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Résumé

In this paper, the dynamic behavior of the capital growth rate is analyzed using an
overlapping-generations model with continuous trading and finitely lived agents. Assu-
ming a technology satisfying constant returns to capital, the equilibrium growth rate is
piecewise-defined by functional differential equations with both delayed and advanced
terms. The existence of a solution expressed as a series of exponentials crucially depends
on the initial wealth distribution among cohorts. Upon existence, the dynamics of the
capital growth rate has a saddle-point trajectory that converges to a unique steady-state.
Along the transition path, the growth rate exhibits exponentially decreasing oscillations.

JEL Classification : D50, D90.

Keywords : Overlapping-generations Models, Endogenous Growth, Functionnal Diffe-
rential Equations of Mixed Type.



As they deal with population or social security issues, applied studies have come to use set-
tings that encompass an arbitrarily large number of overlapping generations of individuals®
to ease the confrontation with real world annual data. Such models are unfortunately at
odds with the benchmark structure of the theoretical literature based upon two periods
overlapping generations of individuals. Recent contributions? have thus been aimed at
developing a fruitful analysis of large-square models® and exhibited specific conditions on
the existence and dynamic properties of equilibrium paths. However, a limit to their use
on a wide spread basis springs from the difficulties that emerge in the course of their ana-
lytical resolution. Our paper introduces a simple method that allows for solving models
with many overlapping generations and that could be applied to numerous related eco-
nomic problems; it also proposes a complete resolution in a specific case which provides

new insights on the existence and convergence properties of equilibrium paths.

In models with many overlapping generations, the dynamics of endogenous variables de-
pends on a finite number of their past and future realizations. To comprehend that, sup-
pose, for instance, that the population is composed of individuals that live for T" periods.
At each date ¢, the information set that determines the equilibrium of the economy is
modified in two ways. First, it is augmented by the extra stream brought by the newborn
individuals, namely the expectations for time ¢ + 7" — 1. Second, it is conversely reduced
by the lost of memory on the information held by those who just died, i.e. the prices for

time t — T — 2.

But it is the very dependency of this current variables on their past and future realizations
that creates the analytical difficulty of these models. In discrete time frameworks?*, the

analysis of the dynamics requires the study of polynomials, whose order increases with

!See Auerbach and Kotlikoff [2] for a deterministic framework and Rios-Rull [27] for a stochastic one.

2See notably Kehoe, Levine, Mas-Colell and Woodford [20] and Azariadis, Bullard and Ohanian [3].

3Balasko, Cass and Shell [4] showed the equivalence with a two-period lifespan model with many
goods.

4Samuelson [30] introduced a model with three generations and Gale [16] provided a generalization to
many generations.
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that this difficulty may however be circumvented using the continuous time framework
developed by Cass and Yaari [13]; in a nutshell, it eases the mathematical resolution
without affecting the qualitative analysis, the endogenous variables of a discrete time
model converging uniformly to their continuous time counterpart when the frequency of
trade during a life-span goes to infinity®>. However, in continuous time frameworks, the
dynamics is characterized by a functional differential equation of mixed type (MFDE),
i.e. the dynamics is affected by a continuum of discrete delays and advances; as suggested
above, advances are generated by the expectations of newborn individuals while delays
are associated with the loss of information caused by the recent deaths of the oldest

individuals.

We propose an integrated treatment of such a structure in a simple competitive equili-
brium case considering an overlapping generations model with production in which pre-
ferences are logarithmic and the technology exhibits constant returns to capital. Capital
dynamics are generically described by an MFDE that happens to be linear under constant
returns to capital. This latter assumption, which constitutes our main departure with Cass
and Yaari [13|, allows for a global dynamics analysis. We prove that, upon existence of a
competitive path, the growth rate has a transitional dynamics and converges to a steady

state through exponentially decreasing oscillations.

The existence of an equilibrium is not always ensured in continuous-time overlapping gene-
rations models even under rather standard and simple assumptions®. Following Rustichini
[28], we study the existence of a strictly positive and bounded solution to the MFDE. We
show how to use the piecewise definition of the capital dynamics to define the set of initial
distributions of wealth that ensure the existence of the equilibrium. We then propose a ne-
cessary and sufficient condition for the existence of a competitive equilibrium and provides

examples of initial distributions for which there is no solution to the equation. Moreover,

5See Demichelis and Polemarchakis [14] in the exchange economy case.
6See Burke [11] in a model with a finite number of individuals at each point of time.
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studying the roots of the MFDE characteristic equation, we show that the capital either
converges to a balanced growth path or diverges : its growth rate assumes therefore a
saddle-point structure with a convergent path. Moreover, the converging solution exhibits
oscillations that decrease in magnitude and eventually disappear as time goes on. There

are no permanent cycles in such economies®.

These results articulate with the available literature as follows. First note that, while diffe-
rential equations with delays have been studied in economics since the early beginnings of
macro-dynamics®, very few economic studies have used MFDE!?. Notably, in an exchange
economy by Demichelis and Polemarchakis [14] has recently been find a related class of
fluctuations. They appear as resulting from the existence of delays in continuous time en-
vironments, as pointed out by Boucekkine, de la Croix and Licandro [8] who understand
the overlapping generations framework as a dynamic model with vintage human capital.
This also corroborate the results obtained by Azariadis, Bullard and Ohanian |3| : in the
framework developed by Kehoe, Levine, Mas-Colell and Woodford [20], they show that
the price sequence displays a non monotonic convergence to the steady-state. Azariadis et
al. conjecture that such an overlapping-generations model with production may hence be
used as an argument to explain the short-run fluctuations in the trend-reverting motion
of the output. In parallel to this, we show that introducing a demographic structure in
a simple one-sector model with constant returns to capital is sufficient to eliminate its
most unpleasant conclusion, namely, the absence of transitional dynamics. Our results on
equilibrium growth complement in this latter regards those of Boucekkine, Licandro, Puch
and del Rio [9] on optimal growth. They extend the Rebelo [25]’s AK model by introdu-

cing vintage capital and show that the optimal growth rate has an oscillating behavior

"For determinacy issues in large-square economies, see Kehoe, Levine, Mas-Colell and Zame [21],
Santos and Bona [29], Burke [10] and Laitner [22].

8See Aiyagari [1], Préchac [24], Reichlin [26] and Ghiglino and Tvede [17].

9See Frisch [15] and Kalecki [19].

10For the mathematical literature, see Bellman and Cooke [5], and Hale and Verduyn-Lunel [18] for an
introduction and Rustichini [28] and Mallet-Paret and Verduyn-Lunel [23] for further developments in
the mixed-type case.
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The paper is organized as follows. In section 2, we present the basic framework of the
model and determine the functional equations that characterize the capital dynamics at
the equilibrium. In section 3, we give an existence condition based on the initial wealth

distribution. In section 4, we analyze the capital dynamics. We conclude in section 5.

2 The model

This section develops an overlapping-generations model with continuous trading and
finitely-lived individuals. Assuming a technology with constant returns to capital, it cha-

racterizes the capital dynamics of such an economy.

Time is continuous and has a finite starting point. Let ¢ denote the time index with ¢ > 0.
Individuals live for an interval of time of length 1. It is assumed that they only derive
utility from consumption and that they have logarithmic preferences and no time discount.
Let ¢ (s,t) > 0 denotes the real consumption of an individual who born at time s as of
time ¢. Hence, the intertemporal utility of an individual who born at time s € (—1,1],
denoted u (s,1t), is :
s+1

u(s,t) = /t Inc(s,z)dz (1)
During a lifetime, the labor supply is fixed and equal to 1 and w (), an age-independent
labor income is received. Individuals have access to competitive capital markets that yield
the risk-free interest rate r (¢). Let a (s,t) denotes the real wealth of an individual who

born at time s as of time £. The instantaneous budget constraint is therefore for all¢ > 0 :

da (s,t

00) s, ) +w (1)~ e (s, )
Individuals are born with no financial assets except those who are alive when the economy
begins which are endowed with a given financial wealth. Therefore, initial conditions

writes :
a(s,0) given if s € [—1,0] (3)
a(s,s)=0 if s>0

1 Note that they study a dynamic system that exhibits delayed and advanced terms but use a different
resolution method that involves optimal control theory.

4



a(s,s+1)>0 (4)
Moreover, assume that :

Assumption 1 a(s,t) and c(s,t) are C' ([—1,00) X [0, 00)).

Assumption 2 r(z) and w(z) are continuous for all z € [t,¢ + 1].

Given assumptions 1 and 2, the individual program is to maximize (1) subject to (2), (3)
and (4). As the initial conditions differ, it is necessary to distinguish individuals who were
alive at time ¢ = 0 from those who born at time ¢ > 0. The optimal asset accumulation is
then expressed as a function of the past and anticipated prices and the initial conditions

on asset endowment.

Lemma 1. The optimal asset accumulation is such that :
a(s,t) = f(a(s,0),w(z),r(z);z€0,5+1]) (5)
if (5,8) € [~1,0] x [0, 5 + 1] and :
a(s,t) =g(w(z),r(z);z €[s,s+1]) (6)
if (5,1) € [0,00) x [s, 5+ 1].

Proof. The optimal consumption satisfies for all t > 0 :

oc(s,t)
5O ryets )
and :
s+1 ; s+1 ;
/ (s, 2) e Jrmdug, — o (s,t) + / w (z) e~ Je Tdug, (8)
¢ ¢

Observe that (7) is the standard Euler condition with no time discount and logarithmic

preferences. Condition (8) is the intertemporal budget constraint obtained integrating
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Replacing (7) in (8) allows to rewrite the optimal consumption such that :

a (S,t) + J;H_l w (Z) - I7 r(u)dudz
(s+1—1)

c(s,t) =

9)

For individuals born at time s € [—1,0] and still alive at time ¢ € [0, 1], the optimal

consumption path is obtained using (9) to define ¢ (s,0), then using (7) yields :

a (S, 0) efg r(u)du + fos+1 w (Z) o 7 r(u)du g,

c(s,t) = (s+1)

(10)
which replaced in (9) gives the optimal asset accumulation along the life cycle such that :

s+1
— ftr(u)du — [{ r(u)du (S +1- t)
a(s,t) (a (s,0)elo —|—/0 w(z)e dz) r1)

s+1 .
—/ w () e fr rwdug, (11)
t

which defines function f. Conversely, for individuals born at time s > 0 consumption as

of time t > s is obtained replacing (3) in (9), then with (7), one has :
s+1 .
c(s,t) = / w (z) e i rwidug, (12)
which replaced in (9) yields :
s+1 .
a(s,t) = (/ w(z)e I T(“)d“dz> (s+1—1)
’ s+1 ;
—/ w (z) e ¢ Twdug, (13)
¢

which defines function g.

There is a unique material good, whose price is normalized to 1. It can be used for
consumption or for adding to the capital stock. This good is produced by many competitive
firms whose aggregate activity is described by a production function with labor [ (¢) and

capital & (¢) as inputs. Assume that the production function satisfies :

Fk(®), 1) = Ak (B (e ()L ()" (14)
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There is no capital depreciation. For all ¢ > 0, factor prices equal marginal products :

r(t) = ad(()° (15)

w(t) = (1—a)Ak(t) ()" (16)

The demographic structure is in overlapping generations. Each individual belongs to a
cohort whose size is normalized to 1. There is no population growth and, at each point of
time, a new cohort enters the economy since the oldest one leaves it. Hence, the aggregate
counterpart, z (t), of any individual variable, z (s,t), is obtained by integrating over the

birth date, such that : z (t) = f;l z (s,t)ds.

Definition An equilibrium with perfect expectation is a & (¢), ¢ > 0, that belongs to R*,
is continuous and has bounded variations on [0, 00) such that (i) individuals maximize
their utility subject to the budget constraints, (ii) firms maximize their profits, and (iii)

markets clear.

Lemma 2. The equilibrium k (t) is piecewise-defined by linear functional equations such

that :
k() — F(a(s,0);s€[-1,0], k(2);2€[0,t+1]) ifte (0,1]
()_{G(k(z);ze[t—l,t—i-l]) ift>1

In addition, a(s,0), s € [-1,0] and k (0) are given.

(17)

Proof. Replacing labor market equilibrium condition, [ (¢) = 1, in (15) and (16) yields
factor prices : r (t) = A and w (t) = (1 — a) Ak (t). Replace them in (11) and (13) and
use capital market equilibrium condition k (t) = ftt_l a (s,t) ds to obtain the functional

equation in k.

For ¢ € (0,1], the population is composed of individuals born before and after ¢ = 0.



s+1—1)

kE(t) = /:la(s,(])eaAt( GTD)
+(1-a)A [ /t : ( /0 . k(2) e_o‘A(z_t)dz) %ds

+/0t ((/:+1 k(2) e_"‘A(z_t)dz) (s+1- t)) ds
_ /; ( /t SHk(z) e‘O‘A(z_t)dz> ds] (18)

which defines function F'. For ¢ > 1, there is no individual born before ¢t = 0. Hence, use

K = (1—a)A { /ttl ( / k) eaA(zt)dz> ds
_ /:1 (t— 5) ( / o) e—aA<z—t>dz> ds] (19)

ds

(13) to obtain :

which defines function G.

Remark The dynamics is hence piecewise-defined : as the economy is supposed to have
a finite starting point, a first equation characterizes the capital dynamics as long as it
exists individuals who were alive at the initial date; this equation includes the initial
distribution of wealth among generations which constitutes the initial condition of our

problem ; a second equation then characterizes the dynamics for an infinite future.

Remark The linearity of equations (18) and (19) with respect to k crucially depends on
the assumption of constant returns to capital. They would remain linear with a CRRA
instantaneous utility function and a strictly positive discount rate since the propensity to

consume of same-aged individuals would be time independent.

Differentiating equations (18) and (19) with respect to time yields linear functional diffe-
rential equations of mixed type (MFDE) : delayed and advanced distributed terms the-
refore influence the dynamic behavior of k (¢). The presence of delays in our model is
due to the bounded life-span assumption; they indeed disappear in overlapping genera-

tions models of infinitely-lived individuals as in Weil [31] or of individuals that face an

8
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tion is also the cornerstone of the vintage capital literature : Benhabib and Rustichini 6]
show that non-constant or one-hoss shay capital depreciation imply delays in the capital
dynamics. The capital dynamics also depends on advanced terms that are generated by
the individual expectations made by the newcomers in the economy ; alternatively, a mo-
del with myopic individuals would produce an equilibrium dynamics characterized by a

differential equation with delays only.

3 Existence of a Competitive Equilibrium

Rustichini [28] showed that the Cauchy problem for an MFDE is not well set up because
of the advanced terms, and therefore that the differential equation may fail to have a
solution. This section shows that the solution of (17) writes as a unique series and gives

the shape of the initial distribution of wealth that ensures its existence.

First, the following lemma shows that theorem 6.10 in Bellman and Cooke [5] applies and

that solutions are expressed as series of exponential.

Lemma 3. Suppose k (t), t € [0,2] is given and define T > 2. For all t € [0,7], the

solution of equation (19) writes :

k(t) = 6nes! (20)

where g, € C are the roots of equation (19)’s characteristic equation Q) defined by :

Q) = 1-a-aal[ ([ doenic)a
+ /_(1 s (/:H e(-"“’A)zdz> ds] (21)

and where 6,, € C are the residues of a function defined in the proof. Moreover, the d,, are

chosen such that K (t) > 0.

Proof. See the appendix.
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need to know k (t) for ¢ € [0,2]. However, the economic assumptions only give a(s, 0),
s € [—1,0], from which it can deduced £(0). Equation (18) is at this stage crucial to solve
the model. It indeed gives a univoque relation between the constants (J,,) and the initial
conditions a(s,0), s € [—1,0], and eventually defines k (¢) for ¢ € (0,2]. The following

lemma gives this relation.

Lemma 4. A solution of (17) shall satisfies for s € [—1,0] :

a(s,0) = Z Spe(@A=gn)(s+1) [(s+1) (92 — (14 ) Ag, + aA?) (22)

1 0
+(1-a)A ((s +1) / em(@A=n)zq, / e_(”‘A_g")zdz)]
0 —1-—s

and fort >0 : > 6,e9" > 0.

Proof. See the appendix.

Lemma 4 constitutes a necessary and sufficient condition for system (17) to have a solution.
Remark with lemma 3 that if it exists a solution, it is unique.

Corollary 5. It exists a(s,0),s € [—1,0] such that there is no solution to (17).

Proof. See the appendix.
Remark Any distribution such that a(—1,0) > 0 does not solve (22).

Now turn to the analysis of the dynamic behavior by studying the roots of the characte-

ristic equation (21).
4 The Dynamic Behavior of the Growth Rate

This section proposes a complete study of the capital dynamics through the properties
of the characteristic equation. It shows that capital converges to a balanced growth path
with exponentially decreasing oscillations if the initial distribution of wealth differs from

the one that prevail on the balanced growth path.

Roots of equation (21) are such that :

10
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1) a unique real root denoted g, such that § < aA;
2) no complex roots with real part equal to g, except g itself when g > 0 ;
3) an infinity of complex roots with real parts > g

4) an infinity of complex roots with real parts < g.

Proof. See the appendix.

The interpretation of these results lies in three corollaries.

Corollary 7. A balanced growth path exists along which the capital growth rate is lower

than the interest rate.

Proof. On the balanced growth path, the capital growth rate is constant. It is therefore

given by the pure real root of the characteristic equation, namely g.

It is necessary that this growth rate be lower than the interest rate (i.e. @A) to have a
positive aggregate capital. To see that point, suppose on the contrary that g > aA. Then,
observe with equation (12) computed at steady-state that c (s, s), the initial consumption
of an individual who born at time s, is greater than its current wage w(s), and with
equation (7) that its consumption’s growth rate is lower than its wage’s growth rate.
Since a (s,s) = a(s,s+ 1) = 0, conclude that the individual is indebted all along his life

and therefore that the aggregate capital is negative.

Remark The steady-state growth rate, g, is not necessarily positive, but it can be easily
shown that a A > 1 exists such that § > 0 if and only if A > A. Assume therefore that A

is sufficiently large.

Second point of lemma 6 point out that there is no cycle.

Corollary 8. The capital dynamics either converge to a balanced growth path or diverge.

11
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I's = {gn, Re(gn) < g}
L'y = {gn, Re(gn) > g}
I'c = {7}

Now define M; (resp. My, M¢) the subset spanned by the roots that belong to I's (resp.

[y, Tc). There exists three families of operators :

To(t) : M, —s M, for t > 0
Tb(t): My — My fort <0
Tc(t) : Mg — M for t € (—o0, 00)

and there exists z > 0 such that for all ¢ € Mg, ||Ts(t)d|| < z ||¢]|, for all ¢ > 0. Therefore

elements of MU M, define the solutions &, (t) that converge to the balanced growth path.

Let (pn, gn) be such that g, = p, + ig,. The converging solutions of (17) writes :

k(t)=61e"+ Y Gne’ cos (gnt) (23)

gnEFS

Since p, < g, the capital dynamics exhibits at the beginning oscillations that decrease
in magnitude and finally disappear. Conversely, any solution that includes a p,, > g di-
verges. More importantly, Demichelis and Polemarchakis [14] pointed out that since terms
in 37 cp, OneP"’ cos (gnt) exhibit oscillations that increase with time, solutions that in-
clude those terms are necessarily incompatible with the positivity constraint on aggregate
capital k (t). Hence, as suggested in lemma 3, for all g,, € I, the corresponding §,, should

be set equal to zero.

Burke [10] and Demichelis and Polemarchakis |[14] have stressed the importance of the
date at which the economy begins. Accordingly, if time extends from an infinite past, the
non-negativity constraint on & (¢) imposes to also eliminate the exponentially decreasing

oscillating solutions. The only valid solution has therefore the following form : k (t) = §;e7".

Remark If the initial distribution of wealth is the one that prevails at the balanced
growth path, that is :
a(s,0) = 6”@ DE [(54+1) (3% — (1 + a) Ag + ad?) (24)

1 0
+(1—-a)A ((s +1) / e~(@A=9)zq, / e_(aA_g)zdz)]
0 —1-s

12



Let g (t) be the growth rate of capital at time ¢ such that :
k(t) = k (0) eJo 9w (25)

Corollary 9. The growth rate has a saddle-point trajectory. On the stable manifold, it

converges with exponentially decreasing oscillations to the steady-state.

Proof. Observe with (23) that the growth rate of converging solutions satisfy :

(t) = 619+ > cr, 5,e®2=9) (p,, cos (qut) — n sin (gut))
= 01+ Y ger, On€Pr=9 cos (gnt)

and that lim;_,, o ¢ (£) = g. Other solutions diverge.

The presence of bounded life-span generates a transitional dynamics of the growth rate
if the economy have a starting point. It indeed creates a persistent dependence of endo-
genous variables to initial conditions as it is the case in models of vintage capital. This
dependance is usually designated as a replacement echoes effect. The simultaneous pre-
sence of advanced terms does not change the fact that the endogenous growth rate is no

longer a forward variable. It therefore does not jump but converges to its steady-state.

Moreover, the transitional dynamics of the growth rate is oscillating. To understand this,
suppose that an economy is on its balanced growth path and faces an unanticipated
increase of the total factor productivity and consequently of the interest rate. Each in-
dividual has therefore to choose a new and lower level of consumption to be compatible
with the exogenous increase of its consumption growth rate. This additional saving in-
duces a strong increase in the capital growth rate that overshoots its new long-run value.
Then, generations who born after the shock benefit from an higher human wealth. This
relatively reduces their propensity to save and consequently reduces the capital growth
rate. This process continues for a long time while it decreases in magnitude. Conversely,
if individuals life-span was unbounded, the oversaving from individuals contemporaneous

to the shock would no be possible since it would last forever.

13



In this paper, we have theoretically studied the intertemporal equilibrium path of an
overlapping-generations model with finitely-lived individuals and constant returns to ca-
pital. We have shown that its existence lies on the initial wealth distribution and that its
dynamics to a balanced growth path is governed by exponentially decreasing oscillations.
Economies with neoclassical production functions shall exhibit the same properties. Their
dynamics are however characterized by a non linear MFDE which limit the theoretical

analysis to local dynamics.

Our model suggests that both past and expected values of aggregate variables influence

their dynamics. It shall be interesting to test this double dependence on GDP time series.

14



Proof of lemma 3. In this proof, it is shown that Theorem 6.10 p. 204 in Bellman and

Cooke [5] applies for MFDE (19). Differentiating three times (19) yields :

d*k (t) d?k (t) 9 dk (t) aA
pre W—&A (2+a)7—(1—a)Ak(t—1)e

+[2(1—a) + (@A)?] Ak (t) — (1 — a) Ak (t + 1) e Al (27)

A(l1+2a)

Equation (A1) may hence be re-written such that :

dk(t —1
[aook (t) + Cll()/"u' (t — 1) + an%—i—
Pk (t—1 Bk(t—1
rap DU ERUZD) ke —2)| =0 (A2)

dt? dt3

where the computation of constants a;; is left to the reader. Finally, equation (A1) writes :

3N k@ (t—w) =0 (A3)

where w; = i. Equation (A1) hence writes as equation 6.10.1 p. 197 in Bellman and Cooke.

Therefore, theorem 6.10 applies and the general solution of equation (19) is :
k(t) = 6, (t) e (A4)

where g, is a root of the characteristic equation @ obtained by replacing k (¢) by " in

equation (19) and where §, (t) € C[t] is the residue of'? :

e Q(s)"'p(s) (A5)

at the characteristic root s = g,, with :

Qs) = (ZZ) (A6)

and :

12gee Cartan [12].

15
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Q@' (g) > 0), d,, (t) € C. Then, equation (20) follows. Remark that since g, are conjugate,
that £ (t) € R

Proof of lemma 4. Differentiating twice (18) yields :

dk? (t) dk (t) dk (t) a(t—1,0)ex4
= AV A |22y
a2 A=g Ted | Ty — RO t
1 _ a (fo faA (z— t)dz>
+

t

t+1
—1-a)A (/ k(z) e_aA(z_t)dz> A8 (29)

t
Hence, replacing (20) and rearranging yields :

a(t—1,0) = tZénef(“A*g”)t (92 — (1 + ) Agn + aA®) A9 (30)

t+1 t
+(1-a)A 25” (t/ e (@A=gn)z g, _ /0 e(aAgn)zdz>
- ¢

A change of variable yields (22).

16
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In lemma 4, it is shown that a (s,0),s € [—1,0] must satisfy (22). Let g; be a complex
root, of the characteristic equation (21) and let g; be its conjugate. Assume that the initial

distribution of wealth writes :

a(s,0) = e (@A—g1)(s+1) [(s +1) ((91)2 - (1+a) Ag + aAQ)
1 0 1
+(1-a)A ((s +1) / e~(eA=a)zg, / e_(aA_gl)zdz)
0 |

—1-s

e @AIEH) [(5 11) ((51)° — (1 + ) Ay + aA?)
1 0 b
(o)A <(s+ [t [ e_(aA_gl)zdz)
0 J

—1—s

With (22) deduce that their corresponding residues are equal to 1, while all others are

equal to zero. With (20) conclude that the solution & (t) writes :
k (t) = et 4 edit

which is not positive for all ¢ > 0.

Proof of lemma 6.

1) Real roots. Observe that @' (g) > 0, that lim,, . @ (g9) = —oo and that @ (ed) = 1.

Since @ is continuous, conclude that a unique g < a4 such that @ (g) = 0 exists.

2) No complex roots with real part equal to g, except g itself. As a preliminary, define

P (g) such that :
0 s+1
Plg)=g9g-A+(1-0) A/ (/ e<9—°“‘)’~’dz) ds (A10)
-1 s
and observe that P (g) = Q (g9) (¢ — aA). Now proceed by contradiction. Suppose it exists

a complex root with real part g denoted g+ iq that satisfies P (g + ig) = 0. This writes :

0 s+1
§—A+(1—-0q) A/ (/ 7247 ¢os (g2) dz) ds = 0A11 (31)

-1

0 s+1
g+ (1-0) A/ (/ eI~z gin (¢2) dz) ds = 0A12 (32)

-1

Equation (A11) rewrites :

0 s+1
A=g+(1-a) A/ (/ 9722 cos (g2) dz) ds (A13)

-1
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0 s+1
A<|gl+ (1 -« A/ (/ e-24)z| cos (gz) |dz> ds (A14)

-1

If |cos (qz) | < 1 for some z € [—1,1], then

0 s+1
A<|gl+(1—-a) A/ (/ e(gaA)zdz) ds (A15)

-1

which is not possible, since [g| + (1 — a) A f£)1 (f:“ e@"m)zdz) ds=A
If cos (gz) =1 for all z € [—1,1]; it implies that ¢ = 0.

3) and 4) Ezistence of complex roots with real parts > g and < g. The roots of large
modulus can be localized using the geometrical method proposed by Bellman and Cooke
[5] p. 410. Their method is based on the distribution diagram. Compute equation (21) to

obtain :
1-—a)A ed A — 2 4 erAg

Q(g)zl“'m 1- (d—g) (A16)

Define Q (g) = (a4 — g)® €?Q (g) such that :

Q (9) = (¢A — g)3 efd+(1-a)A [(aA - g)2 ed — 2974 L 9e9 — e"‘A} (A17)

Hence Q () is expressed as 32 5°%_ g'e’9. Then, plot the points z;; with coordinates
1=0 7=0 J

(ej)‘, /\i) such that :

Asymptotic roots are those of the convex envelop of the diagram. Here, the distribution
diagram is composed of two segments L; and L, whose slopes are respectively positive

and negative. To L; and Ly correspond two locus Vi and V3, which belong to C and

18
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(1 — o) Ae** = 0, which asymptotically have a negative real part. The zeros of L, are

—aA

those of function : g®¢™9 — (1 — ) Ae = 0, which asymptotically have a positive real

part.
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