B??, defined by theorem
5, as asymptotic representation of Gevrey order 1/h as ¢ —» 0 in the sector S

uniformly for z in D,(0). And the formal fundamental solution W, of (52) has the
form

WZ(xv 5) = (Inz + Z WQ,T($)6r> eXp (QZ(xa 5)) '

If the system (52) is also essentially scalar, this means that the diagonal matrix )2 can be
written as Qa(z, ) = g2z, €)I,,,, then we stop the splitting process. Otherwise, we apply
again the splitting theorem to the system (52). Thus we define similarly to (28) two sets
N; and N,

N1 — {j [ {7’L1 -+ 1, .. .,n} | q](ﬁ,g) = Qn1+1($a5)}

and

N2 = {n1—|—1,...,n}\N1.

29



We can suppose, without loose of generality, that the diagonal matrix (); has the form

Qa(,¢) = ( Qméﬂ?@) Q2,2((]$a5) )

where Q2,1(7,€) = ¢n,11(2,€)] and Qa2(z,€) = diag;cy, (¢;(7,¢)). We have the same
hypothesis as those of section 3.5, the difference is the nature of the coefficient matrix
B?*(z,¢) in the system (52). Indeed, the function B?? is asymptotic of Gevrey oder 1/h
to the formal series B?2. The theorem 5 of formal splitting remains the same for this
system, because we work with the formal system, but we need to adapt the last theorem
of holomorphic splitting. There is no difficulty to extend the theorem to a coefficient
matrix which is holomorphic and of Gevrey type, because the proof of theorem 6 uses the
main result of the paper [CDRSS00| which is given for such class of functions.

At the end of this splitting process, we yield a set of independent systems of different sizes
but they are all essentially scalar systems, so we come back to the section 3.6. Therefore
we prove the conjecture for systems with levels less or equal to one.

3.8 Systems of several levels.
3.8.1 Systems of two levels.

We start with a system of singularly perturbed ordinary differential equations satisfying
the same hypothesis as those of the system (4). We apply to this system the theorem of
simplification, therefore we yield a system which satisfies the hypothesis enumerated in
section 3.5. As our system is of two levels

V ={s1, 82} U{+o0}

where 0 < s; < s9 < h — 1. Using the suitable transformation, we can amount us to the
case where s; = 0. The idea of the proof is the same, we start by the definition of two
sets N7 and N,

N; := {z €{1,...,n}| val, <ehd;; (x,s)) € {sy} U {+oo}}

and
N2 = {1, .. .,n}\Nl.

We denote by ni, respectively no, the number of their elements. Without loose of gen-
erality we can suppose that the diagonal matrix @ has the form (29). As in the section
below we apply to the system the formal and holomorphic splitting theorems to cut it
into two independent systems :

- The first system, as (52), is a problem of less than two levels, so we go back to the
section 3.7.

- The second is a system whose set V is included in {s1, so} U{+00}. If we have again
a problem of two levels then we restart the splitting process else we have a problem
of less than two levels, so we go back to the section 3.7.

As each splitting decrease strictly the size of the system, after a finite number of splittings
we obtain a set of independent systems which have less than two levels.
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We apply theorems 6 and 7 to systems with two levels, the proofs uses only at one
stage the hypothesis concerning the number of levels: in the formal splitting theorem for
formula (30) and (35), but in our case for a problem of two levels they do not change.

3.8.2 Systems of three or more levels.

For such systems the process is the same as above, the new fact which appears is that
we started with functions that are of Gevrey order 1/h, we split the systems using the
division:

N, = {2 e{1,...,n}| val, <€hd§; (x,s)) + 0}

and
N2 = {1,...,77,}\N1,

as often as necessary. Therefore we reduce the set ¥V which means that we reduce the
number of levels. Remark, that we split the system into a chronological way, because
we work with functions of Gevrey order 1/h after the first step of splitting and the new
system has the form J

6’““% = A(z,€)y,
to apply again the splitting theorems we remark that a function of Gevrey order 1/h is
also of Gevrey order 1/(h — s1). So a new splitting is possible
This completes the proof of W.Wasow’s conjecture. &
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