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Abstract

We consider an elliptic-parabolic PDE, governing the flow of a steady state two-
dimensional irrotational compressible fluid in a channel or around a thin profile.
The model is formulated in term of a non-coercive variational problem with an
integral functional, in a truncated domain. We propose a relaxed formulation in the
bounded variation functions space and we prove the existence and the uniqueness
of the relaxed optimal solution. We consider also the asymptotic behavior of the
solution when the domain growths to infinity.

Key words: 1ll-posed variational problem, relaxed problem, degenerated elliptic
equation, bounded variation functions.
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1 Introduction

We are interested in the mathematical analysis of the small disturbance
model which describes a steady state two-dimensional irrotational compress-
ible flow model around a thin profile.

Theoretical analysis of transonic flows of perfect compressible fluids pose
fundamental problems and only partial results concerning the existence and
uniqueness of solutions are proved. Indeed, the type of flow is variable, i.e.
whether the flow is subsonic, sonic or supersonic, the corresponding equation
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is elliptic, parabolic or hyperbolic respectively. The difficulties of the problem
come from the non-linearity of the equations and the change of the flow type.
The position of the type change (sonic and shock lines) is unknown a priori.
The presence of jump lines increases the precedent difficulties.

One may find for the elliptic case, in M. Pogu et al [19], some general math-
ematical modelizations and in M. Amara et al [2] for that particular one.

The physical problem consists in a two-dimensional irrotational compressible
flow around a thin profile, in an infinite atmosphere; this flow is assumed to
be uniform at infinity. After an asymptotical analysis (cf. M. Amara et al [2]),
one restricts the domain to the bounded domain 2 = Qr =| — R, R[x]0, R].
R is chosen large enough to display the boundary conditions at infinity on
the truncated boundary. Therefore, if one denotes by (u, v) the vector valued
function describing the perturbation of the velocity of the flow compared to
the uniform velocity at infinity, one gets the following non linear elliptic-
parabolic-hyperbolic system:

O f(u)+ 0w =0 in Q,

OgV — 8yu =0 in Q,

V= Z,(T) on Fp’

u = 0 on I‘2’

v=20 on ToUIYy,
where:

I,=]—1,3[x{0} (profile boundary),

FZZ{_R}X}O'; R[U{R}X}O, R[a
F0 :} - Ra _% X{O}U]%, R[X{O}a
, R

[1=] - R, R[x{R},
1 1
VEER,  f(t) = = (e — 1)+ i,
vyER™, ., € R,
oo 11
ZGWO’ (] Da

Ta

and one assumes (hypothesis of truncated domain) that R is chosen large
enough in order to have

v+1,

s > [zl (1)



One can see that this system is elliptic when v < u.. (subsonic flow), par-
abolic when u = u., (sonic flow) and hyperbolic when u > u.. (hypersonic

flow).

YU,V € D'(Q), VteR, let us note:

o div(U,V) = 0,U + 8,V,
et = max(0,1),

en = (n,,n,) the unit outward normal vector to I' = 09,

o (U, V)n=Un,+Vn,.

In the sequel, we shall consider subsonic flows (i.e. u < u,, ). Thus, thanks to
the irrotationality, one can look for (u,v) = (0., dyp) where ¢ is a solution

of:

div(g(0s9), ) = 0 in O )
with, g(t) = =7 (uer — t)2 + 77 u?. and with the following boundary con-
ditions:

dyp =72 (z)onT, and (g(d.p),0,p).n =0 on IQ\T,. (3)
Remark 1

i) One may notice that (2) is a degenerated elliptic equation since it is elliptic
if 0z < uer and parabolic if Oy > Uer.

i1) Note that, if the flow remains subsonic (i.e. u < ue.), then g(u) = f(u)
a.e. in ) and we get the first physical problem.

The a priori natural space associated to Equation (2) is

V ={¢e L*Q):0,£ € L*(Q), 9,6 € L*(Q)}
and one can see @ as an optimal solution of a variational problem, associated
with an integral functional:

Minimise F(¢) such that ¢ € V® where: (4)

oV0:{§€V:/§da:dy:0},
)

Q

e e, F(6) = [ [660.6) + (0,67 dedy+ [ Zedo )



with
1
Vi €R, G(f) = T

U
3

uz (e — 1) +

(6)

For any real ¢, we have, G'(t) = ¢(t) and G” (t) = (v + 1)(uer —t) 4, then, the
functional F' is differentiable and we have formally

<F(©),0 >= [[G(0:£)0:0 + 0,60,0] dudy + [ 2 do,
Q Tp
<F7(€), (Y1, ¢2) >= / [G7(0:€) 00010512 + Oy 010,302] dvdly.
Q

We note that F' is convex and invariant with respect to the constants (so,
we use V0 instead of V), but it is not coercive on these spaces. Therefore,
we introduce a less regular space:

W = {€ € LX) : 8,6 € LMQ), 9,¢ € LA(Q), /§dxdy — o).
Q

Then, under Hypothesis (1), we prove that F' is coercive with respect to the
topology of W.

Remark 2 Let us remark that F is coercive with respect to the topology of
V in the convexr set K = {€ € VO : 8,£ < ue}. Then, there exists a unique
o in K such that F(pg) < F(§) for any & in K.

One can find in M. Amara et al. [2] a result on the existence of solutions
of Problem 4 using perturbation-duality arguments (cf. I. Ekeland et al.

[13]). Since any minimizing sequence possesses a sub-sequence converging in
BV (), the solution has to be looked for in the space N° where

N ={€eN: /§drdy — 0} with N ={¢€ BV(Q): ¢ e L} Q).
Q

For any £ in N, let us note in the sequel:

0:€ = ug dxdy + pe
where u¢ is the absolutely continuous part of the Radon measure 9, with
respect to the Lebesgue measure and p its singular part.

Therefore, thanks to L. Carbone et al. [11], a natural argument of relaxation



leads us to consider the new problem:

inf F(€)

¢ENO

where, for any £ in N,

/ G(ug) dady + - / 9,6)? dxdy (7)

+/G°° |M d|,ug|+/z§da,
Fp

G denotes the recession function of G defined in (9) and |pe| = pf + iz .

The aim of this paper is to consider this relaxed formulation and extend M.
Amara et al. [2]’s results.

There is an extensive literature related to the question of relaxation and
lower semicontinuity on BV (Q), or WhH'(Q), for integral functionals of the
form

/frtfus da:dy+/h )l

where u¢ is the density of the absolutely continuous part of V& with respect
to the Lebesgue measure, pg¢ is the singular part and assuming that there
exists p in [1,+oo[ and two positive constants, ¢ and C, such that

Ve e R, (|| = 1) < f(. 0 29) S O(|[5]]P +1).

One may find in D. Kinderlehrer et al. [18] (for the semicontinuity) and T.
Roubicek [20] (for the relaxation) some approaches based on Young measure
theory.

Thanks to the contribution of geometric measures in the theory of bounded
variation functions (see L.C. Evans et al. [14], E. Guisti [17] or W.P. Ziemer
[22]), minimization problems associated with the function F have been con-
sidered. See for example the case of image segmentation modelling (see L.
Ambrosio et al. [4-6]) where one has to take into account the set of ”jumps”
of £ This set, S¢, appears in the minimisation formulation since

pe = (€5 =€ )nHIG + Ce



where H" ! is the n — 1 dimensional Hausdorff measure on R™ and C¢ the
Cantor part of the measure VE.

In L. Ambrosio et al. ([4-6] ), p belongs to |1, +oo[. Thus, Ambrosio’s lower
semicontinuity and compactness theorems lead to the study of SBV, the
space of special functions with bounded variation, 7.e., BV functions £ such
that C¢ = 0. In this context, the fact that p > 1 is essential.

Let us also mention similar studies, related to elasticity problems (see C.
Baiocchi et al. [7]), that lead to the study of BD(f2), the space of bounded
deformation.

A second example is the analysis of variational problems for phase transi-
tions. In this case (see G. Bouchitté et al. [8,9] or I. Fonseca et al. [15]), p is
assumed to be 1. Thus, one has to consider relaxation and semicontinuity in
BV (Q).

In our modelling, p has to be 3 for % < Uep, 1 for % > U, and 2 for g—g.
Thus, the problem (4) comes out of theses frameworks.

Quote finally L. Carbone et al. [11]&[12] where the authors prove that the
relaxed functional in the L'(§) -topology of

gew=(9) — [ [Glue) + 50,62 dudy

is equal to

1
[ G (e dady + 5 [0, dwdy + [(G)*(1 ) dluel,
Q Q Q He

where G** is the convex lower semicontinuous envelope of G (for a general
class of function G). Using a density result of W*°(Q) in V, our relaxed
formulation is a kind of continuous linear perturbation of the above one

where G = G**.

In fact, thanks to Goffman-Serrin’s theorem and to a result of density of V'
in BV (Q2), one can prove that

inf F(£) =min F(£). (8)

&evo £ENDO

Therefore, we prove the existence of a unique solution that satisfies a varia-
tional formulation in BV (2). Furthermore, we give some information about
the asymptotic behavior of the solution when R goes to infinity.



2 Hypothesis and notation

e For any real convex function f, we recall that the recession function of f,

denoted by f°°, is defined by

£ = Jim_ L flto + ) (9)

where ¢ is any element of R (o = 0 for example).

. +00 if t <0,
Therefore, in our context, G®(t) =

a2t if t>0.

Remark 3
F(§) is finite if and only if g vanishes and (ue — ug)™ belongs to L*(Q).
So, we are naturally led to be interested in the problem

Jp € K, inf F(¢) = F(p), (10)

where K 1s the convex cone:

K={¢eN": (ue —ue)* € L*(Q), pe = 0}.

e For any £ in N, let us set

b(€) = / J€do

Tp

and remark that b(1) = 0.
Moreover, since N — X = L*(—R, R; H'(]0, R])),

1
b(e) =~ [ #@)(1 = 210, dudy + - [ #(w)¢ dudy, (11)
Qo Qo
where Qo =] — 3, 3[x]0, R[. In particular, b belongs to X'.
Remark 4

Since Q@ C R?, BV(Q) — L*Q) and N = L*(-R, R; H*(0, R)) N BV ().



e Finally, we denote by c¢q, co and c3 the three nonnegative constants given

by:

2
Rcs

5 =0 + (v + 1) ud R%

c1 = ||Z/|| Cy = ||Z||ooucr +

11
LA(-33)

3 A relaxed problem
3.1 Properties of the relazed functional

First of all, F has a property of weak lower semicontinuity. Thanks to (11),
the convexity of GG and the positivity of the singular part of the measure 9.&,
, this result comes mainly from Goffman-Serrin’s theorem (cf. J.J. Alibert
et al. [1] for example).

Proposition 5 Let (&,)n be a sequence in K such that

& — Ein L2(Q), and
02 — 0:€ in Mp(Q) — %, 9y&n — 0, in L2 ().

Then

F(€) < liminf F(&,).

- n—+4oo

Therefore, in order to obtain (8), let us give a density result in N, inspired
by R. Temam [21] in Chap.1, §1.2.

For any positive A, let us consider the linear homothetic transformation oy
defined, for any (z,y) in Q, by:

oz, y) = (Az,y) and ox(Q) = {(Ar,y) : (z,y) € Q} .
Then, if T is a distribution in €2, a distribution ¢,7T can be defined in
D'(0A(22)) by:

<o)\T,¢& > Q)= A<T, U%f >q, V€ € D( U)\(Q)),

where (0%5)(aj,y) = &(Az,y). Therefore,



Proposition 6 For any § in N, there exists a sequence (§,)n>1 in V' such
that:

En > &0 10:6n](Q) = 10:€](8), Oy = 08 (12)

L2(Q) L2(Q)

and lim F(&,) = F(€) .

n—oo

Proof. Let us consider ¢ in N.
Thanks to R. Temam [21], there exists €, > 0 such that if p., denotes
the classical mollifier sequences in R, &, = ”“ (pe,, * an+1§) belongs to V/,

converges to € in L*(—R, R; H(0,R)) as n tends to +oo and p., * O ni1ug

converges towards ug in L'(Q).
Moreover, for any f in C.(£2) with || f|le < 1,

< pen x Ontafie, [ >a= "0 < g 0 n (pen  f) >0y @< T el ().

Thus, since p., * on+1 e converges to pe weakly- in My(€2), we get

lim_|p., * oo e (©2) = |uel ().

n—-+oo

Therefore, the result of density is proved since

026n = Pe,, * Ont1Ug + e, * Onstt flg.

Moreover, leading from Proposition 5, one has F (€) < liminf, 1 F(&,).
First, if £ does not belong to K, then F(f) = 400 and lim,, o, F'(&,) = l*:’(ﬁ)
If ¢ belongs to K and if we define uy = ue — (uer — ue) ™ and ug = (uer —ug) ™,
since y is a nonnegative measure, us > 0 and u; < u,.., one has

limsup [ [(ter — 0,&,) "] dzdy < liIJP /[(uc,, — pe,, ¥ onpauy) )P drdy

n—-+oo

= liril [(Uer — pe,, * Ontruy)]® dedy

Q

(U — uy)® dady = /[(ucr — u§)+]3 dzdy.
Q

{O\

Moreover,

Hm [ (uer — 026) dxdy = /(ucr — ug) dzdy — pe(92),

n—-+4o0o
Q Q



(n)n converges to & in L*(Q) and (9,&,)n converges to 0,¢€ in L*(Q2). Then,
b(&,) converges towards b(§) and (6) leads to limsup F(&,) < F(§).

n—-+o00

Corollary 7 L :zglen‘}‘0 F(¢) :gler}\ff‘O F(¢).

3.2 Emistence of a solution

Let us give now a coercivity result. In order to do so, we need the following
lemma:

Lemma 8 For any £ in K, we have

1 . [E[®
b(€) > —cp — Z||ay§||iz(90) + RQ/ 2(Uer — ug) drdy — Rﬂ/dﬂs
o 0

Proof. This lemma comes from (11) and the Green formula in BV (£2) (see
L.C. Evans [14]).

Proposition 9 For any £ in K, we have

F<s>z%||<um~—ug> oy + 210y€022() — c3
+(5 2 = &) (e — we) T lla) + 1e(Q)) -

Proof. First, thanks to the previous lemma, one has:

+1
&)= [ Glue) dady + / (0,6)? dedy + (&) + T~ pe()
Q
/ (ug) dedy + 4/ 0,€)? dzdy — co
Q
IE ||oo/ 7+1
er — U - Q
R/ (tter — e) dady dpe + 1~ e (%),

/ (ug) dzdy + — / yf dxdy — co
Q

1 1 00
b, [ 2oy — ) dady + (7; P )m(m-

Qo

Then, if Z denotes the extension of z by zero outside [—% %] one gets:

10



+1 z
Uer — u§)+ - (72“37‘ - R) (UCT - Ug) + Lu:c;r

dxdy.

Since, 7u? > ||Z”°° , one has 0 < Xrly2 — % (v 4+ 1)u2. and one gets:

1
/ (ug) dedy + R/ (Uer — ug) drdy

Q Qo
1 1 z 1
J T e gt = (T = ) (e — e+ ] dudy
SEVRNIEE }
(e e = ) lx
1 1
> [ 5 (e = )% = (04 D (e — )+ 5] dndy
Q
EIPRNER i
(5 - ) e - w0,

Noting that

T+13

|
V20, T — (Dt T

v+1 . 3
> ——t 1

one concludes since

~ 1 1 Z||oo _
F(¢) 2/ [7;; (Uer — u§)i + (ﬂy;uzr — I ]|%| ) (Uer — ug) ] dxdy
Q

1 [, dwiy + (” L "Z"“’) e()
Q

—cy — (v + )l R%

Let us conclude this section by proving (8).

Corollary 10 There exists a function ¢ in K such that

F(o)=L, i.e. L :gienvfo F(€) =min F(€).

€ENDO

Proof. Indeed, for any minimizing sequence (&,),, Proposition 9 ensures
that it is a bounded sequence in K and, after extractions of adequate sub-

11



sequences, Proposition 5 leads to the conclusion.
3.3  Properties of the solution

Our purpose is to characterize the solution by means of a variational formu-
lation. This last one comes from the G-derivability of F.

Proposition 11 For any & in K (i = 1,2), one has,

F(& +0&) — F(&)

0111(% 0 =< F'(fl)-, §2 >
where
< F'(&), & > = [ glue,Jue, dudy (13)
Q

v+1
2

+ [ 0,600,6 dady + b(&) + T —uZ ey ().
Q

Proof. Since p¢, and pg, are positive measures,

(:u& + 9:“52)+ = g + 0:“52’

then one has:

F _F G(ug, +0ue, )—G(u
Flertoe)=F(61) :/ (ug, &02) (ue,) dxdy+/g (0y&s)? ddy
Q Q

Fb(E) + T e, () + [ 061 Oy dady.
Q

Since (G(u51 +0uf,?)_G(u§1))9 is a monotone family of L!'(Q) functions, Beppo-

Levi’s monotone theorem leads to the desired conclusion.

Remark 12 Even if & is in N\K, < F'(&),& > may exist: if for a_given
positive value of 0, & + 08 belongs to K, the same proof holds; if not, F(&+
0&2) is always infinite, as well as < F'(&1),& >.

Corollary 13 The same proof leads to:

F((l —0)& + 0&) — F(§1>
0

6,6 € K, lim =< F'(&1), &~ & >

12



Let us sum up in the following theorem the properties of the solution of (8).

Theorem 14 There exists a function ¢ in K such that, if we note u = u,
and p = p,, one has:

¢ Flp) =L,

o <F'p),p>=0 i.e.

1
[ stwpudzdy + (@01 dndy +b(o) + 110 w(62) =0,
Q Q

o VpeK, <Fl(p),>>0 ie.,

7+1
2

[ oy dedy + [ 0,00, dudy +bw) + 7~ 1 (9) 2 0,
Q Q

e if one denotes by u* = uy — (e — u)™, then

1
Us S U and L = / [G(u*) —ug(u*) — 5(83,30)2 dxdy.

Proof. The existence of ¢ is given in the previous section and, thanks to
Proposition 11, points two and three come from the classical results of min-
imisation in convex cones.

Since < F'(¢), ¢ >= 0, one has,

+1
0= /ug( )dwdy+/ (Dyp)? dady + b(p) + 72 g ()

Q
/ug ) dxdy + / (8,0) drdy + F(p) — / G(u) dzxdy.
Q Q

Therefore, as F (p) = L, one may conclude point four since

v+1 - N
5 Uer(ter =)~ = ug(u) — u’g(u’).

Gu) — G(u") =

Remark 15 Let us note that, for any ¢ in D(Q2), since ¥ and — belong to
K, < F'(p),v >= 0. Therefore,

3
2

2
div(g(u),dyp) =0 in D'(Q) and (g(u),dyp).n = 2'Ip, in W™ 32(0Q)

(cf. [16] for the trace) where Ir, is the indicatrice function associated to I'y.

13



4 Uniqueness of the relaxed optimal problem

Proposition 16 Let us consider two solutions to (10) ¢; and note

Oppi = widrdy + p; (1 =1,2)

i) If uf = uer — (Uer —uy)*t (i = 1,2), we have

uy = uy a.e. in Q and Oyp1 = Oypa a.e. in (L.

it) Under the condition on the truncated domain (1), there exists a function

f in BV(—R, R) such that:

1 -

o1 =2+ [; / fdx=0 and /(V;Lugr—;)dfzo (14)
]_RaR[ Q

where z denotes the extension of z by zero oulside [—%, %}

Proof. Since ¢; and ¢ are two admissible solutions, Corollary 13 leads
classically to:

< F'(Spl), Y2 — 1>+ < F'(@z), p1— 2 >> 0.

Therefore, one gets

/(u1 —ug)[g(ur) — g(ug)] dedy + /(6y<p1 — Oyp2)? drdy <0

and one concludes i) thanks to the analytic formulation of ¢ = G’ and the
convexity of G.

Since ¢ and @9 belong to K with d,¢1 = 0y, there exists a function f in
BV(—R, R) such that [|_p p fdz = 0 satisfying for a.e. (z,y) of ,

o1(z,y) = p2(7,y) + f(z).

Let us denote by A = {(z,y) € Q; u; < ue a.e.in Q} and B = Q\ A. Then,
since Oyp1 = Oyp2 a.e. in 2 and u; = us a.e. in A, one has: |df|(A) =0 and

- 1
F(e1) :/G(UQ) dxdy + / G(uy) dxdy + 5 /(831302)2 dxdy
A B Q

14



v+1
2

+b(¢1) + ug 1 ().

Thus, thanks to (6) and denoting by v and p respectively the absolutely
continuous part of df with respect to the Lebesgue’s measure and its singular
part, one gets

up =uz+v, p, =p,+p and

- 1
F(pr)= / G(ug) dzdy — tis ugr /(ucr — ug) dzdy
A B

+1 1
+ % ul dedy + 2 /(aygoz)Q dxdy 4 b(p2) +
B Q

1
L df(B)
vy+1 5, 2

—F(eo) + [(—u2 - D)dr.

1
Ugr/@ (Q)

+b(f)+

Then, since F(p1) = F(ps), ii) is proved.
Theorem 17 Problem (10) has a unique solution.

Proof. Let us consider again the above notations and denote by ¢ the
BV(—R, R) function such that f|_g g gdr =0 and dg = [df]~.

Therefore, dg = v-dx + p~ and one has dg(A) = 0. Moreover, us — v~ >0
and ps — p~ > 0.

Then,
F(902 / (ug —v7) — G(%)} dxdy
B
y+1 5 _
~be) = ()
- 1 1
= F(p2) — 7; uir/v* drdy — /z’gda - 7; u? p~(Q)
B

1
ug’r Rdg(_ Ra R)

- +
:F(@2)+/ng—72

< Flga) + Il = 5

uirR} dg(—R, R).

As ¢y is a solution to (10), hypothesis (1) leads to dg = 0 and to g = 0 since

15



So, [ is a non decreasing function and (14) and (1) prove that f = 0. Thus,
©1 = @2 and the solution is unique.

5 Towards the unbounded domain

Consider Ry > Ry > Ry = (3L|-Zl|)‘202 . For any 7 = 1,2, let us note:

L QRZ :} - RZaRZ[X}O, R'L[a QOO =R x R+3

NRi = {<P S BV(QRZ) : aySO S L2(QR1)}

and F r, the corresponding functional on Ng,.

e o, the solution of Fg,(¢;) :geléin Fr,(€) = Lg, with 0,pr, = ug, drdy+ g,
R;

and up, = Uer — (Uer — ur,) ™.

Theorem 18 There exists L in R, U € L*() N L*(Q), V € L*(Qo)
© € BVioe(Q) and p a non negative measure on oy such that:

3

Ln = L =l [GWU)~Ug)~ (V)] dudy,

R—+o0
o U <y, Oyp=Udxdy+p, Oyp=V,

o div(g(U),V) =0 in D (),
e (g(U),V)m =2z in D(—-R,R[), VR>O0.

First, let us give a lemma.

Lemma 19 For any real s and t, one has:

G(s) = G(t) =(s = )G'(1)

= 2 (e — 5) " (ter = )] [(t1r = 5)* + 2oter — 1)

+3(ter — 8) 7]

In order to prove the theorem, note that

(NS NR2 = (p|QR1 € NR1

and that

FR1(30|QR1) < F’Rz (@)7

16



thus Lz, < Lg,. Since Fg,(0) = 0, (Lr)r>r, is bounded and non decreasing.
Therefore, there exists a real £ such that Lz converges to £ when R goes to
infinity.

Since L, = fo,, [G(u}‘gl) —up, g(uf,) — %(aynpRl)ﬂ dxdy, one has:

Fropn) =Lr + [ [Glur) — Glu,) + uiyg(ur,)] dady +blpn,)

QRI

12 [ O + Oym ) L2 piny ()

9 y‘PRz y¢R1 Uer LRy R1
QRI
- £R1 + / uRz uRl) - (uRz - u?%l)g(u*Rl)} d:L'dy

+ / uR2g(U*Rl)dxdy+ / 8?/901%28?1901%1 dxdy+b(90R2>
QRl QRI
1

+5 /(aySORz — 0yoR,)” Ul pry (g, )-

g,

Since, Yryj0p, € Nry,

. +1
/ g(ug, )ur, drdy + / Oy R, Oy PR, dxdy + b(@r,) + ] 5 ul piry (Qpy) =0

Qp, Qpr,

and, as

+ [ [Glun,) = Gluz,) = (un, = w3, )g(uz,)] dody
with
[ [Glun) = Gluz,) = (un, = i, )g(u,)] dody
— [ lotun,) — glui, )(un, — u,) dady = 0
one has
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Fry(pr) 2 La, + [ [Glur,) = Glur,) = (uh, — i, )g(ui,)] dady

2 / ySOR2 y90R1> dl’dy
Or,

and

,C FR2 ‘PRQ Z,C

+ [ [Glun,) = Glug,) — (un, — ui, )g(up,)] dody
Or,

1 2 ]‘ 2

+§ /(ay(PRz_ay¢R1) 9 ucr:uR2(QR2\QR1)
Or,

1 2
+ / [ uRz 2(8?4901%2) ] d:L'dy
QRQ\QRl

Therefore, thanks to lemma 19,

G(up,) — G(up,) — (g, — up,)9(up,)

Z7+1

i, — i, |? [l — iy |+ B(ter — max(uy, uy,))]

one gets:

7+1 . . 1
Lry=Lry 2 / [k, — U, dady + 3 / (Dypr: — Oypry)* dady

Ry QRl
. 1
+ [ |Gl + 5 Opr)?| dody.
QRQ\QRl
Y1,
Note that for every t < u.., one has G(t) = ——*(3ue. — t), SO
1 1
alt) > VZucrt TR ” o

and

7+1 . . 1
Ly =Ly > / (ke — k| drdy + 3 / (Oyprs — Oypry)* dady

QRl QRl

18



y+1 ., 1
b [ P O )?| dady,
QRQ\QRl

On the other hand, since u}‘—{ < Uer, lemma 19 leads to

G(ug,) — G(ug,) — (ug, — up,)g(uR,)
? |uR2 - ujzl |2 [uCT - ma‘X(uEﬂ UE2):|

and one has:

2 1
—I— ) 3 3
o [ - P dwdy | | [ i) dedy |+ e, — L,
QRl Ry
y+1 . .
> Ty / [up, — uR1|2d:Udy
Qg
+1 1
b [ e, + (Oen? dady.
QRQ\QRl
Let us note Up = upla,, Ve = 0y¢ila,. As Lr converges, it satisfies

Cauchy’s property and the above inequalities imply that {(Ugr, Vi) }r>g, sat-
isfies Cauchy’s property in [L*(Q4) N L?*(Qo0)] X L*(Qs ). Therefore, there ex-
ists (U, V), limit in [L3(Qu) N L? ()] X L? () of sequence {(Ur, Vi) } r>ro
such that U < u,,,

c :Q/ [G(U) _Ug(U) - ;(vf dudy

and div(g(U),V) =01in D' (Qu).

Let us consider the increasing sequence (§2,,)men, of sets where Ng = {m €
N, m > Ry} and note that for any fixed m in Ny, (¢n)n>m is a bounded
sequence in BV (Q,,). Therefore, by a diagonal argument of subsequence
extractions, there exists ¢ in BV,.(Qs) such that .0 = U + p (p is a non
negative measure) and d,p = V.

6 Conclusion and open problems

e We have proved the existence and uniqueness of the solution of Problem
(10) in a bounded domain. It is not a solution of the initial partial differential
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equation since it is a solution to div(g(u), yp) = 0 in the distribution sense in
2 and not to div(g(0.¢), 0yp) = 0. The degenerated behavior of the problem
is illustrated by the singular part u.

We have 9,¢ = udzdy + p; when u < ug. (i.e. the problem remains elliptic),
then we have p = 0 and we get the solution of the initial problem and
the PDE. But, when the property u < wu. a.e. in € is not satisfied, the
degeneraticity of the problem appears in the parabolic zones (i.e. where u >
uer). Let us give informations about the singular part. Following L.C. Evans
[14], denotes by A and p respectively the approximative limit-sup and the
approximative limit-inf of ¢. Then, since ¢ is a bounded variation function, if
Sy, ={(z,y) € 2, A < p} denotes the set of approximative discontinuity, one
has Oy s, = (pT—¢7) ny dH! s, and @ is H!-a.e. approximatively continuous
in Q\S,.

Moreover, since ¢ belongs to N, for a.e. 2 in |— R, R[, the function y — ¢(z,y)
belongs to H'(0, R). Then, there exists a countably family of segments such
that S, =Y {zn} X [ag,,bs,] H'-a.c.

e We have proved the convergence of the sequences {(Ug, Vr) } r>r, and (Lg).
We have now to study the physical problem in the unbounded domain RxR™,
i.e. consider the optimal problem in this unbounded domain and compare
its value to £. The major difficulty is then to obtain Poincaré’s inequalities.
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