T TE

IET-E
e
':.|
=
.

Prépublications du Département de Mathématiques

Université de La Rochelle
Avenue Marillac
17042 La Rochelle Cedex 1
http://www.univ-Ir.fr/Labo/MATH

Surface measures and related functional
inequalities on configuration spaces

Christian Houdré et Nicolas Privault
Mars 2003

Classification: 60G57, 60H07, 28A75, 60D05.
Mots clés: Configuration spaces, Poisson measures, surface measures, coarea
formulas, isoperimetry. Deviation inequalities.

2003/04



Surface measures and related functional inequalities
on configuration spaces

Christian Houdré* Nicolas Privault

Abstract

Using finite difference operators, we define a notion of boundary and sur-
face measure for configuration sets under Poisson measures. A Margulis-Russo
type identity and a co-area formula are stated with applications to deviation
inequalities and functional inequalities, and bounds are obtained on the associ-
ated isoperimetric constants.
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mulas, isoperimetry.
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1 Introduction

Isoperimetry consists in determining sets with minimal surface measure, among sets
of given volume measure. In probability theory, isoperimetry is generally formulated
by expressing the volume of sets via a probability measure, and surface measures
using the expectation of an appropriate gradient norm. Gaussian isoperimetry is
a well-known subject, see e.g. [15] for a review. A notion of surface measure on
configuration spaces has been recently introduced in [6] using differential operators.
Discrete isoperimetry is also possible on graphs and Markov chains, by defining the
surface measure of a set A as an average of the number of elements in A that are
connected to an element in A°, cf. e.g. [10], [14], without requiring any smoothness
on A. In this framework, an isoperimetric result has been obtained in [4], Prop. 3.6,

for i.i.d. Poisson vectors in N¢.

*Research supported in part by a NSF Grant.



In this paper we consider the problem of isoperimetry on configuration space
in finite volume, i.e. on the space 2 of a.s. finite configurations w = {z1,...,z,},
n > 1, of a metric space X. The configuration space 2 is equipped with a Poisson
measure 7 with intensity o, where o is a finite diffuse Borel measure on X. Working
with the configuration space instead of finite Poisson distributed i.i.d. vectors is
similar to working with measurable functions on R instead of step functions. Each
(m-a.s. finite) configuration w € Q has a set of “forward” neighbors of the form
wU{z}, z € w* = X \w, and a set of “backward” neighbors of the form w \ {z},
z € w. A Markov chain and a graph of unbounded degree can both be constructed
on ). In the Markov case one adds a point distributed according to the normalized
intensity measure to a given configuration. In the graph case, a point chosen at
random is removed from a given configuration. Such operations of additions and
subtraction of points are also frequently used in statistical mechanics and in connection
with logarithmic Sobolev inequalities, see e.g. [9]. Here they allow to construct
two notions of neighbor (respectively denoted forward and backward) for a given
configuration. It turns out that the graph and Markov kernels are mutually adjoint
under the Poisson measure, and we will work with a symmetrized kernel in order
to take both the graph and Markov structures into account. We emphasize that it
is necessary here to use the graph and Markov approaches simultaneously (i.e. to
consider both forward and backward neighbors), since considering only the Markov
part or the graph part separately yields trivial values of the isoperimetric constants
h;f = 0. In fact the classical discrete isoperimetric results that hold in our setting are
those which are valid both in the Markov and graph cases. This notion of neighbors is
used to define the inner and outer boundary and the surface measure 7, of arbitrary
sets of configurations. Isoperimetry and the related isoperimetric constants are then
studied by means of co-area formulas. We can define dimension free isoperimetric

constants
hl = inf Ts (aA)
0<m(A)<3 m(A)

Y

and
he = it TOA)
o<m(A)<i ™ (A)

Let Ay = 1 denote the optimal constant in the Poincaré inequality on configuration



space for the finite difference operator D. We have % < h; <2+424/0(X), and

max L 1 < hy <4 L + L .
Vro(X) 20(X) ) — 7 T T\ o(X) o(X)

Margulis-Russo type identities are also obtained and yield asymptotic estimates for
the probability of monotone sets.

Isoperimetry for graphs and Markov chains is often applied to determine bounds
on the spectral gaps Ao, Ay, providing an estimate of the speed of convergence to equi-
librium for stochastic algorithms ans in statistical mechanics. In such situations the
values of the isoperimetric constants are easily computed as infima on finite sets. In
the configuration space case the situation is different since Ay and A\, are known and
used to deduce bounds on the isoperimetric constants.

We proceed as follows. In Sect. 2 we construct a finite difference gradient on
Poisson space and recall the associated integration by parts formulas, as well as the
Clark formula. We also extend the isoperimetric result of [4] (see [3] on Gaussian space
and [7] on Wiener space and path space), and state a Margulis-Russo type identity, in
the general setting of configuration spaces under Poisson measures. In Sect. 3, a graph
is constructed on configuration space by addition or deletion of configuration points.
The inner and outer boundaries of subsets of configurations and their surface measures
are defined in Sect. 4, e.g. a configuration w € A belongs to the inner boundary of A if
it has “at least” a (forward or backward) neighbor in A¢. A deviation result in terms
of the intensity parameter is obtained from the Margulis-Russo identity on Poisson
space. Co-area formulas for the finite difference gradient, which differ from the Gauss
type formulas of [11], are proved in Sect. 5. Boundary measures and surface measures
are defined by averaging the norms of finite difference gradients, which represent the
measure of the flow in and out a given set. An equivalence criterion for functional
inequalities is also proved. In Sect. 6, the main isoperimetric constants are introduced,
and bounds are stated on these constants. Sect. 7 is devoted to a generalization of

Cheeger’s inequality, following the arguments of [2], [12], [13].



2 Preliminaries

Let X be a metric space with Borel o-algebra B(X) and let o be a finite and diffuse

measure on X. Let € denote the set of Radon measures
i=N
0= {w = 00 ¢ (@)iZN CX, mi#ay, Vi£j, Ne NU{oo}},
i=1

where §, denotes the Dirac measure at x € X. For convenience of notation we identify
w = Y'="4,, with the set w = {z1,...,2,}. Let F denote the o-algebra generated
by all applications of the form w — w(B), B € B(X), and let 7 denote the Poisson

measure with intensity o on €2, defined via

T{weQ : w(l)) =k, ...,w(4,) =k,}) = |

on the g-algebra F generated by sets of the form
{we : wlA) =ky,...,w(4,) =k,},

for ki,...,k, € N, and disjoint Ay,..., A, € B(X). Let I,(f,) denote the multiple

Poisson stochastic integral of the symmetric function f, € L?(X,0)°", defined as

I (fn)(w) = /A fa(tss o ta)(w(dt) —o(dty)) - - (w(dtn) —o(dtn)), fa € Lg(X™)™,
with A, = {(t1,...,t,) € X" : t; #1;, Vi # j}. We recall the isometry formula

see [19]. As is well-known, every square-integrable random variable F' € L*(Q*, P)

admits the Wiener-Poisson decomposition

o0

F=> I(f

n=0
in series of multiple stochastic integrals.
The gradient chosen here on Poisson space is a finite difference operator (see [6] for a

different construction using derivation operators).

Definition 2.1 For any F' : Q) — R, let
DwF(w) = (F(UJ) - F(w + 6w))1{w€wc} + (F(w) - F(w - 5w))1{w6w}a

forallwe Q and x € X.



Now, given uf) x X — R with sufficient integrability properties, we let

0y (u) = /Xu(x,w)o(dx) —/ u(z,w — 0z)w(dx),

X

and

5w(u):/Xu(:c,w)w(da:)—/ u(z,w + 05)o(dz),

X
The following relations are easily obtained:

50(UF) = Fég(’ul) +5U(U,DF) — (u, DF)Lz(X,U), (1)
Féw(u) + 6W(UDF) — (u, DF)LQ(X,w); (2)

£
—~
IS
3
Il

and
5g(u):/Xu(x,w)(a(da:)—w(dm))—i—/XDmu(x,w)w(dx), (3)
5(u) = /X (@, w) (w(dz) — o(dz)) + /X Dyu(z, w)o(dz). (@)

As shown in Prop. 2.1 below, the operators d, and ¢, are adjoint of D, with respect

to scalar products respectively given by o and w.

Proposition 2.1 We have for F: Q) >R andu: Q) x X — R:

E[Fé,(u)] = E[(DF, u}r2(0)]; (5)
and

E[F6,(u)] = E[(DF, u)12(w)); (6)
provided the corresponding quantities are integrable.

Proof.  The relation E[6,(u)] = 0 can be seen as a consequence of Th. 1 or Cor. 1
in [20], and (6) follows from (2). This in turn implies E[d,(u)] = 0 from (3), and (5)
using (1). O

Remark 2.1 For simple processes the above result can be proved using the character-

istic function of [ « hdw which satisfies

E [exp (zz/ hdw)] = exp/ (e —1)do, z€R
X X

Differentiating each of those two expressions with respect to z yields

E [/X hdw exp (iz/thw)} =F [/X he*do exp (iz/)(hdw)} ,

6



hence

E [ /X hd(o — w) exp (zz /X hdw)} = E [(h,l — €M 12(x,0) €XD (zz /X hdwﬂ
<h,pexp ( / hdw)>mm] ,

where we used the relation Dy, exp(iz [ hdw) = (1—e*"®) exp(iz [, hdw), o(dz)-a.e.
From (4) this implies E[0,(u)] = 0 for all u of the form

= F

n
u= E : 1Aiezzlw(Bl)—}—---—}—zznw(Bn)'

=1

We have

D,F(w+0,)=F(w+6;) — F(w) = —-D,F(w), z=¢uw,
and

D,F(w—10;)=F(w—06;) — Fw)=—-D,F(w), € w.
Hence

5,DF(w) = /X (F(w) = F(w+ 6,))o(dz) - / (F(w - 6:) — F(w))w(dx),

and
.DF@) = [ (Fw) = Fw—8.))u(dn) = [ (Flw-+82) = Fw))o(do)
so that
5.DFw) = &.DF)= [ DiF(@lds) - [ DiF(w)o(da) 7
= (0(X)+w(X))F(w)— /X F(w+6,)o(dx) — /X F(w—d,;)w(dz).

From the definition of I,,(f,) it can also be easily shown that

50D1n(fn) = 5wDIn(fn) = nIn(fn)a

cf. e.g. [23]. It follows that the spectral gap of §, D is Ay = 1, a fact which is recovered
below by a different method. In the sequel we shall uniquely use the operator d,, and

denote it by 4. Let

DfF(w) = max(0,D,F(w))
= (F(w) - F(w + 5w))+1{$6w0} + (F(w) - F(w - 6z))+1{x€w}-

7



and

D, F(w) = —min(0,D,F(w))

= (F(w) - F(w + 535))_1{3060.10} + (F(w) - F(w - 5z))_1{$€w}-

We have D} F = D (—F), hence |D,F|? = |DfF|P + |D, F|P, and
|DF(w)[7, = |[DTF(w)[g, + D™ F(w)lL,
Lemma 2.1 We have
E(IDTF (L] = E[ID7F [,

and
E[|D™F[}p,] = E[|DTF[], )

Proof. We have
5, D+ F(w) = 6,D" F(w / Dt F(w)w(dz) — / D= F(w)o(dz
X

and

5, D~ F(w) = 5,D" F(w /D Pw)w(dz) — /D+F( Yo(dz),

which implies

E(D*Fljy,)) = EID¥Fl3y ] = Elb,(D*F)] = 0.

Similarly, (7) will imply

E [ /X DzFa(dac)} =_F [ /X Dme(da:)].

(10)

In the particular case F' = 1y,(4)=¢}, Lemma 2.1 simply states the following easily

verified equality:

E[|D* Vw(ay=k}|21(0)] = 0(A) E[Lwa)=r] = (k+1) E[L{w(a)=k+13] = E[[ D™ L{u(a)=t} 21 @

We also have

B(|D*F, | = B [IDFE, o | = sE[IDF, )| = LB [IDFE,,,).

))-



in particular the Dirichlet forms &,(F, G) and &, (F, G) defined as
1 1
E(F,F) = SFIIDF i), Eu(F,F) = LEIDF I

coincide:

&,(F,F) =¢&,(F, F).

This result can also be seen as a consequence of the relation d,D = §,D.
The Clark formula given next yields the predictable representation of a random

variable using the operator D. Take X = [0, 1] and o the Lebesgue measure and let
Ni(w) = Npg(w) =w([0,7]), teR:, weQ,
i.e. (Ni)epo,1 is a standard Poisson process under 7.

Proposition 2.2 (/21], Th. 1) We have the following Clark formula, for F € L*(Q,):
1
F=EIF)- [ EDF| R, (11)
0
where the stochastic integral is taken in the Ité sense.

The formula is first proved for F' € Dom(D) and then extended to L*(€2) by continuity
of F' — (E[DiF | F])ier, from L?(Q,7) into L?(Q2 x [0,1]). The Clark formula (2.2)

yields the Poincaré inequality:
var(F) < E[|DF|3s,], F € Dom(D). (12)

This inequality is in fact valid for an arbitrary Polish space X with diffuse measure

o. Note that if F' = 1,4 then the Poincaré inequality implies
m(A)(1 —7(A)) < o(X),
in particular if o(X) < 1/4 then we have either

7(4) < (1 — /1 40(X))/2

m(A) > (1+v1-40(X))/2,

and if 7(A) < 1/2 then
m(A) <27(A)(1 —7(A4)) < 20(X).

9



The following result gives a version of isoperimetry on Poisson space which is indepen-
dent of dimension and generalizes the result of [4], p. 274. Let ¢ denote the standard
Gaussian density, and let ® denote its distribution function. Let I(t) = o(®71(t)),
0 <t <1 denote the Gaussian isoperimetric function, with the relations I(z)I"(x) =
—1and I'(z) = =&~ (), z € [0, 1].

Proposition 2.3 For every random variable F : Q — [0, 1] we have

I(BIF) < B |\/I(F) +2DF 2., (13)
Proof. Let X,, denote the N"-valued random variable defined as

Xo(w) = (WA, ..., w(4), we

If F = foX, is a cylindrical functional we have

=3 1 (@) (F(Xa)) = F(Xa(w) + ),

[+ N* — R, where (ej)1<k<n denotes the canonical basis of R". For the cylindrical
functional F', (13) follows by application of Relation (3.13) in [4] and tensorization.
The extension to general random variables can be done by martingale convergence,

e.g. as in the proof of Th. 3.4 of [29]. O

This also implies that the optimal constant by in the inequality

HEF) < B [\[107 + L IDF R )

satisfies by > 1. Using the equivalence I(g) ~ €4/2log 1/¢ and the Schwarz inequality,
Relation (13) allows to recover the modified logarithmic Sobolev inequality of [1], [30]:

E[Flog F] — E[F]log E[F] < %E {%|DF|§] :

Note that the analog Gaussian isoperimetry result can also be transferred to the
Poisson space for the Carlen-Pardoux gradient [8], writing the exponential interjump
times of the Poisson process as half sums of squared Gaussian random variables as
in [22]. Let my, A > 0, denote the Poisson measure of intensity Ao(dz) on €2, and let
E) denote the expectation under 7,. We refer to [18] for the following type of result,

obtained by differentiation of the intensity parameter.

10



Proposition 2.4 Assume that DF € L'(7y ® o) and F € L'(my\), X\ € (a,b). We

have

aa)\EA[F] —E) [/ DyFo( daﬁ)} = E, [/X Dme(dx)] , A€ (a,b).

Proof. Given the representation

F(w) = fol{ju=oy + Z Liwj=n} fo (@1, -, 2n),

n=1

where w = {z1,...,2,} when |w| = n, we have

Ey[F] = e X fy 4 e X)Z o / / folzy, ... z0)o(dey) - - - o(dxy),

and
SBF] = —o(X)E[F
eHo(x 2 Al / /fn 21,y 2n)o(d) - o (d)
— —o(X)E\[F]+ Fy [ /X F(w—i—dw)o(dx)]
_ R [ /X DmF(w)a(da:)].
The second relation follows from (10). 0

As a corollary we will obtain a Margulis-Russo type equality [16], [25] for monotone

sets under Poisson measures.

Definition 2.2 A measurable set A C  is called increasing if

weEA = w+d, €A, o(dr)—ae. (14)
It is called decreasing if

weEA = w-06,€A4, w(dx)-—ae. (15)

Note that if A is decreasing then A€ is increasing but the converse is not true. In fact,

saying that A is decreasing is equivalent to the following property on A¢:

weA = w+d, €A% Vreuws (16)

11



which is stronger than saying that A¢ is increasing. The set A is said to be monotone
if it is either increasing or decreasing. The sets {w(B) > n}, resp. {w(B) < n}, are

naturally increasing, resp. decreasing. Another example of monotone set is given by

{wEQ:/fdw>K}, K eR,
X

which is increasing, resp. decreasing, if f > 0, resp. f < 0. Clearly, a set A is
increasing, resp. decreasing, if and only if D,14 < 0 (i.e. D,ly = —D_ 1y, or

D1, =0) o(dz)-a.e., resp. w(dz)-a.e. As a corollary of Prop. 2.4 we have:

Corollary 2.1 Let A C Q be an increasing set. We have

%W/\(A) = E), /X D;lAa(da:): = FE) [/X D;lAw(dm)] :

If A C Q) is decreasing we have

aﬁm(A) = —E, /X D;uw(dx): = B, [ /X D; 1A0(dﬁv>]-

We also have if A is monotone:

0

a—)\ﬂ')‘(A) == E,\ [”DlA”Ll(a')] = E,\ [||D1A||L1(w)} .

3 Forward-backward kernels and reversibility on
configuration space

Given w € €2, the set of forward neighbors of w is defined to be
N ={w+6, :z€wY,

and similarly the set of backward neighbors of w is
Ny ={w-96, :ze€w}

We let,
N, =NFUN.

We define two measure kernels K (w, d@) and K~ (dw,w) which are respectively sup-
ported by N and NV .

Definition 3.1 Let for A € F:

K+ (w, A) = / Law+6)odz), K- (Aw) =3 1a(w—6b,).

X €W

12



It is a classical fact that since 7 is a Poisson measure, the image under w + ¢, — z of
the measure

m(do | @ € NF)
coincides with the (normalized) measure o on X:

o(B)
o(X)

=7({w : ¥=w+d, :x€B}|weN), BeBX).
Hence the forward kernel satisfies
Kt (w,dd) =o(X)m(do | © € NJ),

and (0(X)) 'Kt (w,dd) is of Markov type. Similarly, the image under w — 6, — x of

the measure

n(do | @ € NJ)
coincides with the normalized counting measure on w:
B
%:W({JJ c0=w-—10, € B} |weEN,),

hence the backward kernel satisfies

K~ (dis,w) = w(X)m(do | @ € Ny) =Y _ bus, (did

TEW
and (w(X)) 'K~ (dw,w) is Markovian provided w # 0. The kernel K~ (d@,w) itself is
not Markovian, instead it is of graph type, i.e.

- [ 1 ifo=w-—4, for some z € X (ie. @ € N,),
K=({o}w) = { 0 otherwise (i.e. @ ¢ N,,).

We have for p € [1, o0)
DF(w / [F(w) — F(w+ 6,)Po(dz) /\F F@)PK* (w0, dd),
and
\DF(w / (W) — Flw — 6,)[Pw(ds) / F(w) — F(@)PK=(w, do).
For p = oo we have
[DF(w)|Loo(0) = €55 SUP () | F(w) = F(w + 02)| = €58 SUp g (y,a3) | F'(w) — F(@)],
and
[DF ()10 = o5 5D gy [F() — Fl — 82)| = 055 5D ¢ (9| () — F(@).

13



We also have

E [|D+1A|L,,($)} = / K(w, A "r(dw), E |D‘1A|L,,(%)] = [ K(w,A)"’r(dw).
A Ac
The following proposition shows a reversibility property, which is an analog of Lemma 2.1.

Proposition 3.1 The kernels K™ (w, d®) and K~ (dw,w) are mutually adjoint under
7(d@), i.e
7(dw) Kt (w, dw) = K~ (dw, @) (d).
Proof. We have
| [ FeG@K @ danta) = [ F)G +6)m(ds)alds)
= —QE[F<DG, D) + 0(X)E[FG]
= _E[Gs,(1xF)] +0(X)E[FG]

- / pr_ dw)

TEW

= //G ~(dw, &) (d).

In particular we have E[K~F| = o(X)E[F]:

/ / (da,wr(de) = o(X) [ Plo)m(d),

and E[KTF] = Elw(X
/ / 5K (o, () = [ w(X)P()r(de),

which is Lemma 1.1 in [29] and is similar to the Mecke identity [17]. This also implies

/AK+(w,A°’)7T(dW)=E[ID+1A( W) Lriey] = EllD"1a(w)[1o()] = K*(A w)m (dw),

K (w, A)r(dw) = ElID™14(w)2, ] = BID 1a(w) ] = / K- ).
Ac
The proof of Lemma 2.1 can be reformulated using reversibility of forward and back-

ward kernels.

Proof. We have
E[ID*F[, )] = / (Fw) — F@))* K™ (w, do)r(dw)
- / (Fw) — F@))* K~ (dw, &)r(d5)

~ [ (P@) - F@)7 YK~ (v, 5)(d)
= E[DF, ).

14



Let K(w,d®) denote the symmetrized kernel

Kt (w,dw) + K~ (dw,w)

K(w,dd) = 5

We have
IDF@)yese, = 5 DF @y + 51 DF @)y = [ 1) = P@)PR (w,d5),
and for p = oo:
|DE(w)|zo0(04w) = €58 SUP (a0 F'(w) = F(@)]-
We also have
E [|D1A|L,,(¥)] ~- E [|D+1A|L,, oro } +E [|D*1A|L,, cto)
= /K w, A)YPr(dw) + / (w, A)YPr(dw),
since DfFD,;F =0, x € X. Let

1
I(F, F) = 5|DﬂtF|§2(%).

We have
MR =5 [ (Pe) = FE)(6) - GE) K (w,d)
FREW =5 [ (Fe) = F@) (6) - GE) Kw,ds)
and

£(F,F) = E[T*(F, F)] = E[l(F, F)].

Proposition 3.2 The Laplacian associated to the discrete Dirichlet form E(F, F) is

L= L6D, with

o(X) + w(X)

1 _
L=§5D= I, - K.

Proof. Again, reversibility can be employed. We have
E(F,G) = /QXQ(F(w) — F(@)(G(w) — G@) KT (w, do)m(dw)
- /Q PG K, diyn(de) + /Q F@)GE)K (de,D)r(de)

_ /Q F@)GE)K (0,do)r(d) - /Q G)F @)K (o, do)r(de)
= E[F((c(X)+w(X))G-K'G—-K G)].

15



Note that in the case of cylindrical functionals, L is the generator of Glauber dynamics
considered in statistical mechanics as in e.g. [9], and has the Poisson probability
as invariant measure. Although K~ (do,w) and K*(w,d®) are not Markov, they
leave the Poisson measure invariant under appropriate normalizations, for example
for A = {w(X) =k}, we have K~ (A,w) = (k 4+ 1)1{,(x)=k+1}, and

1 _ _k-l—lﬂ_ w _ _
U(X)/Qw(dw)K (4.) = S m((X) = k+ 1)) = n(4)

In particular we have the following result.

Proposition 3.3 The Poisson measure w(dw) is a stationary distribution for the

symmetrized normalized kernel

Proof. We have

/Qw(dw)ml((w,/l) :/Aw(dw)ml((w,ﬂ) — r(A).

4 Inner and outer boundaries

We have
+ _
Dyls(w) = 1{weA and w+5meAc}1{w€w”} + 1{weA and wamEAC}l{wew}’
and
Dy 1a(w) = 1{weAC and w+5$eA}1{w6w”} + 1{weAC and w—6$eA}1{I€w}'
Hence

|ID*14(w) ’ip(o) =la(w)oe(f{r e X : w+d, € A°}) = 14(w) KT (w, A°),
and

DT 14(w) B,y = law)w({z € X : w—6, € A%}) = 14(w) K™ (A% w),

(w)
Le. for w € A, [D¥14(w)|},,) is the measure K™ (w, A°) on N of the set of for-

ward neighbors which belong to A¢, and |D114(w) ’ip(w) is the number (or measure

K~ (A¢,w) on N) of backward neighbors which belong to A¢. We also have
ID714(w) 100y = Lac(w)o({z € [0,1] : w+d; € A}) = Lae (W) K (w, A),

16



and
D7 14(w) |75y = lac(Ww({z € [0,1] + w—0; € A}) = 1ae(w) K™ (4, w).

i.e. for w € A% |D714(w)|75(, is the measure K (w, A) on N of the set of forward

neighbors of w € A¢ which belong to A, and |D™14(w) ﬁp(w) is the number (measure

K~ (A,w) on N)) of backward neighbors of w € A¢ which belong to A.
Remark 4.1 We have D14 = D 14c and |Dyl4| = |Dylacl, z € X.

In particular,

D;—:l{w(B):k} = 1p(2)1{w(B)=k}

and
D, 1=k} = 18(2)10(2)1{wB)=k+1} + 18(2)1we (2) 1{w(B)=k-1}
hence
D wB)=kt1r () = 0 (B)Liwm)=k1: DT 15(W)[7ne) = kliwm)=41,
and

1D YwB)y=kt 7o) = O (B)Lum=k-11> 1D Lum)=} 1oy = ( + 1) {um)=r+1-

Similarly,

ie. [DT14(w)|pee) = 1, resp. |[D714(w)|peo(oy = 1, if and only if w € A, resp.
w € A° has “at least” a forward neighbor in A°, resp. A, and |[D714(w)|pe(w) = 1,
resp. |D714(w)|re@w) = 1, if and only if w € A, resp. w € A° has at least a
backward neighbor in A€, resp. A. The following definitions are stated independently
of p € [1,00].

Definition 4.1 Let p € [1, 00].

17



The inner and outer boundaries of A are defined as:
OnA={we A : Kw,A) >0} = {ID14(w)| o (o+w) > 0},

and
aoutA = {w € A° I_((w,A) > O} = {‘DilA(w)‘LP(Uﬂ—w) > O}

The boundary of A is defined as:

814 = ainA U aoutA
= {w e ‘DlA(w)|LP(U+w) > 0}

For instance,

Bu{w(B) = k} = {w(B) = k},
Oou{w(B) = k} = {w(B) = k = 1} U {w(B) = k+ 1},

O{w(B) =k} = {k—1<w(B) < k+1}.

In particular, Prop. 2.3 shows that the isoperimetric function p + inf,(4)—, 7,(0A)
on Poisson space is greater than 1/ V/2 times the Gaussian isoperimetric function I.
We have D14 = D;14c, hence A = 0oy A and 0A = 0A°. We may also define
the interior A° of A as

A° =H{w : \D+1A(w)\L,,(%) =0} ={we A : f((w,A) =0} = A\ A,
and the closure A of A as
A = {we A : D 14(w)|p(egey = 0}°
= AU{weq : I_((A,w) >0} =((A9°)° = AU Qo A.

More refined definitions of inner and outer boundaries are possible, by distinguishing
between “forward” and “backward” neighbors. Note however that defining the norms
and boundaries with respect to K only, resp. K~ only, leads to oy {w(B) < k} =0
since | D™ 1)<k} 12(0) = 0, resp. On{w(B) > k} = 0 since |D 1{y(my>k}|1r(0) = 0,

i.e. the isoperimetric constants h;t defined below have trivial zero value. We have
T(OnA) = E[|DM 14|10 (04w)) = 7({w € A : K(w, A%) > 0}),

18



T(OoutA) = E[|D™ 14|10 (04w)] = T({w € A° - K(w, A) > 0}),

and

m(0A) = E[Dlalre(otw)] = E[[DT1alre(otw)] + E[[D 1a|r2(otw)]
= 1{wed: KwA) >0}) +7m({we A° : K(w,A) > 0}).

In discrete settings the surface measure 7s(0A) of A is not defined via a Minkowski

content of the form

7 (9A) = liminf ~(r({w € w : d(w, A) < r}) — 7(A)).

r—0 7r

Nevertheless, the surface measure of 0, A, resp. 0OouA, can defined by averaging
La(@) K (w, A9 = [D¥1a(w)lga(oge), resp. Lac(w) K (w, A2 = [D7Law)l12(oge)

with respect to the Poisson measure 7(dw).

Definition 4.2 Let
. (Ont) = B[ D L) o] = [ Koo, 49 2m(d),
A

and

7y (BouA) = E[ID La(w)|pagege)] = [ E(w, 4)m(dw).
Ac

The above quantities represent average numbers of points in A, resp. A€, which have
a neighbor in A° resp. A, the Poisson measure playing here the role of a uniform

measure. The surface measure of 0A is
s(0A) = 7s(OnA) + Ts(OoutA)
- E [|D+1A|L2(#)} +E [|D‘1A|L2(%)] —E [|D1A|L2(%)}

= /K(w,AC)1/27T(dw)+ K (w, A)"7(dw).

As a consequence of the Margulis-Russo identity Cor. 2.1 we obtain asymptotic devi-

ation bounds on 7,(A) when A is a monotone set.

Proposition 4.1 Assume that there exists @ > 0 such that mg(A) = 1/2. Let A be an

increasing subset of 1, and let
A” = inf ||[D71 )
BglltA || A||L1(a)

We have for X > 0:

m(4) <@ (V2XA~ - V29A-)

19



and for A < 0:

m(A) > @ (\/Z\A* - \/20A*) .

If A is decreasing we let

At = 8ii13£||D+1A||L1(0),

then

m(A) < @ (\/29A+ - \/2)\A+) CA>0,

and

m(A) > & <\/20A+ - \/2m+) . A<

Proof. We adapt an argument of [27], [28] to the Poisson case. We have

ENID™ 14| z2()]

E\L10- 1411150 (0 >0} 1D 1all 2]
D LallLo o) > O} ZEAID ™ 1all72(0)]'
T2 (Oous A) P EN[|D™ 1| 1()]

1
E,l[|D1 1(g) |-
\/E )\[” A”L ( )]

Let f(A\) = ma(A). Using (13) we get

VANVAN

IA

') = ExlID™1allr(o)]-
VA“E,\[| D714l r2(s)]

=
oy

—VA-
V2AI'(f(N)

V

Vv

Hence for A > 0,

and finally




If A is decreasing and A > € we similarly show that

1
E\ID¥ 14ll12()] < Ta(8A) 2 EX[ID T 1al| 11 (0)] ' < JAT

EX[ID™ 14l L1 (o],

F) = =EllD* Ll
< VATE\||ID*14ll12(0)
VAT

= VG

and

O~ (F(N) < /AH %dt = V2A+ (VO — V).

The case A < @ is treated in a similar way.

When )\ < 6 and A~ is large, the lower bound is equivalent to

1 e—(\/QAA——\/QGA—)Z/Q-
V21 (V20A~ — V2XA7)

As an example, for the increasing set {w(B) > n} we have

Oout{w(B) > n} ={w(B) =n— 1},

and
D,1wy>ny = =Dy Lws)>ny = —18(2) 1 wnB)=n-13,
hence
1DV wB)2n}llLro) = 0 (B)lu(B)=n-1} = 0(B)laguiw(B)>n};

and A~ = o(B). For the decreasing set {w(B) < n} we have

Oin{w(B) < n} = {w(B) = n},

and
Doliumyny = =Dz Lwmyzny = —18(2) 1 {w()=n},
hence
1D u(B)<n}llLi o) = 0(B)u(B)=n} = 0(B) 1oy w(B)=n},
and A* = o(B).
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5 Co-area formulas

For p = co the next Lemma shows that

—+o00
E[‘D+F‘L°°(a+w)] = / W(ain{F > t})dt,
+0o0
E[|D_F|L°°(a+w)] :/ 7T(aout{F > t})dt-
Lemma 5.1 We have
+ e +
EHD F|L°°(a+w)]:/ EHD 1{F>t}|L°°(o+w)]dta
and
E[|D"F|i=(r4w)| + E [|D7F|10(01w)] :/ E [|D1{pssy|ro(otw)] di-

Proof. 'The notations ess sup g, and ess inf zep;, denote respectively ess sup z(, 4z

and ess inf g, 47)- We have

|DTF(w)| 150 (o4w) = €88 SUP gepr, — F(@))" = F(w) — ess inf gep, F(Q),

hence
E[|D"F|pe(osw) = — Eless inf gen, F(@)]
- /_:O {F > 1)) dt—/+°° r(ess inf oox, F(@) > £)dt
_ /_ :O ({F > t))dt / : ({ess inf pen, F(@) > ¢ and F(w) > £})dt
- /_:OW({F(w) Stand (0+w)({zeX : Flwsd,) <t})> 0})dt
_ /:OW({w €0 : (o+w{zeX : F(w)>tand Fw£d,) < t}) > 0})dt
_ / :Ow({w €0 : (0+w){2€X : Lypwn — Lipwesysy = 1) > 0))dt

+oo
- / T({w €Q ¢ 1D g imorey = 1})dt

+00
_ / B DH sy | 1o (o -
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The proof for D~ is similar. Finally we have, since D} FD; F = 0:

E[‘D+F‘L°"(a+w)] + E[|D7F|L°°(U+w)]

o0

= / E[\D+1{F>t}\m<a+w)]dt+/ B[|D™1{r> ) |poo(o+)]dt

o —0o0

= / E[|D"rstyroo(otw) + 1D Lipsty | o rw)ldt

o0

_ / ElID por)|mo s .

o0

The next Lemma states a co-area formula in L'.

Lemma 5.2 We have

+oo

EID*Flu) = [ EID*V g i
+o0

E[|D*F|p1(w)] :/ E(|D*1 (g5t |11 w)dt-

Proof. We have for all a,b € R:
(b—a)* = / (Liasty — Lipsyy) T,

hence
DIF = / Dilipspydt.

As a consequence we have

- +o00 -
E |:|D:|:F|L1(%)_ :/ E _|Di1{F>t}‘Ll(#):| dt,

—0o0

and

- “+0o0 _
E |:|DF|L1(%)_ :/ E _|D1{F>t}|L1(%)j| dt

-0

Proposition 5.1 We have

+o00 +o0
E[I*(F, F)] = / / ET*(1{rsey, Lrss))]dsdt.

Proof. Again we use the identity

+o0
DiF = Dy 1{rspdt.

-0
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We close this section with an application of co-area formulas to an equivalence result

on functional inequalities. Let G be a non-empty set of functions on 2, and let

L(F)= ngpeg E[FtG, + F G, (17)

Several functionals have the representation (17), for example the entropy
L(F) = Ent|F| = E[|F|log|F|] — E[|F||log E[|F|] = b E[|F|G],
the variance
L(F) = E[(F = E[F])’] = var(F) = inf E[(F - a)’],

and

L(F) = E[|F —m(F)[] = inf B[|F ~ al],

where m(F) is by definition a median of F. The co-area formula implies the following
equivalence, as in [12], [24]. The norm |- |, denotes either |- [;1(,) or |- |71, When

p=1, and |- |geo(s4w) When p = oo.
Theorem 5.1 Let ¢ > 0. The following are equivalent:

(i) cL(F) < E[|D%F|,), for all F : Q - R,

(ii) cL(14) < E[|D*14],] and cL(=14) < E[|D*(=14)l,), for all A € F,
with p =1, c0.

Proof.  We follow the proof of [12]. In order to show (i) = (i) we note that for all
Gi,G2 €6,

[e's) 0
BID*FL) = [ EUD*Lmlldt+ [ B i

v

[e'e) 0
¢ / (G 1gpsn]dt + / E[|\D*(=1gr<y) )t
0 —00

0

v

CE[GyF*] — ¢ /

= cE[G\F*]+ cE[F Gy,
hence

E[|D*F|,] > ¢ sup (E[G\F*|+ E[F~Gy]) > cL(F).

G1,G2€G
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6 Some explicit computations

In this section we define the main isoperimetric constants and establish some bounds

on these constants.

Definition 6.1 Let for p € [1,00]:

FE [‘DilA‘Lp(¥):| |:|D]'A‘Lp i ]
hE= inf ,  hp,= inf
0<m(A)<i m(A) 0<m(A)<i m(A)
We have
1 _
hi =hy = inf /K JA)T(dw) = inf —— | K(w, A)m(dw),
! L oen (A)<3 (A ) 0<m(A)<i m(A) J ge ( ()
iIlA — . S u A . s aA
hi= inf ms(0nA) hy = inf ™ Oowd) oy T(04)
o<m(A)<} m(A) o<m(A)<} m(A) 0<m(A)<} m(A)
and
inA — . ou A . 0A
ht = inf ™ (O A) hy = inf TOoud) ) g TO4)
o<n(a)<} m(A) o<r(a)<}  m(A) o<r(A)<t m(A)
The following is a functional version of h:.
Definition 6.2 Let for p € [1,00]:
ht = inf b ‘DilA‘LP(%) h,= inf b ‘D1A|Lp(%)
P ocn(A)<l mw(A)m(A°) ’ P oen(a)<t m(A)m(A°)

Note that in the definition of the isoperimetric constants we need to integrate with
respect to w + o, otherwise integrating with respect to w or ¢ only would lead to

vanishing isoperimetric constants, since
{ID" Vumy<hy o) > 0} =0,

and
{|D™1w(B)>k}|Lo(o) > 0} = 0.

The next proposition follows the presentation of [26].
Proposition 6.1 We have

a) hy = 2h] = 2h],

b) ﬁ; :B;,pzl,oo,
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¢) min(hi, hy) < b < 2min(h, hy) < ht + by < h, < b, < 2h,, p € [1,+0o0].

Proof. For the first statement we use Lemma 2.1, which implies

[|D+F|Lp(a+w)] [|D FP2ose } —E [|DF|LP s ]

The second statement follows from Remark 4.1. The last statement follows from the

inequalities, if 0 < 7(A) < 1/2:

B (10l B [0 T alioepe) |

hy < (A) S T A9
_ B0l | B (1D aliriepe)
h m(A)w(4e) T m(A) ’

and similarly if 1/2 < 7(A4) < 1:

E [|D*1AC|L,,(%)] E [\D*1AC|M($)}

he < <
P m(A°) - w(A)r(A9)
E [|Di1Ac\Lp($)] JE [|Di1Ac|Lp(%)}
B m(A)m(A) T m(A°)

Definition 6.3 Let for p € [1,00]:

‘_D:tF‘Lp #) |:|DF‘LP o-+w):|

Y SR BE - mER T e EF - m@)]

Proposition 6.2 We have hi = ki, ht = kX, hy = ki, and ke < hoo < 2koo

Proof. First of all we note that since m(14) = 0 if 7(A) < 1/2, we have
kEm(4) = KEE[(La = m(14)*] < B [ID*1alpnegs |

hence h;t > k;f, p = 1,00, and similarly

km(A) = Ky Bl 1 = m(1a)]] < B [|D1a| pogoger|
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hence h, > k,, p =1, 00, From the co-area formulas Lemmas 5.1 and 5.2 we have for

p = 1,00, since 7(F > m(F)) < 1/2:

E [[D*Fpege)|

v

v

>

Hence £ > hf. Similarly we obtain

o

h;/oo

ht h 7({F > t})dt

gl

e / TR (F = m(F) > })dt
W E((F — m(F))*).

r({F > t})dt

B ||D7F|pyege)| = B |ID*(=F)lpgege)| 2 by BI(=F=m(=F))*] = by B[(F=m(F))7],

hence k, > h,, and

0

"

v

o0

v

hE[|F —m(F)|}

/ E [‘Dl{*F+m(F)>t}|Ll(¥)j| dt+/
0 0

hE[(F —m(F))

m(F

T({—F +m(F) > t))dt + hs / TR (F = m(F) > tY)dt

|+ mE[(F —m(F))"]

hence k1 > h;. From Lemma 5.1 we also have

2E[|DF|L°°(0+w)] E[|D+F|L°°(U+w)]

m(F)

.

| I e
0

0
hee |

v v

Y4

hence 2ky > hoo.

E[\Dl{F>t}\L°°(a+w)]dt+/

+ E[|D7F|L°°(a+w)]

EHDl{F>t} ‘Loo(o—+w)]dt

o0

E[|D1{F>t}| o (0+w)]dt

m(F

o
(F)>t} | Loo (04w ] T + / E[|D1{p_mr)>t}| 1o (0+w)dt
0

T({—F +m(F) > t))dt + hoy / TR (F — m(F) > ))dt
hoo E[(F = m(F)) ] + hoo E[(F — m(F))"]
hoo E[|[F — m(F)],

27
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Remark 6.1 The above proof also implies, if ' > 0 and w(F > 0) < 1/2:
W BIF) < B [|D*Flyuepm]

and

h, E[F]<E _\D_F\L,,(MTN)_ :
The following is the definition of the Poincaré constants.
Definition 6.4 Let for p € [1,00]:

+ X E |:|D:tF‘Lp(U+w :| [|DF|LP L ]
A = inf , Ap = inf
P FiC var(F) F#£C var(F)

Remark that AT = A, p € [1,00], since D F' = D (—F), and ht > A\}. We have
1 2 1 2
[‘DF|L2(a+w i| = §E |:|DF‘L2(O')} = §E [‘DF|L2(w):| s

hence
. E(FVF)
A =2 inf ——~.
? FiC var(F)
Th. 5.1 shows that N
El\D*1 4|00 (04w
M = inf [ DF 1|z o))
7(A)>0 varl 4

Definition 6.5 Let for p € [1,00]:

fo_EID ] L B(DFliyep)]

P TR BF- R T R B B

When o(X) < 7/4, Relation (22) also improves the lower bound on h given in [4]

in the cylindrical (i.e. finite dimensional) case.
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Proposition 6.3 We have

Ao =2\ =2)\; =1, (18)
1

Ao = (%) (19)

% < hy =2hf =2h7 <2+ 2V/0(X), (20)

1/vV27 < hy, (21)

1 1 4

max( WU(X)’QU(X)> = froo = (X)+ o(X)’ (22)
. hhL Ok 1

Mo <= <o = =59l (23)
. _ hy 1 2

AOOSTS\/E—U(XPL ) (24)

ki <2, (25)

hi < A\/1+ /o (X). (26)

Proof. The Clark formula and Lemma 2.1 show that when 7(A) < 1/2,
Lr() < var(la) < ElIDWsRa)] = BID Al
— 2F |D+1A|L1(#)} —2E [|D—1A|Ll(#)] - E [|D1A|L1(#)}

hence
hi =2k =2k} > 1/2,
which proves the first part of (20). We have
1
him(A) < E[DT1lalp(ese)] = §EHD1A\L1(U)]
1 1
< SoX)EIDLilimn] € 5o(X)BIDLilimosan),

hence h{ < 0(X)he/2, which yields the second part of (20) from (22) (proved below).
On the other hand,

vatF < E[|DF[%,,)] = E[|DF %, = E [|DF@2(%)] =2F [\Dﬂ:m;(L
< o(X)E[|DFF[Fe(piun)s

hence Ay = 2)\, =2\ > 1 and Ay, > 1/0(X). Letting F(w) = w(X), we have
DzCF = ]-{J:Ew} - 1{3060.10}7
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and
var(F) = 0(X) = E[|DF 1)) = E[|DF [} ozu)] = 0(X)E[|DF [ (51,

which shows Ay < 1 and Ay < 1/0(X), and concludes (18) and (19). Relation (21)
follows from Th. 2.3: applying (13) to F' = 14 we get, since I(14) = 0:

1
E[|D14lp2(o40)] > —QEHDlA‘H(U)] =

\/_
hence hy > 1/+/2m, and

2 1
I(m(A)) = \/—2?7T(A)(1—7T(A)) > \/—2_7rW(A)’

N =

E[|D14| 1 (54w)] = E[|D14|peo(e)] > ——=

I(t) > \/glvar(t)a

with L, (t) = ¢(1 —t), 0 <t <1, hence hy > 1/4/mo(X). We have if 7(A) < 1/2:

where we used the inequality

AooT(A) < 2267 (A)m(A) < 2E[|D1al] 0 (5 40)] = 2B[| D1 4105 (54)]5

hence A < 2ho which, with Th. 6.2 and ho, > 1/4/m0(X), proves Relation (22).
Similarly for 7(A) < 1/2 we have

Ao (A) < 20 m(A)m(A) < 2E[|D*14]700(

o

) = 2E[|D* 14 15¢(0-4))s

o+w

hence A\ < 2hE ;) and (23), (24) hold from Th. 6.1. Relation (25) follows from Th. 7.1

below. We also have

2
(h;)?']r(A)2 FE |:|D+1A‘L2(%)]

IN

- B [1A|D+1A|L2(a§u)}2

< w(A)E [|D+1A|i2(%)}

— 7(A)E [|D+1A|L1(%)} ,
hence (h;)? < h7, which proves (26). O
Clearly the logarithmic Sobolev constants

+
" B [1D%14 | oege) |
p

- P B [|DLil o)
= m s an = 1n
o<m(a)<}  —7(A)logm(A) P oca(a)<y —m(A)logm(A)
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vanish, p € [1, 400, since

lo= inf m(04) _ _
= o<r(a)<} —m(A)logm(A)

(take Ay = {w(B) > k}), i.e. from Th. 5.1 the classical logarithmic Sobolev inequal-
ity does not hold on Poisson space. In other terms the optimal constant p, in the
inequality

ppENt[F?] < E[|DF2,,)]

is equal to 0 for all p > 1, cf. [15].
Theorem 6.1 We have
2 2
kD = ht, <2y e = and o=l < (1+\/20(X)).

Proof. Note that if F' > 0,

[DYF(W) |04y = €88 8UP e, (F*(w) — F*(@))
= ess Sup gep, (FQ(UJ) - FQ(‘I’))l{F(w)ZF(&)}
= ess sup gey, (F(w) — F(@))(F(w) + F(@))1{rw)>F@)
< 2ess SUp gep, (F(w) — F(@))F(w)

9| D* F|poe(o10) F ().
If 7({F > 0}) < 1/2, then by Remark 6.1 applied to F?,

(hd)*E[F?T?

IN

E[| DY F?|100(0)]?

IN

AE[F|D"F | oo ())?
< AB[| D Pl (o0 BLF?,

hence
(hd)? o + o2
4 E[F7] < E[|DTF|Leo(s)]-

In the general case we may assume that m(F) =0, i.e.

7({F>0})<1/2, and «({F <0})<1/2.

We have
7({F*>0})<1/2, and 7({F~ <0})<1/2,
hence
(hd)?

T EIET)] < B[IDTFT o),
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and

(hi)? —\2 2
1 E[(F7)] < E[ID"F [foc(s)]-
We have
IDTF ™ (w)|10o@) = esssup gep, (F (w) — F7(@))
= ess sup g, |[F(w) — F(@)|1{#w)>0},
and
IDFF™(w)|1eo(e) = €88 sup gepr, (F~ (w) — F7(@))
= ess sup gep, [F(w) — F(@)[1{Frw)<o}-
Hence
Bt )2 ht)2 ht)2 h,+

N

E[1{p50)| DF [700(0] + E[l{F<0}|DF|L°°(U)]’

from which A, > (k% )?/4. The second statement has a similar proof:

|D™F?|poe(s) = €8S sup gep, (F*(@) — F?(w))
= ess sup gep, (F(@) — F(w))(F(@) + F(w))l{r@)>rw)
= ess sup gen, (F(@) — F(w))* + 2(F (@) — F(w))F(w)l{r@)>Fw)}
< ess Sup gep, (F (@) — F(W))? + 2(F (@) — F(w))F(w)1{r@)>Fw)

By Remark 6.1,

hoB[F?] < E[ess sup gen, (F(@) = F(w))* +2(F (@) = F(w)) F(w)1{r@)>Fw)]
< B [ess sup gen, (F(3) = F(@))’]
+2B[F?V2E [ess sup ooy, (F(@) — F)*Lip@srwy)
hence
(\/ 1+ h,go - 1)2E[F2] < E [ess SUp gen, (F((:)) — F(w))Ql{F(Q)ZF(w)}] . (27)

In the general case, if 0 is a median of F we have, applying (27) to F™ and F~:
E[F?] = E[(F*)’]+ E[(F")’]
< B [ess sup gep, (F7(@) = FF (W) Lpr@)>r+@)]
+E [ess sup gepn, (F (@) = F~ (w))*Lp-(@)>F- (@)}]
2E [ess sup gen, |F(@) — F(w)[’],

IN
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hence

Theorem 6.2 We have

Proof. We have if m(F') = 0:

2B DF|s] > / T OLF > )t

> heo /_ T min(r({F > 1), 7({F < £}))dt = ho E[F].

Applying the above inequality to (F7)? we have

hoo E[F*?] < 2E[D(F*)?|,]
< 2E[ess sup gen | FT(w) — FH(@)|(FF (w) + FT(@))]
< 2E[ess sup gen | FT(w) — FH(@)|(FF(@) — FH(w))
+2|F*(w) = FH(@)|F* ()]
< 2E[ess sup gep, (FF (W) — FT(@))?]
+4E[ess sup gen, |F* (w) — F(@)[F ()]
< 2E[ess sup gy, (F(w) — F(@))7]

+4FEless sup gep, | F(w) — F(@)|F* (w)].
Similarly we have
hoE[(F7)?] < 2El[ess sup sen, (F(w) — F(@))?] + 4E]ess sup oen, | F(w) = F(@)|F~ (w))].
Hence

heo E[F?]

IN

hoo E[(F)’] + hoo E[(F )]
4E[|DF 3] + AE[|DF|o|F ]
4E[|DF 3] + 4B[|DF[3 ) E[F?)'/?,

N

IN

which implies

(Vheo +1—1)2
1 .
In the general case we use the fact that varF < E[(F — m(F))?]. Relation (21) is

E[|DF[5] > E[F]

proved in Prop. 2.3. O
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7 A remark on Cheeger’s inequality

This section follows the presentation of [13] and [26], adapting it to the configuration
space case. Let N : R — R be a Young function, i.e. N is convex, even, non-negative,

with N(0) = 0 and N(z) > 0 for all z # 0. Let

_ zN'(z)
O = S0 N )

The Orlicz norm of F' is defined as

oo sl (5)] 1)

Theorem 7.1 For all F such that m(F) = 0 we have

O

IF][n <
ky

[IDF |zl

and
Cn
EIN(F)|<E {N (T; |DF|L,,(J§Q))] :

For p =1 we have h{ = ki hence
Cn
E[N(F —m(F))] < E [N E|DF|L1(%) .

If N(z) = 2P we have Cy = p and ||F||xy = ||F|,, hence for some constant C(p),

p
COINF = EFll, < |F = m(F)lly < L IDF| 2 lp-

2

For p = 2 we have C(2) = 1, hence

4 2
varF S WE |:|DF|L2(%)i| y

and
kS < 2.

In the particular case N(z) = 2P we have the following better result.

Theorem 7.2 For all F such that m(F') = 0 we have

P p
E[|FP]<FE |:<_|DF‘L1(0'+w)) } ,
hl 2

and
p
1Pl < 11D Flisoge o
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We also have the following.

Proposition 7.1 Let I (t) = t(1 —t), 0 < t < 1 and let b, denote the optimal

constant in the inequality

Lar(E[F]) < E

1
2 _ 2
\/IW(F) +13,,‘DF‘L2<—°;“) '

We have Bp > <1 — %) kf.

8 Appendix

In this appendix we state the proofs of Th. 7.1, Th. 7.2 and Prop. 7.1, which are based

on classical arguments, cf. [5], [26].

Proof. of Th. 7.1. By the mean value theorem we have
B[ D N(F) | ese] < BIN'(F) D" Flppoe]

On the other hand, if |F||y =1,

kE[N(F)] kfE[N(F)] + kFE[N(F)]

E [|D*N(F")|py(ege) | + B [[DFN(F ) pp(ese |

IN

IN

E [N'(F")D* F*|gpqasmy| + B [N'(F ) DT F | pygase|

IA

B [N'(F|)|D*Flypose)|
ON[||D* Fpsage) IV EIN (F)],

IN

where we used the generalization of the Holder inequality
E[N'(|F|)G] < E[N'(|F|)|F]

which holds since 1 = E[N(G)] < E[N(|F|)] =1, cf. Lemma 2.1 of [5], applied to |F|
and

G = D" Flypgase, (1D FlypgasmylIn) -
Hence
b < ONllID*Flyagogo .
Since ||F||xy = 1, we have

O

IF][n <
ky

1D* Flpaases v,

35



for all F' with m(F) = 0. The second statement is proved by application of the
preceding to Ny(z) = N(x)/a, @ > 0, as in Th. 3.1 of [5].

Proof. of Th. 7.2. We note that
E [|DIFP|ysose)| < pE [IFP7IDF|pyege) |

and apply an argument similar to the proof of Th. 7.1, with Cy = p.

Proof. of Prop. 7.1. The proof is identical to Theorem 4.11 in [26]. The generalization
of Cheeger’s inequality applied to N(z) = V1 + 22 — 1 gives Cy = 2 and

2
EN(F)<E [N (F\Dﬂm(aw))] :
p
We have with c =+v/2 —1 and ¢; = k;/Q:

CIvar(E[F])

evar(F) 4+ cE[F(1 — F)]

< cE[F(1-F)|+E[V1+ F?—1]
< ¢E [\/02(1?(1 = F))? + [DF[], s /€1 |
hence
Lo (E[F]) < E[\/Ivar(F)2 + [DF[], s/ (cc1)?]-
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