T TE

m

l:l'-i
i
i:'
=
i

Prépublications du Département de Mathématiques

Université de La Rochelle
Avenue Michel Crépeau
17042 La Rochelle Cedex 1
http://www.univ-Ir.fr/labo/lmca

Existence and asymptotic behavior for a
convection problem

Khaled M. Furati, Nasser-eddine Tatar et Mokhtar Kirane
Avril 2004

Classification 76D03, 7T6E06, 35B40.

Mots clés: Asymptotic behavior, exponential decay, global existence,
Henry-Gronwall-Bihari type inequality, nonstationary convection problem,
semi-group theory.

2004/07



Existence and Asymptotic Behavior for a Convection Problem

Khaled M. FURATTI and Nasser-eddine TATAR
King Fahd University of Petroleum and Minerals, Dept. Math. Sci.,
Dhahran, 31261, Saudi Arabia
E-mails: kmfurati@Qkfupm.edu.sa, tatarn@kfupm.edu.sa ,

and

Mokhtar KIRANE Labotatoire de Mathématiques, Pole Sciences,
Université de La Rochelle,
Av. Michel Crépeau, 17042 La Rochelle, Cedex, France
E-mail: mokhtar.kirane@Quniv-Ir.fr

Abstract

We prove global existence and exponential decay of solutions for a system
which arise in thermal convection flow. For sufficiently small initial data, these
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1 Introduction

We consider the following initial value problem which appears in thermal convection
flow
o+ (wWVv=~Av—-19g+h—-—Vm, 2€Q, t>0,
{ Vu=0,2e€Q, t>0,
T+ (V)T =A1, 2€Q, t>0,
v(z,t) =0, 7(x,t) =&(z,t), x €T, t >0,
v(z,0) = vo(x), 7(x,0) = 710(x), x € Q,

where € is a bounded region in RV (N > 2) with smooth boundary I' and
v = (vi(x,1),...,vN(x,t)) denotes the velocity field of the fluid,
m =m(z,t) is the pressure,
T = 7(z,t) is the temperature,
h = (h'(z,t),...,h" (z,t)) represents the external force,
vo = (v§(x), ..., v (x)) is the initial velocity,
To = To(x) is the initial temperature,
& = &(x,t) is the boundary temperature and
g= (9" (x),...,g"(x)) is the gravitational vector.

This model is derived in [2] and [9]. In [8], Hishida studied this problem after
reducing it to an abstract Cauchy problem of the form

B 4 Ay =F(v,0), t>0, v(0) =g
{ % + B0 = G(v,0), t >0, 6(0) =6 @)
with
{ F(v,0) = —=P,(v.V)v — Py,
G(v,0) = —(v.V)v — (v.V)¢.

Here P, is the projection from L?(Q)" onto L£(Q) = the completion of C§5(Q) =

{p € CL(N, V.o =0} in LP(Q)Y, 1 < p < oo via the Helmholz decomposition

LP(Q)N = L2(Q) & Gp(Q) with G,(Q2) = {Vm, 7 € W'P(Q)} (see [3]). The spaces

WhHr(Q), 1 < p < oo, | > 0 are the usual Sobolev spaces with W?(Q) = L?(Q).
The function ¢ = ¢(z,t) is solution of

0p=A0A¢, 1€, t>0,
¢(x,t) = &(x,1), v €L, >0,
¢(,0) = do(z), © € Q
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where ¢g = ¢o(x) is defined by

{ Agy =0, in Q
¢o(z) = &(x,0), on T.

The operators B, and A, are defined as follows:
B, = —A with domain D(B,) = W*%(Q) N W,**(Q)

and

A, = —P,A with domain D(A4,) = D(B,)" n L2(9).
—B, and —A, generate then bounded analytic semigroups {exp(—tB,;), t > 0} on
L7(Q2) and {exp(—tA,), t > 0} on L2(Q) respectively. See [7,16] and [4,5]. The
fractional powers Bg and A7 are defined in the usual way. We will occasionally drop
the subscripts p and ¢ in the sequel.

Existence, uniqueness (see Theorem 1 below) and regularity results have been
established in [8| for sufficiently small initial data. The local existence result is quite
general. However, to prove global existence and exponential decay of solutions, the
author was forced to assume that

Vel = O(e™*) with w > 0.

In this paper we would like to improve these results. Namely, we will enlarge the
set, of functions ¢ to all functions ¢ such that

V||, =0 ) with w > 0.
Observe that for w = 0, this will extend the result in [8] to functions ¢ satisfying
IVl = O(e ") with w > 0.

This was not possible in [8] because of the nature of the argument used there. We
will also discuss the case of functions ¢ satisfying ||V¢|| ., = O(t¥), w > 0 and give
an upper bound for w assuring our goals. The key tool in our proof is the inequality
in Lemma 1 below.

Furthermore, we will establish existence and decay results of solutions to prob-
lem (1) for not necessarily small data. It will be proved that solutions exist for
arbitrarily large initial data, however, the existence is not global. Solutions are
extended to some "maximal” finite interval on which they decay exponentially. In
fact, the length of the interval on which we have existence and exponential decay
is found to be "inverse proportional” to the size of the initial data. The proofs rely
on a generalized Gronwall inequality (Lemma 2 below) as well as the inequality in
Lemma 1. They are in fact based on a desingularization argument which can be
found in [11-14]. we end this work by showing that if | V¢|| = O((t + 1)) for
some w > 0 (without any other condition on w), then we have a polynomial decay
of the same type but with an arbitrary large power.



The plan of the paper is as follows: In the next section we prepare some material
needed in the sequel. Then, we present the existence (local and global) and asymp-
totic behavior results of Hishida [8]. In Section 3, we discuss how to improve these
last results by appropriately modifying Hishida’s arguments. Section 4 is devoted
to the analysis of solutions with arbitrarily large initial data.

2 Preliminaries

Below we collect some results from [8| concerning, in particular, local and global ex-
istence as well as an exponential decay result for solutions of this problem. Moreover,
we present some lemmas which will be useful to prove our results. For convenience,
we shall keep the same notation as in [8].

Lemma 1. If yu, v, 7> 0 and z > 0, then

z

2 / (2 — ) 1en e "8dE < K (v, 1, 7)
0

where K (v, pu,T) is a positive constant.
See [15] or [11] for the proof.

Lemma 2. Let a(t), b(t), K(t), ¥(t) be nonnegative, continuous functions on the
interval I = (0,T) (0<T <o), ®:(0,00) — R be a continuous, nonnegative and
nondecreasing function, ®(0) = 0, ®(u) > 0 for u > 0 and let A(t) = maxo<s<t a(s),
B(t) = maxo<s<; b(s). Assume that

Y(t) < a(t) + b(t) /OtK(s)q)(v,b(s))ds, tel
Then .
Py <w! [W(A(t)) + B(t)/0 K(s)ds} , t€(0,T1),

where W (v) :/ %,
vo o

that W (A(t)) + B(t) /tK(s)ds € DWW 1) for all t € (0,T7).

v > vy >0, WL is the inverse of W and T} > 0 is such

See [1] for the proof.

Our problem (1) will be studied via the associated system of integral equations

t
v(t) = e oy +/ e~ =94 (v, 0)(s)ds,
pi (2)
0(t) = etBaf, +/ e =B G(v, 0)(s)ds.
0

That is, we will consider weak solutions of (1). Then it is possible to show that
these solutions are strong (see Theorems 3 and 4 in [8]).
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Lemma 3. Let 1 < p,q < oo.
(i) Assume

0<6<1/2+N(1-1/p)/2, §+2u> N/2p+1/2
d+u>1/2 and p > 0.

Then
|‘A76P(U.V)pr < Cy ||Af]|, | A*w]|, for v,w € D(Ap),

with some positive constant C, = C1(9, p).
(i1) Assume

{ 0<d<1/2+ N1 —1/q)/2, 64+v+D>N/2p+1/2,
6+0>1/2, v>N(1/p—1/q)/2 and v, > 0.

Then

|B 0] < Calavell, B, for v e D), 6 € DB,

with some positive constant Cy = Cy(8, v, D).

(i1i) Let i > 0 satisfy
N/q—24 < N/p.

Then ) )
IPogll, < Cs | B, ligl.. for 0 € D(BE),

with some positive constant Cy = Cs(f1).
(iv) Let v > 0 satisfy N/p — 2v < N/q. Then
1(w.V)¢ll, < CullA%0]|, Vol for v e D(AY),
with some positive constant Cy = Cy(v).

See Lemma 3.3 in [8].
Let A; denote the least eigenvalue of the Laplace operator with zero Dirichlet
boundary condition.

Lemma 4. For each A\; € (0,A1), @ >0 and § > 0, we have
HAae_tAva < Cypt e [v]l, forve LE()

and X
HB'Be’tBHHP < Cppt Pe ™t 0[], for 6 € LI(2)

with some positive constants Cy, x, and CA’g,)\l.



Theorem 1. Assume that g € C(Q)N and V¢ € Lip([0,T]; C(Q)N) for every T > 0.
Let p and q satisfy

max{N/3,1} <p<oo, 1 <g<ooand |1/p—1/q| < 2/N.

If {vo, 00} € D(A}) x D(B]) with
{N/2p—1/2]" <y<1,0<9<1
{ andv—&—%(;—%) € (—1,1],

then the following assertions hold:

—

—~

(a) there exists a positive constant T, depending on HAgUOHp and HBZOOH(] such

that problem (1), (2) has a unique mild solution {v, 0} on [0,T.] in C ([0, T.); D(A}) x D(BY)),
(b) suppose moreover that ||Vé(t)|, = O(e™), w > 0 as t — oo, then for a
fized X € (0,A1), there exists a positive constant € = (A, N, p, q,7,%,w) such that if
¥ wt
3], + B8], + sup e 1T < =,
then the solution {v,0} exists globally in time and satisfies for each {a, B }€ [y,1) X

[%,1)
14500l < Ola, Nt=2e 2 ([|4700]|, + [ B30, )

1Bl < C8, N7 Pe ([|Azw|, + [ B 60|, )
for 0 < t < 0o with some positive constants C (o, ) and C(8, \).

For the proof of this result see [8, Theorems 1 and 2]. The local existence proof

A

relies on the choice of y,v € (y,1 —6) and fi,2 € (4,1 — 0) such that
14+7>6+2u 147>04+v+0, v<l4+y—7%

where § = 0 (vesp. 6 = 0) if v € (0,1) (resp. 4 € (0,1)) and § > 0 (resp. 6 > 0) is

arbitrary small if v = 0 (resp. 4 = 0). In fact it is divided into two parts:

Case (a): If ‘7—7— % (% - %)

Case (b): Ifq/—ﬁ/—%(l—l) =1, we take f =144 — 7.

p q

< 1, we choose i1 <1+4 —1.

In the sequel we shall make use of these constants. Their existence is taken for
granted from [8]. Finally, we will also make use of the following lemma

Lemma 5. If0<a <1 and T, u, o >0, then
t
/q(t —5) % ) (g5 + 1) Hds < L(a, 7, p, o) (ot +1)7*
0
where L(a, T, 1, 0) is a positive constant and q(t) = min{1, t}.

See Step 2 of Section 6 in [10].



3 Extensions of Theorem 1

In this section we state and prove some theorems which extend the results in Theo-
rem 1 to functions ¢ whose gradients are not necessarily exponentially decaying to
zero in the L*®-norm. We obtain similar results for functions whose gradients are
polynomially decaying to zero (in the L*°-norm), uniformly bounded or even with
a polynomial growth (up to a certain order). Let A € (0,A;). By C we will denote
a generic positive constant which may change from line to line. Let us define the
range of w as follows:

Case (a): 1 - f<w< L
Case (b): 1+7v—F—v<w<1l4+vy—ur.
Theorem 2. Assume that the hypotheses of Theorem 1 hold. Then, for a sufficiently

close to 1 and 8 € (7, 1), we have global existence and exponential decay of solutions
(away from zero) for any ¢ such that

Vo)l = O™),
where w > 0 s in the ranges mentioned above.

Proof. To prove global existence it is sufficient to establish a priori estimates for
the solution. It is well known that uniform boundedness of solutions (or simply

boundedness by a continuous function) allows us to extend them for all ¢ > 0.

Let A; be any value between A and A;, for instance \; = ’\+TA1 Using the integral

equations (2) associated to the differential equations in (1) and Lemma 4, we obtain
lAmo(@)ll, < € {t-eMe N | ary],
+ /Ot e~ M=9)(t — 5)7a=? ||A“v(s)||; ds (3)
+ 1191l / Nt - e | Big(s ), ds}
0
for a € (7,1 — 6) and some C > 0. We also have
|5l < ¢ {r=et | B,
# [ LA, B ds )

t
+t5—’7/0 e~ M(t=s) (t — S)_’B ||AVU(5)||p ||V¢(S)||ood8}

for 8 € (4,1 — 4). The relations (3) and (4) will be our reference inequalities in the
sequel. Our proof will be divided into two parts.



Case (a) p<1+95—7:

This case corresponds to case (a) in the proof of the local existence part in [8].
To fix ideas suppose that 1 — 3 < w < 1. We can pick o such that ¥ < o < min(z, 5)
and 0 — % (< 1/2) so small that

1—B+(0c—%) <w. (5)

Since 1 +4 — o < 1, choose 4,0 and « such that 1 +4 — 0 < a (observe that this
might be a condition on « if one cannot find 4 and o such that the inequality holds
for all @ € (v, 1)). Then select x such that v < k < @ and kK —y (< 1/2) is so small
that

1+4—0c+(k—7)<aandw+ (k—7) < 1. (6)

Clearly, from (5) and the fact that x > 7, we have
l+y—B—k+(0—%) < w. (7)
Next, multiplying (3) by t*~7e* we obtain
e |Av(t)]], < CeA—M)t
X {||A7vo||p + 7B, (t)? /Ot Q=3 (¢ 5)mam0207K) g g (8

£
+[lgllo, 57 E(t) / eM Vs (¢ — s)asﬁ"ds} ,
0
for t > a > 0. We set,

Eo(t) == Eou(t) = sup s" e ||A%(s)]],, 9)

0<s<t

~—

and

Es(t) := Ep4(t) :== sup s7 e HBﬁO(s)H .

0<s<t 7
Sincel—a—§>0,1+2(y—k)>0and 1+4 — o > 0, then clearly from (6), (8)
and the definitions (9) and (10), we can write

(10)

Ea(t) < C{l147v0l, + Bu(t)* + Balt)} (11)
for t > a > 0. Similarly, multiplying (4) by t°~7e* we get
et B0, < e
t

X {HBMOHq‘f‘taﬁEu(t)E,;(t) /0 (=28 (1 _ g)-B-Sgr+imn—o g

t
HOVE, (1) / eM NI (¢ — §) BT ||V (s) | ds} :
0

(12)

fort>a>0.Aso0—9<1/2and k —y<1/2, wehave 1 — (k —y) — (6 — ) > 0.
Using the assumption on ¢ and (7), we entail from (12) that

A

Bst) < C { |B6]|, + E.(6) Es(t) + kooE,,(t)} (13)

9



where ko, = SUDp<;co 1| VA(1)]] - Let

E(t) := max {Eu(t), B,(t), Eat), Eﬁ(t)} . (14)

Note that as « is close to 1, we may consider p,v < «. Also from the choices
14+v2> 6+v+0and i < 144 — (already adopted in the local existence proof in
[8]) we may consider 7, i < § (or else take smaller parameters © and ). Therefore,
by the embedding properties of D(A®) and D(B?), it appears from (11) and (13)
that

E(t)<C {||A7vo||p +]|B6|, + E2(t) + kooE(t)} (15)

forallt > a > 0.

If || A7 v Bwoﬂq and k, are sufficiently small, then we infer from (15) that

p’ H
B(t) < C (147wl + | B00] )

for all t > a > 0. By virtue of the definitions (9), (10) and (14) we see from (15)
that

lAu(t)]l, < Ot D (|| AT ], + || B8, )
|B2o@)]|, < Ct-e e (A, + || B,

A

for every {a, 8} € (7,1 —=0) X (7,1 —96) witha > 1+ 5 — 0.
Case (b): i=1+4%—7:

Here we pick Eg(t) := Eqo(t) and Eg(t) := Ep 4(t) (see definitions (9) and (10)).
Multiplying (3) and (4) by t*~7e and t#~7e* respectively and proceeding as in the
proof of part (a), we get

M (D], < Ot

t
x {||Avvo||p+1,LC“—"YE,L(¢)2 / eM =23 (¢ — )70 201 g
0
t
+ 119/l o0 t*7 7 Ea(t) / e(*l‘”S(t—s)—“sﬁ—ﬂds},
0

and
t=7eM || BPO(1)]| < CePAut
t

X {HB"YOOH(I + tﬂ—‘rEy(t)Ef,(t)/ B T e D

0
¢
+kootBA’E,,(t)/ e (¢ — 3)_’357_”_‘”ds}
0

with the new definitions of E,(t), E,(t), Ex(t) and Ej(t). Clearly from the assump-
tions on the exponents we have 1 +2(y —u) = (1+~v -0 —2u) + (y +6) > 0,
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1+9—p>4+6>0andl14+v+4—v—0=(1+7—0—-v—0)+7+6>0.1If
we assume that

0<1l+y—-F—rv<w<l+y—y,
then we obtain global existence and exponential decay of solutions. O

If w = 0, then, according to the last proof, it is possible to choose x such that (6)
is valid and 1 — 8 < k — 7 provided that 3 is close enough to 1. Therefore, Theorem
1 and Theorem 2 may be extended to 0 < w < 1 provided that a and § are close
enough to 1.

Corollary 1. If in addition to the hypotheses of Theorem 2, B is sufficiently close
to 1, then the results in Theorem 1 and Theorem 2 may be extended to w = 0.

From the previous proof it can also be seen that we may even consider functions
¢ such that
Vo)l = O@"), 720

with sufficiently small 7. Therefore, we may state the following corollary

Corollary 2. Assume the same hypotheses as in Theorem 1. Then, the results of
Theorem 2 hold for all ¢ satisfying ||Vo(t)||, = O(t") with sufficiently small 7.

4 Large initial data

In this section we treat the case of arbitrarily large initial data (not necessarily
small as was assumed in [8] and in Section 3). To this end we use an argument
combining Lemma 1 and Lemma 2. The latter lemma is sometimes referred to as
the Henry-Gronwall-Bihari type inequality.

Theorem 3. Let the hypotheses of Theorem 1 hold with |[Vo(t)|,, = Ot ") as

t — oo for some positive constant w to be determined. Assume further that y—y <
1/2r, p—4 < 1/r and v+ 0 — v —4 < 1/r where r is such that - + = =1 and

241
7,.* — é' 7 5 S 17
2’ 6 > ]'7
1 (a+0) 1 (8+4) : :
ol s Then the mild solution of (1), (3)
exists on some time interval [a,T], T > 0 on which, for each {a, B}€ [v,1) x [¥,1)

with £ = min{y, 2z}, y = z

lasu(ll, < Comoe= (Al + | B} ).
|B%6(1)], < Co-2e (4wl +||B760 ] ).

Proof. Let A\ = ’\Eﬁ Applying the operators A%, y < a <1—46and B, 4 < <
1 — ¢ to both sides of

(v, 0)(t) = /0 =14 (4 0)(s)ds

11



and
(v, 0)(t) = /O e==Ba G (v, 0) (s)ds

and taking the LP and L9 norms respectively, we obtain using Lemma 3 and Lemma
4

t
[4°0(0,0)()], < Casan Cs [ € M9t = )2 |au(s)]2ds
0
t
+Can,Gllll, [ et 5) | Bro(s)], ds
0

= a+6,)\10111 + Ca,)\1c3 ”g”oo I2

and
|B2¥(v,0) ()],

t I ~
e /0 e — 5) 05 || avu(s) |, || BO(s)]| ds

t
4 Cr [ M= 92 406, V6] ds
0 ~ ~
== B+3,)\10213+C/3,)\104I.
Therefore, from (2) we have

A% (8)]], < Cacqr 87~ A0l + Cassr Cili + Cax,Cs llgllo L2 (16)

I

and
[B?O®)||, < Cp-snt’ Pe ™| BT6o| + Cy 55, Cols + Cpa Cal. - (17)

Here, we set

Eqo(t) = t* e || A% (1) (18)

)
and R
Eg(t) ="M || BP6(1) |- (19)

Let us estimate [;, ©: = 1, 2, 3, 4 separately.
(a) Assume that o+ < 1/2 and S+ 6 < 1/2.
Estimate of I :
Clearly by the definition of E,(t) (see (18)) we can write
I, = eNt / t(t ) @) v O B2 () g
0

and by the Cauchy-Schwarz inequality

t
Il S e*/\1t (/ (t . 8)2(a+6)84(7u)62()\12,\)5d8>
0

( /O t Eﬁ(s)ds) : . (20)

At this stage two cases have to be discussed.

12



(i) If Ay —2X <0 and pp — v < 1/4, then Lemma 1 and (20) imply that

1
1 t 2
I < e*x\ltht*(OH—J) (/ Eﬁ(s)dS)

0

where K1 = K(1 —2(a+6),1 + 2(k; + 2y — 2p1),2X — A1). The abbreviation is for
space convenience.

(ii)) f Ay —2XA > 0 and g — v < 1/4, then

t 3 t
I < emMite(ri=22)t </0 (t— 3)2(“+5)s4(7“)ds) (/0 Eﬁ(s)ds)

2

L t
e 2t (t172(a+6)+4(77u))2 (/0 Eﬁ(s)ds) ,

where the constant B; = B(1 —2(a+9),1+4(y— p)) and B is the well known beta
function.

(M

[ VI

<B

Estimate of I, :

According to the definition of I and (19), we see that
t ~ ~ A
I, = e_’\lt/ (t — 5)7 sV RN B (5)ds.
0

As A\ — A >0, if o — 4 < 1/2, we have by virtue of the Cauchy-Schwarz inequality
and the definition of the beta function

¢ 3 t
I, < e Mtea—At (/0 (t — s)_z"‘sZ(R’_mds) (/0 Eﬁ(s)ds)

1 t 2
< eB3 (1- 20,14 2(§ = ) (#72H2070) ( /0 Eﬁ(s)dS)

t
< Bje™ (p-2+26-m) ) ( / Eg(s)ds)
0

o=

Estimate of I :

In account of the definitions (18) and (19) we may write
t = ~ ~ A
I; = e)‘lt/ (t — 5) P00V PM=2Ns B (5) B, (5)ds.
0

(i) f Ay —2A <0and 1 +2(y+ 4 —v —2) > 0, then we may apply Lemma 1

13



to get

I <e™MK:(1-2(8+0), 142y +9—v—5),2A = \)
. t 7
t=(5+) ( / Eg(s)Eg(s)ds>
0

) b >
e Mtp—(B+9) (/ Eg(s)Ef(s)ds)
0

(iv)If Ay —2A>0and 1 +2(y+ 49 —v — ©) > 0, then by the definition of the
beta function

1
¢ . t 3
Iy < e Mtea—22)t (/ (t — s)_2(5+‘s)52(7+&_”_’9)ds> (/ Ef(s)Ef(s)ds)
0 0

1

1 t 2

< Bje M (p-2eshrasi-vn)? ( / E%(S)Ef(s)ds) 2
0

WhereB3:B(1—2(6+3),1+2(7+f7—y—1?)).

Estimate of I, :

<K

L o=

N[ =

We have

¢
L= e [ (=) s B (5) Vo) . ds.
0
If w < 3 + 7 — v (note here that 8 < 1/2 since we assumed  + 6 < 1/2) then

t 3 t 3
I, < Ce Mtei—At (/ (t— s)_2ﬂ52(7_”_“’)ds) (/ E? (s)ds)
0 0

s 2
< Ce™MB3 (1 - 28,1+ 2(y —v)) (t1-26+20-v=w)2 ( / Ef(s)ds)

1 1 t
< CBIe™ (fi-2+20v-w) ( / Eg(s)ds)
0

From the above estimates and (16) and (17) we infer that

ol =S

1o et ||A"v(t)||p Sl Covna e (M=)t ||A7U0||p

1
t bl t bl
+ My Mtz —otr=2u (/ Eﬁ(s)ds) or Mye~(Ga=Nig=7=9 (/ Eﬁ(s)ds) o1
0 0 (21)
1,4 = b %
+Myt2 T (/0 Eﬁ(s)ds) ,
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according to the cases (i) or (ii), and

BT Mt HB,Bg(t)Hq < C’ﬂ,:y,,\le()‘”‘l)t HB@QOH(I
1

. t 3
+Mge~ P —Mtg=7-0 (/ Eg(s)Ef(s)ds)

0

. X R 2 22
lor Mye= Mz —dtr—v—r (/ Eg(s)Ef(s)ds) (22)
0

1
t 2
+ Myta—wtr—v=A (/ Ef(s)ds) :
0

according to the cases (iii) or (iv). Here M;, i = 1,2,3,4 are positive constants.
Therefore, if%-i—ﬁ/—ﬂ—vg 0, %—w-i-fy—u—ﬁ/go (which is true for all w > 0
ifl+y—4>v>1+7—-4.Hfv<i+y—Fthenitistrueforw>1+7—-4—v
and with the first condition on w we will have % +7—-F-rv<w< % +7v—v). By
definitions (18), (19), the relations (21) and (22) imply that

Ea(t) < C {||A7vo||p + (/Ot Eﬁ(s)ds>% + (/:Eﬁ(s)ds)%}
Bty < C {HBﬁ@qu*‘ (/OtE?,(s)EZ(S)dSy 4 (/Ot Ef(S)%)i}

for a positive constant C' and for all t > a > 0. Using the algebraic inequality

and

(a+b+c)? <3(a®+b*+c?) (23)
we can write

t t
E2(t) gc{||A7vo||f,+/ Eﬁ(s)ds+/ Eg(s)ds}
0 0

and
t t
E;(t) <C {||B?00||j +/0 Eg(s)Ef(s)ds—i—/O EZ(S)ds}
for all £ > a > 0. We set
F(t) = max { E5(t), B3 () EL (1), B, (1), B (1), E5 (1)} -

Then, by the embedding properties of D(A®) and D(B”) we see that

F(t)<H {||A7vo||12) + HB’700|‘2 +/O (F(s) + F(S)2)d8}

for all ¢t > a > 0 and some positive constant H which depends on the previous
constants and parameters.
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Applying Lemma 2 with w(c) = o + 02 we find
Pty <wH{w [H (|a7wll} + || B6|2) | + Ht} .

Here W (v) = / % = log <COUU?) with Cp = 2L and W~1(2) = 2. We

-1
v v
()_U+1e { v—f—le

where v = H (||A7vo||; + HB’700|‘2> . Thus F(t) is bounded on any interval [a, T for
all @ > 0 provided that

. vo
obtain

HT < log {1 + (H |A7woll, + H HB&QO”D_I} '

Observe that T is small when ||A7U0||;i + HBMOHE is large and vice-versa it is
large when the size of the initial data is small .

(b) Assume that a+6 > 1/2 and S+0 > 1/2. Let y = l_osi;r‘s) and z = %.
We use Holder inequality instead of the Cauchy-Schwarz inequality everywhere we
used this latter inequality in the proof of (a). Let us consider for instance the
estimate of I7, the first case (i). We have

t
Il S e—)qt (/ (t _ 8)T(OL+5)827‘(’7M)6T()\12)\)st>
0

1
*

t 7
2r*
X < /0 E; (s)ds)
1 L. ol
< K e Mtg—(ato) (/0 EY (s)ds) :

The last inequality is justified since, if r* = 2’2—“ then r = ﬁ—ﬂl Hence

2

26+1 1 >1_2y+1 1 Yy

— = > 0.
E+1y+1— y+1ly+1  (y+1)2

l—rla+d0)=1-

In addition, we need y—v < 1/2r. In the estimate of I5 we will need 1—7(5+4) > 0.
This also holds since

260 4+1 1 - 22+1 1 22
E4+1z2+17 z4+12+1  (2+1)2

The rest of the proof is similar to the proof of part (a). We will use the inequality
(a+b+c)” <37 Ha" +b" +c),

1—r(B+6)=1 > 0.

instead of (23).

(c) The cases a+6 > 1/2, B+ < 1/2and a +6 < 1/2, B+ 6 > 1/2 can be
treated in exactly the same manner. O
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Our next theorem will show that if ¢(¢) satisfies a slightly stronger condition,
that is ¢(t) is supposed to be in a bit smaller class than the one considered in the
previous theorem, namely

IVo(t)|,, =0 ((t+ 1)"") , as t — +00

then we get a polynomial decay rate of an arbitrary (positive) order for any value
of w>0.

Theorem 4. Let the hypotheses of Theorem 1 hold. Suppose that
Vo)l =0 ((t+1)™), ast— +oo

for some positive constant w > 0. Then the conclusion of Theorem 3 holds for any
o > 0 with

laou(@)ll, < O+ 1)~ (1Al + B )
1B, < O+ 177 ([4vly + B0 )

for allt > a > 0.

Proof. Let us define
Eqo(t) = (4 1)7 |[A%(@)]]

and
Es(t) = (t+1)7||B%0(t), -

We will proceed as in the proof of Theorem 3.
Estimate of I :

From the definition of I; (in proof of Theorem 3) we see that in case (a) we find
t
L < / (t —s) (@F) (s + 1)72067/\1(t78)EZ(8)d8.
0
Using the Cauchy-Schwarz inequality and Lemma 5 we infer
t 3 t 3
Il < (/ (t— 8)—2(a+5)e—2)\1(t—5)(8+ 1)—4od8> (/ Eﬁ(S)dS)
0 0
t 3
< LY22(a+6),2)1, 40, 1) (t + 1)7% (/ Eﬁ(s)ds) :
0
provided that 1 —2(a+d) > 0 and o > 0.

Estimate of I, :
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In a similar manner we obtain

t
b [(t=s) o(s+1) e NI E (s)ds
0

t 2
< Ly*(20,2M1,20,1) (t 4+ 1)~° (/ Eﬁ(s)ds) :

0
provided that 1 — 2a > 0 and ¢ > 0.

Estimate of I5:

Again following the steps in the estimate of I;, we find
I; < /Ot(t — s)_(ﬂ“LS) (s +1)"20e MO B (5)Ey(s)ds
1
< LY?(2(8 4 8), 2\, 40, 1) (t + 1)72° (/Ot Eg(s)Eg(s)ds> Ny
provided that 1 — 2(8+4) > 0 and ¢ > 0.
Estimate of I, :

Finally, we get as estimate for I

t
I [ (=84 170N [90(0) Bul)ds
0

~ t 2
< CLY@s 02w + o) (e + )7 ( [ Bohas)
0
provided that 1 — 28 > 0 and w4 o > 0.

Note that all the above estimates are justified by the assumptions in the hy-
potheses. Multiplying the relations (16) and (17) by (¢ + 1)? and using the above
new estimates for I;, 1 = 1,2, 3,4, we obtain

(t+1)7 A% ()|, < Cacy e Mt + 1)1 ILA”vollp
t 2
L7 Copsn,Cr(t+1)° ( / Ej(s)ds

0

t 2
+L%/20a,)\103 9l (/ Eﬁ(s)ds)
0

and
(t+1)7|BO(1)]|, < Cosae Mt +1)787 7 || BTG,
. b, 3
+Cpan Cult+ 177y [ B0 0)as)
N t 2
+Cp 0 Calt + 1)Ly ( / Ez(s)ds)
0

for all t > a > 0. The rest of the proof is similar to that of Theorem 3. O
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