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Abstract

The non-commutative Malliavin calculus on the Heisenberg-Weyl algebra is
extended to the affine algebra. A differential calculus and a non-commutative
integration by parts are established. As an application we obtain sufficient
conditions for the smoothness of Wigner type laws of non-commutative random
variables with gamma or continuous binomial marginals.
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1 Introduction

Wigner densities [13] have various applications in time-frequency analysis, quan-
tum optics and other fields, see e.g. [4] and the references given in [2]. In [7] a
non-commutative Malliavin calculus has been introduced on the Heisenberg-Weyl al-
gebra {p,q, I}, with [p,q] = 2iI, generalizing the Gaussian Malliavin calculus to
Wigner densities, and allowing to prove the smoothness of Wigner laws with Gaus-
sian marginals. In this paper we aim to treat other probability laws in a more general
framework, in particular we will consider non-commutative couples of random vari-
ables with gamma and continuous binomial marginals. It is well known that gamma
and continuous binomial non-commutative random variables can be constructed us-
ing representations of sly, or simply on the affine algebra viewed as a sub-algebra of
sly. We will develop a functional calculus on the affine algebra, based on the general

framework of [2], [3].



Before proceeding further, let us examine a situation where the gamma and
continuous binomial laws appear naturally in a non-commutative framework related

to integration by parts with respect to the gamma law. Let

a, =T10;,

ie. a; f(r) =7f'(1), f € C(R). The adjoint @, of @, with respect to the gamma

T __

density v3(7) = 1750} F‘Z;; e 7Ton R, B >0, satisfies

/0 " o)z f(r)yp(r)dr = / fmargmpndn, fgecR®, (1)

and is given by

ie. atf(r)y=(r=pB)f(r)—=70f(r) = (r = B)f(r) —a, f(r). The operator a; defined
as

a =atd, =—(8—1)0— 10"

has the Laguerre polynomials L? with parameter 3 as eigenfunctions:
a>LP(r) =nLP(1), neN

The multiplication operator a + @ = 7 — 8 has a compensated gamma law in the
vacuum state 1g, in L{(Ry,ys(7)dr). In the Heisenberg-Weyl case, ¢ = a= + a™
and its conjugate p = i(a~ — a™) both have Gaussian laws and can be constructed
from the Boson annihilation and creation operators a~, a*. In [11], [12] it has been
noticed that when 5 =1, i(a; — @) has a continuous binomial law (or spectral mea-
sure) in the vacuum state, with hyperbolic cosine density (2 cosh 7£/2)~!, in relation
to a representation of the subgroup of sl, made of upper-triangular matrices. This
construction extends to half-integer values of 3, nevertheless this type of law can in
fact be studied for every value of 5 > 0 in the more general framework of [1], starting

from a representation {M, B~, B*} of sly:
[B-,B"]=M, [M,B7|=-2B~, [M,B"]=2B",
which can be constructed as

7o + gt _go
—a,, B"=a —a;.

M=p+2, B =i

T



Letting
Q=B +Bt=a-+a —2a2=(r—B)+2(B—7)0+ 270

and
P=i(B~ — B) =i(a; —a)) =2ird —i(r — B),

T

we have

[P,QI=2iM, [P,M]=2iQ, [Q M]=-2P.

Now, (Q + M is a multiplication operator:
Q+M=r,

hence () + M has the gamma law with parameter 8 in the vacuum state 2 = 1y,
in LZ4(Ry,v5(7)dr). The law (or spectral measure) of aM + ) has been determined
in [1], depending on the value of & € R. When a@ = +1, M + @ and M — @ have
gamma laws. For |a| < 1, @+ M has an absolutely continuous law and in particular
for = 0, @ and P have continuous binomial laws. When |o| > 1, @ + oM has a
geometric distribution.

The Malliavin calculus on the Heisenberg-Weyl algebra {p, q, I} of [6], [7] relies
mainly on a functional calculus which allows to define the composition of a function
with a couple of non-commutative random variables, and on a covariance identity
which plays the role of integration by parts formula. In particular, a continuous map

O from LP(R?), p > 2, into the space of bounded operators on # is defined via

0(f) = [ (D) sy

where F denotes the Fourier transform, with the bound

IO < Coll fll oy,

and the relation

O(ezux+wy) — ewp+wq’ u,v c R

In order to extend this construction to other probability laws we adopt the formalism
of [2] which provides a functional calculus on more general Lie algebras. In particular,
note that

Xlz—%P and  Xo = i(Q + M),



form a representation of the affine algebra:
[Xl, XQ] == XQ.

Let By(H) denote the space of Hilbert-Schmidt operators on H. Using results of [2]
we show that a continuous map O : L4(R?, d€;d&,/|&|) — Ba(H) can be defined as

O(f) = / (FF) (1, z)e— S0P+ @4M) g
RZ

with the bound
10NNy < N1l 0 a0,

and the property
O(e—iufl—iv§2) — e—%uP—l—iv(Q—kM)'

This allows to define a Wigner density VT/'|¢)<¢|(§1,§2) which is the joint density of

(=3P, Q+ M), with continuous binomial and gamma laws as marginals, such that

(w|ei%P’i”(Q+M)¢>H = / 6i“§1+w€2ﬁ/|¢)(¢|(§1;f2)d§1d§2; ¢, € H.

R
Using a non-commutative integration by parts formula, we are able to prove the
smoothness of the joint density of (P, Q + M).

We proceed as follows. In Sect. 2 we recall the main results of [2] on functional
calculus on general Lie algebras, and give proofs not explicitly given in [2] of some
particular results needed in our approach. In Sect. 3 we study in detail the particular
case of the affine algebra and obtain a smoothness property for the joint density of
(P,Q + M). In Sect. 4 we state a non-commutative integration by parts formula on
the affine algebra, which generalizes the classical integration by parts with respect to
the gamma density. Finally in Sect. 5 we conclude with some remarks on the relation

of our construction to the commutative case.

2 Functional calculus on Lie algebras

In this section we recall the main tools of functional calculus on general Lie algebras
[2], and include some results and proofs not explicitly stated in [2]. Let G be a Lie
group with Lie algebra G and let U : G — H be a unitary representation of G on some

Hilbert space H with inner product (-|-)%. Let (-, -)g« g denote the pairing between the



Lie algebra G and its dual G*. We assume that U is irreducible, and square integrable

i.e. there exists a non zero vector ¥ € H such that

/| ) 0l)wdulg) <

where p denotes the left Haar measure on G. From [5] there exists a positive self-

adjoint operator C' on H such that

/G<U(g)¢1, ¢1)H(U(g)¢2|¢2>ydu(g) = (C2|Cr1 )3 (1| d2) - (2)

Moreover C is the identity if and only if G is unimodular, and DomC ! is dense in
H. We assume the existence of an open subset Ny of G, symmetric around the origin,
whose image exp(/Ny) by exp : G — G is dense in G with u(G \ exp(Ny)) = 0. The
image measure of ;1 on Ny by exp ! : exp(Ny) — Ny is called the Haar measure on
G, and we denote by m(z) its density with respect to the Lebesgue measure dz on G.

Let o(&) denote the density in the decomposition of the Lebesgue measure d§ on G*:

d§ = dk(A)o (§)d(§),

where dk()\) is a measure on the parameter space of the co-adjoint orbits in G* and
d2x(€) is the invariant measure on the orbit Of. Let By(#) denote the space of
Hilbert-Schmidt operators equipped with the scalar product

(prlp2)s = Tr[pipe],  p1,p2 € Bo(H).
Let (Xi,...,Xy), resp. (X7,...,X}), denote a basis of G, resp. G*.
Definition 2.1 (/2]) Given (¢,v) € H x DomC~! the Wigner function W4y is
defined on G* as:

Wiy (€) = Yoo [ mitelge o (7(emXittonXo) =L 60, /() dav.

(QW)H/ 2 No
The following proposition extends the definition of W, in L4(G*; %) to p € By(H).

Proposition 2.1 (/2]) The mapping

H x DomC™' — L4(G*; %)
P — W,

extends to an isometry on By(H):

<Wp1‘sz>L%(g*;%) = <,01|,02>BQ(H), p1, P2 € Bo(H).



Proof. By a density argument it suffices to consider

p1 = |$1)(¥1] and py = [a)(Pal,

with (¢1, 1), (¢2,%2) € H X DomC~'. From the identity (2) and since

1
(2m)"

we have:

<W91|WP2>L?D(Q*;%)
— ;/‘ (/ e*i(ﬁ,.’t)g*,gTr [U( (z1X1+ —HEan plC '/ dx
(27T)n g* No
x/ e~ 62 e" o Ty [U(e_(wllxﬁ'"”l"X"))ng‘l]\/m(x')dx') dé
No

= /Tr[U( (@1 X1t FanXn)) o C—1Tr [U e (‘”1X1+"'+w"X"))pQC’l]m(a:)dx
No

= / <U(ew1X1+---+wan)C—1w1 |¢1>H<U(ew1X1+---+wan)C—le‘¢2>%m(x)dx
No

- /G T @) 8y (U (9)C 4ol o) i)
= (Ya|th1)u(01]d2)n
= <P2‘Pl>62(7{),

where we used the relation

Tr (U(g)*pC™") = Tr(U(g)'1o)(w|C™") = Tr (C™'U(9)"|)(¥)
= (,CTU(9) o) = (U(9)C™ ', d)n.

As a result, the definition of W,(£) extends to p € By(H) as:

Wp(f) \/ —i{€,x)gx 9Ty [U( (z1 X1+ +1:an pC 1] /m dm

(27r No
Definition 2.2 Let O : L%(G*; -2 PTG ) — By(H) denote the dual of p— W,, i.e.
= w — L B .
GOm0 = [ W50 1e1i(0555), veBn



Note that for p = |¢) (1|,

(PO ))Baiy = Tr|o)W[*O(f)

= (BO(f)Y)n
= Wiowl iz )
d¢
= W il
/ \¢)(1/J\ §)
The Fourier transform F and its inverse F ! are defined as

1 i(&,T)g* g n
FNW = Gy || e 1©d, aew

and
(FIHE) = W/Rn e omlora f(z)dw, € €R"

The next proposition allows to extend O as a bounded operator from LZ(G*; %) to
By(H).

Proposition 2.2 We have the bound

., G€
1O a2y < W lliges s )y f € Le (g g(g)) ’

and the expression
f ) Xi+4-t2n Xn | -1
= m(x)F | —= ) (z)U(e® T2 O™ d.
[ () @ )

Proof. We have

O om0l = [FIWgagepss )
1413 I Woll 3

1713t el

IN

Fol

IN

and

GO =Te W0 = | Wiow(©1(€) 75

1 .
- o), / T G DI o

_ / <\f)( W|U (e X1+ +onXn) 0Ly /()
- (AL

m(z)

(e



In other terms we have

O™ /() = (22 /m{@)U (et X1+ 1oyt ()
and
O(V@) = Gy [ (FN@O( om0 a)da, [ € L(G"sde).

Let Adg& , & € G*, denote the co-adjoint action:
(AdEE, x)ge g = (€, Adg-12)g- g, T€g.
Let Ad,, g € G, be defined for f : G* — C as
Adyf = foAd,

and let éﬁw be the differential of g — Aﬁg. The following proposition, called covariance

property, will provide an analog of integration by parts formula.

Proposition 2.3 We have for x = (z1,...,z,) € G:

[2U(X1) + -+ - + 22U (Xn), O(f)] = O(ad(z) ).

Proof. Using the relation
U(g)'C~U(g) =
and (34), (44), (56) in [2] we have

WU (9)pU(g)* (€)

= 271_ n/2/ / —z(& G*.6Tr [U( (z1 X1+ +$"X"))U(g)pU(g)*C_1]d:r

m(z)

A(g‘l)dx

) <z7r>n/2 | e T U (g U (e ) (g0
0

= —H&T)gr o Ty o Adgm12 0L /iy g)dz

(27T)n/2 No

) m)m ¢ AL ST [ (e (Xt X)) o0 det(Ady )y fm(Ady2) Alg)d

\Jo Ad” &
— g9 / ’L(Ad 16 13)(_;* gTI' U( ($1X1—|— —|—$an pc / dl‘

Qﬂ- n/Z

= W,(Ad,6).



We proved the covariance property

WU(g)pU(g)* (5) = WP(Adg—lg)'

By duality we have

U@ONU9) [p)raay = Tr[(U(g)O(F)U(9)")"pl
= Tr[U(g)O(f)"U(g)"p]
= Tr[O(f)U(9)"pU(g)]

(ON|U(9)"pU(9))B230)
(fIWu(gypu(9)) B> (30)
= (fIW,0Ad}) s g .ot
(f
(

63
OAd —1|W>L2 J_

5©)
O(f o Ad: ) P
which implies

U(@9)O(N)U(9)" = O(Ad, ),
The conclusion follows by differentiation. O
In [7] a quantum Malliavin calculus has been constructed on the Heisenberg-Weyl alge-
bra {p, q, I} with [p, q] = 2iI, generalizing to Wigner densities the Malliavin calculus

with respect to a single Gaussian random variable. In this case the representation U
is given on H = L*(R, e~*"/2-4L J=) by

Ulz,y)(t) = e ™t + z), ¢ €H.

Equivalently we can take pg(t) = 2¢'(t) and qé(t) = té(t), ¢ € S(R). The group is

unimodular, hence C' is the identity, and 0 = m = 1. We have

Wioywi (&1, €2) (%1)”/2 /R eI (TR Y| 6)y davdy
1 o
= n) /RZ e " (& — 1) (& + t)dt

The marginals are given by

/RW¢>(¢|(§17§2)d§2 = ¢(§1)1Z(51)a & €R,

and

/IR Wis (€, &)dE = (FO)(&)(FP) (&)  &ER

10



The operator O(f) is defined by

o(f) = / (F ), y)e ™™ dzdy,
]R2
with
Ofe~™z=y) = giwptiva 4 4 ¢ R,
and the bound

10U < Cpll Fll oo cee)-

Hence
<1/}: eiup+ivq¢>7{ - /2 eiu§1+iv§2 VV|¢)<'¢’|(§1’ §2)d§1d€27 u,v € Ra
R
i.e. Wigyp (&1, &) represents the Wigner density of (p, q) in the state |¢)(1|. In this

case, the statement of Prop. 2.3 reads

%[uq —vp, O(f)] = O (ud,f + vdyf).

3 Malliavin calculus on the affine algebra

The affine algebra is generated by

10 01
X1_<0 0): X2_<0 0)’

with [X7, X5] = X5, and the affine group can be constructed as the group of 2 x 2

matrices of the form

_fa b\ _ [ e™ xze%sinchg—l s Xitae X
g_<0 1>_<0 ) =e , a>0,beR, (5)

where

. sinh x
sinchz = , T€eR
T

Consider the classical representation of the affine group on L*(R) given by

W= () ser®, g=(§ ) ) e>0beR

and the modified representation on H = L4(R,v5(|7|)d7) defined by

U@ = olar)e e, e LyRan(rn, o= (g 7).

11



obtained by Fourier transformation and a change of measure. We have

) dl . . 1 , i

U(X1)g(r) = 7 U™ )g(r) = 5(5 —|m])o(r) + 7¢'(1) = —§P¢(T),

t=0
N d N ) .
U(Xs)o(r) = p U(e”XQ)qb(T) =i7d(T) = i(Q + M)p(7), T €R,
t=0
1.e. '
U(X,) = —%P and U(X,) =i(Q + M),
hence
U(€$1X1+w2X2) — e*%w1P+i$2(Q+M)'
Here Ny = G is identified to R? and
_21 . 4|
m(z1,z2) = e~ 2 sinch 5 x1, Ty € R
moreover from (92) in [2],
090 (61,6) = ———deyds
+ 1,82) — 27T|§2| 1 2
hence
o(&, &) = 27|&|, §1,6 € R, (6)
and the operator C' is given by
2T
Cf(r)=4/=f(r), 7T€R

7l

Writing £ = £ X] + &X5 € G, we have

|§2|l/2 i i _ _ _ _z1 . x1
W = e @ty [o-mXi w2 Xe )1 o= Shginch —=dx das,
P(g) \/ﬁ - [ Y ] 2 1642

and for p = |6)(u],

1/2 ; ; ~ [ = x
I/V|¢><¢‘(§) = % . e—z§1x1—z€2m2<U(em1X1+m2Xz)C—1¢|¢>H e*Tlsinch Eldil?ldtTQ

— i efi&an fiﬁzwz(b(efwl T)E(T)efiﬂvze*%l_sinch %
2 R3

- z dr
—(e™*1=1)l7|,=B21/2| 1 1B-1/2 [ o=F sinch L YT gz d
xe e |7 e 7 sinch ) x1dxo
_ / o (&) Gl (Get | ceinE (6l )T da
g \sinch § / sinch§ sinch § sinch § r'(B)’

12




as in (102) of [2]. Note that W, takes real values when p is self-adjoint. As a conse-

quence of Prop. 2.2 we have the bound

”O(f)“Bz(H) < ||f||L%(g*;dz§7r1lf;§?)-
From (4) and (6) we have

-1/2 ) .
e uP+w(Q—|—M) - (e 251nch ;) O(e—zu&—w&z /‘&DC

i.e. from Relation (4):

z( )G g F 271' n/QFU 1 X1+ _HC"X")C 1

The next proposition shows that these relations can be simplified, and that the Wigner

function is directly related to the density of the couple (P, Q + M).
Proposition 3.1 We have

O(eiu§1+iv§2) _ e%uP—iv(Q—l—M)’ u,v€R (7)
Proof. We have for all ¢,v € H:

i : u 71/2 . .
(@l 8@y, = — (e Fsinch ) (6,007 ) Ci
1

— —%g u\ -2 —tué1—v
- \/g(e 2s1nch§) Wigyoy| (&1, 62) e o §2v|€2|>L2(g* derdey)

[€a]
= i e—iu&l—ivﬁza e ? e't e~ 3sinch %
27 s sinch £ / sinch £ |/ e~ %sinch &
-z cosh & -1
§ae 2 ) ~leal o ( & ) dz
X’(/J ( > sinch - d€1d§2
sinch sinch r'(B)
_ i e_iu'fl _iv&a 5265 elizé w 6265
2 sinch % sinch % sinch %
cosh /3_1 dl‘
xe ‘62‘ smch z ( . |§2| ) d§1d§2

sinch % F(ﬁ)
= <M/|¢><'¢" |€_iu£1_iv£2>L2 (g* d€1déy )

2r[€a]
= (PlO(e™™ 7))y

As a consequence of (7), the operator O(f) has the natural expression

o) =0 (/ (]:f)(xla$2)€_m&_m&dx1dx2>
R2
= /]RZ (f'f) (-TI; x2)0(e—imfl—izz&)dxldxz

N / ('Ff)(xlaxZ)ei%wlPHm(QJrM)dljdl‘z.
R2

13



We also have the relations

déidsy
27 (&,
d§1d&,

271&|

WO)d)n = / W 1 (61 €2) F (60, 2)

= /W¢)(w| fl;fz)f({fl;&)

and

: j d&d
<¢‘€§uP7w(Q+M)¢>H — /* zu§1+w§2W¢ (¢\(§1, 62) 2€1|§§|2

which show that the density Wiguy of (3P, —(Q + M)) in the state |¢)(t| has the

expression

. 1
Wgyw (&1, 62) = mm@(w(&, &)

_ 1 é b2 e‘imfla o€ —Iﬁzlsff,sc};wg &\ de ®)
21 Jg = \sinch § / sinch sinch sinch INGID

Note that VT/|¢>(¢| has the correct marginals since integrating in d¢; in (8) we have

using (3)
27r\§ | /qu 2 51,52)d§1 _7ﬁ(|§2|) ( ) (52)
and
: d ! 4 P -z w| cosh 5
%/Rm@(w(glaéé)ﬁ = % - €*Z§1$¢(wez/2)¢(we /2)6 lw| cosh 2 |?|(ﬁ) dode.

In the vacuum state, i.e. for ¢ =+ = ) = 1z, we have

d B x
_/VVm) (Q 51’62) ;2 = // _Zflz —Tcosh sdrdx

= eﬂ&widaﬁ

o (cosh £)#

B i\
F<§+§f1>

where c is a normalization constant and I' is the Gamma function. When § =1 we

= C s

have ¢ = 1/7 and P has the hyperbolic cosine density in the vacuum state = 1g_:

1

SE 2cosh&; /2

Proposition 3.2 The characteristic function of (P,Q + M) in the state |p)(¢| is
given by

jwP~

0(3) dw.

<w|€iuP+i'u(Q+M)¢>% — / 6z'vwsinch ua(weu)¢(we—u)e—|w| coshu
R

14



In the vacuum state Q0 = 1g, we have

) . 1
Q|euPHv@M)0y . woueR
(S2fe I (cosh u — fwsinch u)?

Proof. We have

<¢|ef%uP+iv(Q+M)¢>H _ <¢’ il (e“,ve%sinch E) ¢>H

- g _(pu® u |7—| _| |
— w T ¢ Teu ivre? sinch se (e¥—=1)|7|/2 ﬂ | dr
Rt £ (5)
/ twwsinch %E( f%) ¢ ( %) —|w| cosh § |w‘ _ldw
= (& we we (& — .
R I(B)

In the vacuum state |2)(€2| we have

o |w|? d 1
———dw = )
r'(B) (cosh § — dusinch §)P

] oo
<Q, e—%uP—l—iv(Q—{—M)Q)H — / ezwsmch 5 —lw[cosh ¢
0

In particular we have

w(Q+M) _ w7l —|w| jw]P
(Yle P)u /Re P(w)o(w)e TG dw

hence as expected,  + M has density 1(w)d(w)ys(Jw|), in particular a Gamma law

in the vacuum state. On the other hand we have

B-1
1/J|€WP / w we u) —|w| coshw |Ld| dw,
I'(8)
which recovers the density of P:
1 o — L |w]|?~
- —i1x z z |w|coshz %1 d d
& g [ T wen e )e gy e

In the vacuum state we have

1

Qle™P Oy = ———.
Qe Qe (cosh u)?

Next we define a gradient operator which will be useful in showing the smoothness
of Wigner densities. Let Sz denote the algebra of operators on A that leave the

Schwartz space S(R) invariant.

Definition 3.1 Fiz k € R. The gradient operator D is defined as
D, F = —%ml[P, F]+ %xQ[Q Y kM,F], Fe&&y,
with x = (x1,12) € R2.

15



Proposition 3.3 Let x = (x1,72) € R?. The operator D, is closable for the weak
topology on the space B(H) of bounded operators on H.

Proof. Let ¢,9 € S(R). Let (B,)nen be a sequence of operators in Sy N B(H) such
that D, B, — B € B(H) in the weak topology. We have
(61 Bé)w = lim (1D, Bod)

= lim (¢| — %xl(PBnqS — B, P¢) + %xg((Q + kM)Bp¢ — B, (Q + kM)p) )y

n=00
= lim a1 ((PU|PBud)n — (¥ BaP))
+ Jim _%@(((Q + KM)Y| Bud)n — (1 Bo(@ + £M))3) = 0,
hence B = 0. g
The following is the analog of the integration by parts (1).
Proposition 3.4 Let x = (11,12) € R?2. We have
[2:U(X1) + 22U(X2), O(f)] = O(21£201 f (&1, &2) — 226021 (&1, &2))-

Proof. This is a consequence of the covariance property since from (5), the co-adjoint

action is represented by the matrix
1 ba™!
0 a! )’

Adgf(€1,6) = foAdL_1(€1,6) = f(& +ba &, a76).

1.e.

Hence

ad, f (&1, &) = 11601 (€1, &2) — 226205 f (€1, E2).

For k = 1, the integration by parts formula can also be written as

Dz, 20:)O(f) = O(216:201 f — 12620 f).

The Wigner density m¢>(¢|(§1, &) = ﬁw‘@(w (&1, &) exists and we turn to proving

its smoothness, more precisely we consider the smoothness of the Wigner function

Wiy~ Let H{o(R x (0,00)) denote the Sobolev space with respect to the norm

1 g ecomon (9)
- fo g fR (61, &) 2derdEs + /0 £ /R (10 (€0, &) + 10uf (€1, &) ) dErdes.
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Note that if ¢, ¢ have supports in R, , then W4y has support in R x (0, 00), and
the conclusion of Th. 3.1 below reads Wg ) € HY (R x (0,00)).

Theorem 3.1 Let ¢,v¥ € DomX; N DomXs. Then

1R x(0,00)Wigy(w) € H7 5(R % (0, 00)).

Proof. We have, for f € C(R x (0,00)):

[ e eWawee)dada) = 2m(6l0(f 6.

2 (|l 12| O (€2 f (€1 €2)) I B2

< \/%||¢”H||T/]”H||§2f(€la52)”1;%(@;%)
< m”‘ﬁ”%||¢||H||f||L?D(g*;§2d§1d§2),

IN

N

and for x1, 29 € R:

| @i (61,6) + 2t (€, E)TW oy (61, ) s
= 27 (¢|O(21£201 f (€1, &2) — 126202 f (&1, 62)) )]
= 21 [{¢|[21U (X)) + 22U (X2), O(f)]¥) 4]

< VRl (@010 (K1) + 22U ()1 gy g st

O

Under the same hypothesis we can show that 1gy(—o0,0)W|g)(y| belongs to the Sobolev
space HYo(Rx (—00,0)) which is defined in a way similar to (9). Note that the above
result and the presence of o(&,&) = 2m|&| are consistent with the integrability

properties of the gamma law, i.e. if f(&,&) = 9(&)vs(&), 21 € R & > 0, g # 0,
then f € HY,(R x (0,00)) if and only if 3 > 0.

4 Skorohod stochastic integration

The integration by parts formulas given in this section generalize the classical inte-

gration by parts formula (1) on R. We define the expectation of X as
E[X] = (QXQ),

where () = 1k is the vacuum state in H. The results of this section are in fact valid
for any representation { M, B—, Bt} of sly and any vector Q2 € H such that iPQ2 = QX
and MS) = Q.
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Lemma 4.1 Let z = (11, 15) € R2. We have

E[D,F| = %E e {Q,F} + 2, {P,F}], FeSu.
Proof. We use the relation iPQ = QQ:
_E[iP,F]] = (Q,—iPFQ)y — (Q, —iFPQ)y,
= (PO, FQ)y + (2, FQO)y
(QQ, FQ)y + (QFQQ)n
(09, )y + (Q, FQQ)

= E[{Q Fi,

E[iQ,F]] = (Q,iQF)y — (Q,iFQQ)y
= —(iQQ, FQ)y + (Q, FPQ)y
= (PQ, FQ)y + (Q, FPQ)y
= E[{PF},

and note that E[[M, F|] = 0.
Definition 4.1 Fiz oo € R and let

S(F®1)= %{Q+a(M—5),F}+ %{P,F}—DxF, Fe Sy,
with © = (x1,72) € R2.

Note also that

5(F @ 1) = (x1Q+iP+2a(M—ﬁ) +x2P—i(Q2+/<cM)> i
P <m1Q—iP+204(M—ﬁ) +$2P+i(Q2+ &M))

= 2 (BYF+FB ) —izy(B'F + FB ) + a%{M — B, F} - %xQK[M, F]
= (11 —izs)(BYF + FB™) + a%{M —B,F} — %me[M, F.
The following Lemma shows that the divergence operator has expectation zero.
Lemma 4.2 Let z = (x1,79) € R®. We have
Ep(F®zx)] =0, F e Sy
Proof. 1t suffices to apply Lemma 4.1 and to note that (Q, MQ)y = .

18



Let for F,U,V € S8y and z = (z1,1,) € R%:

UDE = (DU)F = ~~mi[P,UIF + 225]Q + kM, U]F,

DFV = FD,V = —%xlF[P, V]+ %xzp[Q + kM, V),
and define a two-sided gradient as

UDFV =UDFV + UDFV
- —%xl[P, UJFV — %xlUF[P, V]+ %xg[Q + kM, U|FV + %:@UF[Q + kM, V].

Proposition 4.1 Let x = (z1,73) € R? and U,V € Sy. Assume that 1(Q + aM) +
o P commutes with U and with V. We have

E[UDEV] = E[US(F ©2)V],  F € Su.

Proof. From Lemma 4.2 we have

E[US(F ® 2)V]

- %E U ({21(Q + a(M = B)) + 22P, F} + ian [P, F| — iz Q + kM, F]) V]

- %E[{ml(Q +a(M = B)) + 2sP,UFVY} + iz, U[P, FIV — ioU[Q + kM, F]V]
- %E[{xl(Q +a(M = B)) + 2P UFVY} + iz1 [P,UFV]
i\ [P,U)FV] + E[—ix:UF[P,V] — iz]Q + kM, UFV]
+iz3[Q + kM, U|FV + izoUF[Q + kM, V]|
= BBWFV @) + B[~ [P,UJFV — in,UFIP, V]
+iz3[Q + kM, U|FV + izoUF[Q + kM, V]]
- E[UDTV]

g

The closability of 0 can be proved using the same argument as in Prop. 3.3. Next is

a commutation relation between D and 4.

Proposition 4.2 We have for £ =0 and z = (z1,%2), y = (y1,y2) € R%:

D 6(F ®@y) — §(D,F ®y)

- yl_22y2‘(x1{M7F}+ix2[M,F])+O‘%($1{Q,F}+$2{RF})7 I € Sy
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Proof. We have

D,0(F®y) = —%xl[P, O(F ®@y)]+ %@[Q + kM, 5(F @y)]
= —%xl[P, yi(BYF + FB™) —iyy(B*F + FB™) + %Q{M — B,F}]
+%m2[Q + KM, y1(B*F + FB) = igs(B*F + FB") + 2.a{M — §, F}]
= §(D,F®y) - %xl(yl[P BY|F + y,F[P,B™] — iyu[P, BYF — iy, F[P, B
a[P M|F + Lo F [P, M]) + 2x2(y1[Q + kM, BY|F + ylF[Q + KM, B™|
—zyz[Q KM, B+]F — iy F[Q+ wM, B ]+ 2alQ, MIF + LaF[Q, M)
= G(D.F @) — sra(n{iM, F} — i (iM, F} + La{2iQ, F})
+%x2(y1 [M, F] — iys[M, F] + iy1a{ P, F})
= §(D,F®y)+ %xlyl{M +aQ, F} + x2y1%[M, Fl+ %xgyla{P, F}

7 1
—§$1y2{M, F}+ §$2y2[Ma Fl.

Proposition 4.3 We have for F,G € Sy:
S(GF @ 1) = GS(F) — GDp — 21Q+aM,GIF - 2[P,GIF,

and
J(FG®a) =6(F)G — BFG——FQ—i-aMG] 2 FP,G).

Proof. We have
(GF@a) = S(Q+iP+a(M = B))GF + SGF(Q~iP +a(M - §))
+%(P _iQ)GF + %GF(P +4Q)
= DGQ+iP+a(M - B)F + LGF(Q—iP +aM - af?)
+%G(P _iQ)F + %GF(P +iQ)

+%x1[P, GIF — %xz[Q, G|F — %[Q +aM,G]F — %[P, GIF.
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Similarly we have

S(FG®z) = %(Q +iP + a(M — B))FG + %FG(Q —iP +a(M - B))
+%(P _iQ)FG + %FG(P +iQ)
= T{Q+iP+a(M = B)FG+ TF(Q—iP+aM - a/2)G

-l—%(P —iQ)FG + %F(P +iQ)G

—i—%xlF[P, G| - %@F[Q, Gl - %F[Q +aM,G] - %F[P, Gl.
g
5 Relation to the commutative case
Let q = a; + a}, where a; = 2 and a} =z — 2, i.e. ¢ is multiplication by z, and

p = i(a; — af), with [p,q] = 2il. When 3 = 1/2, writing 7 = z%, we have the

relations
T T
a; = -atfa,, a, =-qa,, G =-a'q,
2 2
ie.
1 2 1 2 1 2
1) = oot (%) a0 =jacs (). atrn = jarar (%)

These relations have been exploited in various contexts, see e.g. [8], [9], [10]. In
[10], these relations have been used to construct a Malliavin calculus on Poisson
space directly from the Gaussian case. In [9] they are used to prove logarithmic
Sobolev inequalities for the exponential measure. From now on we take 8 = 1/2. The

representation { M, B~, BT} of sl, can be constructed as

1 arat +afa;  pP+q®
M:— 2~o_ T T T 7T
g T 2 T
1
B =a; —a = ~(a;)?
aT a’T Q(aw) )
1
B =i} - = 5(a})”
2
In fact, letting
1 2 _ 2
Q=B"+B" = ()" + (@) =
P=i(B =B = 5((@)* - (@)) = 2,



we have
P.Q|=2iM, [P,M]=2Q, [Q M]=-2P.

We also have

and

a+1) p? 1-—a) ¢?
M =|—)= —.
o= (157) 5+ (57) 5
The commutative case is obtained with & = 1 when considering functionals of q; only,
and with & = —1 when considering functionals of %2 only. Other probability laws can
be considered for different values of . The law of () + aM has been determined in

[1], depending on the value of «. In particular when || =1,

2 2
Q+M=B +B"+ M= %, Q—MzB‘+B+—M:—%,

ie. @+ M and M — @ have gamma laws. For |a| < 1, @ + oM has an absolutely

continuous law and when |a| > 1, @ + M has a geometric law with parameter ¢?

supported by

{-1/2 —sgn(a)(c—1/c)k : k € N},

with ¢ = asgn(a) — va? — 1. In particular the analogs of the classical integration by

parts formula (1) are written as
1_[fp? '
E[DuoF| = 5B {%F} ~F|,

for « = 1, and

I 2 ]
E[DuoF) = 5B |F - {q—,F} ,
for a = —1.
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