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BLOW-UP AND STABILITY OF SEMILINEAR
PDE’S WITH GAMMA GENERATORS

José Alfredo Lépez-Mimbela Nicolas Privault

Abstract

We investigate finite-time blow-up and stability of semilinear partial differen-
tial equations of the form dw,; /0t = INwy +I/t"wi+’8, wo(z) = p(z) >0,z € Ry,
where I' is the generator of the standard gamma process and v > 0, o € R,
B > 0 are constants. We show that any initial value satisfying c;z=% < ¢(x),
x > xg for some positive constants xg,c1,a;, yields a non-global solution if
af <l+o,orifaf=1+0and g > 1. If p(z) < cox™%, x > 10, where
Zg,C2,a9 > 0, and azB8 > 1+ o, then the solution w; is global and satisfies
0 < wy(r) < Ct™%, £ > 0, for some constant C' > 0. This extends the results
previously obtained in the case of a-stable generators. Systems of semilinear
PDE’s with gamma generators are also considered.

Key words: Semilinear partial differential equations, Feynman-Kac representation, blow-
up of semilinear systems, gamma, processes.
Mathematics Subject Classification: 60H30, 356K57, 35B35, 60J57, 60E07, 60J75.

1 Introduction

Critical exponents for blowup of semilinear Cauchy problems of the prototype

ow
= Lu+u”, w=y, 1)

where L is a Lévy generator, 5 > 0 is constant and ¢ > 0, have been studied by
many authors during the last years. The case of d-dimensional Laplacian L = A has
been thoroughly investigated (see e.g. [7] and [4] for surveys), and has originated
many techniques that are now standard tools in the theory of semilinear problems.
When L is the fractional power A, = —(—A)®/2 of the Laplacian, 0 < a < 2, it was

shown in a series of papers [1, 8, 9, 12, 13] that the critical parameter for blow-up



of (1) is d. := «/f, meaning that if d < d. then (1) possesses no global nontrivial
solutions, and if d > d., then (1) admits a nontrivial global solution for all sufficiently
small initial values. The approaches developed in those works use subtle comparison
arguments [13], or probabilistic representations of solutions (in terms of branching
particle systems [8, 9], or by means of the Feynman-Kac formula [1, 12]). A feature
common to these methods is that they rely significantly on the symmetry and scaling
properties of stable distributions.

In this paper we investigate finite-time blow-up and existence of non-trivial
global solutions of the semilinear equation

B
% =T'w,+vt°w ™, wo(z) = ¢(z), TER,, (2)

where ¢ is a nonnegative function, v, o and [ are positive constants, and I" is the

pseudo-differential operator

o _
riw = [ () - f)
0
i.e. the generator of the standard gamma process. In the linear case, such equations
are of interest in reliability models based on the gamma process [16]. The symmetrized

generator

~ 00 e vl
Ff(z) = / (flz+y) = f(@)—dy

% vl

has symbol
log(1 +[€) = lim o '(1+ ) 1), €€R

and can be viewed as the weak limit of ™! ((1 — Ay/2)* —I) as « goes to 0. Similarly,
the one-sided stable process can be renormalized to converge in distribution to a
gamma process, cf. [3], [14]. Thus, another motivation for studying (2) is that it
constitutes a natural follow-up to the previous investigations, as it can be considered
in a sense as a “limiting case” o — 0, although, unlike in the a-stable case, the gamma
process enjoys no scaling or symmetry property, or dimensional-dependent behavior.
However, its density function is explicitly known and this allows us to follow closely
the approaches in [1] and [9] to make work the probabilistic representations of (2) for
our purposes.

Our solutions will be understood in the mild sense (see e.g. [11]), and there-
fore we can consider bounded, measurable initial values ¢ > 0. We will show as a

consequence of Corollary 4.2 and Theorem 5.1 that any initial value satisfying

™ < (), T > X,
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for some positive constants zg, 1, a1, yields a non-global solution of (2) if ;4 < 1+o0,

orif a;f =140 and 8 > 1. Similarly, if the initial value of (2) satisfies

a2

o(x) < cox™®, T > T,

where g, co, as are positive numbers and as3 > 1 + o, then the solution wu; is global
and satisfies 0 < uy(z) < Ct~*, x > 0, for some constant C' > 0. For the particular
case 0 = 0, if p(x) ~; 00 cx™® for some ¢ > 0 and a > 0, then blow-up of (2) occurs
if a3 < 1orif B =a"! > 1, and a global solution exists if a > 1. Hence, if 0 = 0
and for some € > 0

liminfz 5P p(z) > 0,

T—r00

then the solution of (2) blows-up, whereas if

lim sup z°+tPp(z) = 0,
2300
then the solution of (2) exists globally.
Note that without additional difficulty we may replace the operator I' in (2)
with the generator I'y given by

_)\y

I f(z) = / Tty - f@)dy,  weR,,

where ) is a strictly positive parameter. Indeed, for f € Dom(Iy) we have the relation
I\ f(z) = I' fx(Azx), where fy(z) = f(xz/A). This means that f, is solution of (2) if
and only if f is solution of (2) with I’y in place of I'.

In the case of systems of equations of the form

ou

a—tt = Dyuy + vu, 7702, Uy = 1,
ov

8_1: = Iy + Fi(u, vr), Vo = P2,

with A # u, the solution cannot be constructed directly from the case A = y = 1,
nevertheless the existence and blow-up criteria for solutions are independent of the
values of A\, x> 0. In this case we show that if ¢1(z) > cx™™ and @o(z) > cx™,
for z large enough, then blow-up occurs provided a,8; + asf2 < 1. We also study the

semilinear system

ou

—t :F,\lut+u1uf“vf”, Uy = @1,
ot

ov -

a—tt = Dy + vl v, Vo = o,



v, v > 0, with integer exponents 3;; > 1 and initial values satisfying ¢;(z) < cjz™*
and 9(x) < cox™® for = large enough, where aj,a; € (1,00). We show that this
system admits a global solution provided (a; A a2)[(B11 + B12) A (B11 + Bi2) — 1] > 1

and the constants ci,co > 0 are sufficiently small. In particular, the solution of the

system
8ut
— = ['uy + uv
ot t tU¢
a’Ut
— = vy + wvy,
ot t Ut

with ug(z) ~ cx™ and vy(x) ~ cx~® for x large enough, is global if min(ag,a;) > 1
and c is sufficiently small. We also show that blow-up occurs if min(ag,a;) < 1,
and deal under additional assumptions with critical cases with time-dependent non-
linearities.

Our methods of proof are inspired in the approaches developed in [1] and [9].
To prove explosion of semilinear equations we use the Feynman-Kac representation as
well as estimates of probability transition densities, analogously to the a-stable case
as treated in [1]. Existence of global solutions is deduced using a general criterion,
originally obtained in [9].

The paper is organized as follows. In Section 2 we recall some basic facts about
the gamma process and its infinitesimal generator, and obtain bounds for the gamma
semigroup that will be useful in the sequel. In Section 3 we recall the Feynman-Kac
representation of (2), and derive from this representation a criterion for blow-up of
semilinear PDE’s. Using a general argument deduced from [15], we show existence of
global solutions in Section 4. Blow-up of solutions of (2) is dealt with in Section 5,

and systems of semilinear PDE’s with gamma generators are considered in Section 6.

2 Estimates of the gamma semigroup

Let

denote the gamma function, and let (X )icr, denote the standard gamma process

with densities

fyt(x) = G(t) e*$1[0,oo)(x)’ VRS R’ t> Oa



and generator
6_y

If(z)= / Tty - Fa) < dy.

Let {T}, t > 0} denote the operator semigroup generated by I', which is given by
150 = Bl + 0] = | wlo+pu)da = [ pl@pue - s, @)
0 Y

y € R, . In the next lemma we prove asymptotic estimates for the semigroup {7}, t >
0}, using results of [2] on the median of the gamma density. Recall that for ¢ > 1, v,

is increasing on [0,¢ — 1] and decreasing on [t — 1, 00).

Lemma 2.1 Let ¢ : Ry — R, be bounded and measurable. Assume that there exist
c1 € [0,00), ¢y € (0,00], and a1 > ay > 0 such that for all x large enough,

car”® < p(z) < cpr™®. (4)
Then, for alln > 0 and 0 < & < 1 there exists ty = to(e,n) > 0 such that

1. For allt >ty and all y > 0,

1—-e\"a,, —a
(F5°) S t0m) < 7o) < i+, )

2. For allt >ty and any 0 <y <n+1/2,

C —a —a
(1- 5)21ja1t gt/ (¥) < Ty (Lmy3.209) () < (1 + )t (6)
3. Forallt >ty and any 0 <y <n <1,

NCL , 0y NC2 , gy
(1= &)t 2105 (y) < TP (1 g0)(y) < (1)t o 12 (1)

Ners V2



Proof. 'There exists xg > 0 such that for all 0 <y <t + 7,
Tiow) = [ e+ yuads
0

c1 /Oo(a: +y) " y(z)dz

Zo

v

v

¢l /Oo(x +t+n) " y(r)de
% /00(1 +(t+n)/2) " Yi_q, (x)dz

Zo

v

C1

Vv

cl% /t:l_l/s(l +(E+1)/2) "V w (v)de

G(t — al) *° t—+ n —a1

T\ ") {o_t+m y .

c1 G(t) /tall/g ( + f—a—1/3 Vi—ay (T)dx
G(t—a)(l—¢e) /oo

>

Z € G(t) o t

2! (1 — E)al —a1

> ——
- 2B-gm

v

Vi—a; (2)dx
—a1—1/3

for all sufficiently large ¢, provided (a; + 1/3)/t < € and n/t < . Here we used
the equivalence G(t — a)/G(t) ~ t~* as t — oo which follows from Stirling’s formula
G(t) ~ V2rt*"1/?et and the fact that the median of the gamma distribution with
parameter ¢ — a, is greater than ¢ —a; — 1/3, see Theorem 2 of [2]. Similarly we have

for all y > 0 and ¢ big enough:

T o(y) = /000 o(x + y)ve(x)dz
o [ty
< o /Ooo ™%y (z)dz

Gt —ay) [*
CQW\/(; Vi—ay (T)dx

co(l+e)t™ 2,

IN

IN

IN



which proves (4). Concerning (6) we have for 0 < y < n+t/2 and t sufficiently large:

2t 2t
/ o@ma—y)dr > o / Ty (@ — y)da
t t

-1/3 1/3

> / V(2 — y)dx
t-1/3

—n+3t/2
> ¢(2t)™™ / ~e(x)dx
t—1/3

1
> c(2t) 5—/ 3t/2%(x)dx>
—n+

> (1-) 2,

since fto_ol/S Y(z)dz > 1/2 and [~ st V(@) dT = P(X{>-n+%)—0ast—ocoby

the law of large numbers. Similarly we have for ¢ large enough:

2t 2t
/ o(@)n(z —y)dr < Cz/ ™2y (z — y)dx
t—1/3 t—1/3

2t
< ep(t—1/3)"* / Ye(x — y)dx
t

~1/3

IN

co(t —1/3)®
< (L+e)et™.

Concerning (7) we have, for 0 <y <n<1andt>2:
t t t
wt=1) [ oo [ elepule - pdo > u®) Anit-2) [ ele)ds
t=n t=n t=n
Since for any [ > 0,
(t-n"" ot (t=Ditet 12
G(t) V2rtt=12 \2x

it follows that for any 0 < ¢ < 1 and for all sufficiently large ¢,

Y(t—1) = t — oo,

—1/2 t t —-1/2 t
1+ s)tm [ o> / (@) (e — y)de > (1 - s)tm / | olads

It remains to note that

t t_a
| amtde= = @) e
- l1—a

for all @ > 0 as ¢ goes to infinity, and to use (4). O



Remark 2.1 Let {T}, t > 0} be the operator semigroup having generator I'x. From
the relation T} o(z) = [TF@a)(A\x) we get for t >ty and y > 0:

c(l—-e¢ A AN £\ "®
5 ( 3 ) (X) 1[0,t+77] (y) < T?\@(y) < 02(1 + 5) (X) ’

¢ AN AN
=05 (5)  Horn) < T Qcrpanl) < ci+2) (5)

-2 (£)  t0a) < T Qo)) < 1+ 22 (1)

Recall that for 0 < s < ¢t and z > 0, the conditional law of X} given X; = z is the
beta distribution with density

Busl2,2) = e )z;t_(af)x —2 ia(s)f;((?— s) (g)l (1 - E)t“’ z € [O,ZC]-)
8

Using the result of [10] on the median of the beta distribution we obtain the following

estimates.
Lemma 2.2 Let n > 0. We have
P0< Xl <s+nX] =2)>1/2 (9)
forall0<s<t/2,0<y<n 0<t—2n<t—m<z<t, and
P,(0< XF <25 +t/2|1X] =2) >1/2 (10)
forall0 <s<t/2,0<y<t/2and0<t/2 <z <2t
Proof. We have

PO<y+XI <s+nX; =z—y)

P,(0< XI < s+n|X] =)

> P0< X! <s|X =2—1y)
= / Bsu(z,x — y)dz
G(t s/(z—y) B ,
— G(S)G((t)_ s) /0 ZS 1(1 Z)t 1dZ
G(1) A ts—1
> S S
> G(S)G(t—s)/o 27 (1 —2) dz
s/t
= Bs(2,1)dz
0
> 1/2,



since from Theorem 1 of [10], the median m,; of the standard beta density fS,(-,1)
with mean s/t satisfies
0<m <S<m + 2
s,t n S,t (t _ 2)t7

provided s < t/2. Similarly we have

P,(0< X! <2s+1t/2|X; =) PO<y+ X, <2s+1t/2|X] =z —vy)

> 0<XF<25\X =zr—1y)
- / /Bst Z2, T —

_ G(t 28/(z y) Zs—l 2 t—s—1 P
= GEGH- )/ (=2
G(t) S/t s—1 t—s—1
> GEeis )/ U1 = 2)

> 1/2.

3 Feynman-Kac representation and subsolutions

Let (X;)icr, be a Lévy process in R, having generator L and operator semigroup
{Ti, t > 0}. We assume that the transition densities p;, ¢ > 0 of (X;)icr, satisfy
pe(z,y) = pe(y — x) for all z,y € Ry, and that py(z,y) = 0 if y < z. Recall (see e.g.
[5]) that the mild solution of

0wy

5 (y) = Lwi(y) + G(y)ws(y),  wo =, (11)

admits the Feynman-Kac representation

t
wi(y) =F [(p(y + Xy) exp/ Cs(y + Xs)ds] , t>0, y>0. (12)
0
If (; is positive (12) implies

w(y) > Ele(y+ X)) =Tie(y), yeRy, t>0.

Thus, the solution of

ow
a—tt:Lwt: UJO:SOZOa

is also a subsolution of (11) provided ¢{; > 0. By linearity this implies the following

lemma.

10



Lemma 3.1 Let ¢ > 0 be bounded and measurable. If u, vy respectively solve

W) = Lonly) + Ghus), o (9) = Donly) + Eyhoaly),

with ug > vy and ( > &, then uy > v;.

We will use the fact (which follows from Lemma 3.1) that if u; is a subsolution of

awt

E(y)
where v, 8 > 0, then any solution of

0
%(y) = Lu(y) + Vutﬁ (Y)ve(y), Vo = @,

= Lwy(y) + vw; P (y), Wy = @, (13)

remains a subsolution of (13). Notice that from the Feynman-Kac representation,
wi(y) = / oly+x)E [exp/ Ci—s(y + Xs) ds‘Xt —x} pe(z)dz

= / o(@)p(r—y [exp/ Cts(y—l—Xs)ds‘y—i-Xt:x] dz
y

= /Oogo z)p(z — y) y[exp/ Cos( ds‘Xt—x] dx
> /oogo x)p(z — y) exp (Ey [/ Ct,s(Xs)ds‘Xt = x]) dz, (14)
y 0

where on the last line we used Jensen’s inequality. Hence, when L = I'; (14) reads

wly) > /ymsom)%(x—y exp / / Busle =y = 4)Ge(e)dds ) o,

where 5, ,(z —y,z — y) is given by (8). We close this section with a lemma that will
be helpful in the proof of explosion, see §4 of [6] for the case L = A.

Lemma 3.2 Let 0 € R and v > 0. Assume that the solution u; of

%(y) = T'wy(y) + vi7u(Y)we(y),  wo =, (15)

satisfies

lim inf w(z) = oo,
t—o0 0<z<1

where v : ]R%r — R, s a measurable function such that utﬂ < for allt > 0. Then u,

blows-up in finite time, in the sense that there exists t > 0 such that

/Olut(:v) dx = o0

In particular, explosion in LP(R,)-norm occurs for all p € [1,00].

11



Proof.  Given to > 0, let uy = wyy4+ and K(tg) = info<y<i wyy(y). The mild solution

of (15) is given by

we) = [l Dot dy+v | L s ot to) s

Thus, for any £ € (0,1) and t < (1 —¢)B A1,

1
/ut(a:)dx
0
1 0o
> / / u(y — =)o (y)dyds + v
> //% — z)ug(y)dydx +v [ s°
0
K(to) / / Yo(x —y)dedy+v [ s [ ult( / Yi—s(x — y)dzdyds
0 0
to)/ / %(x)dmdy#-y/ SU/ in(y)/ Ye—s(x)dzdyds
1+6
)/ / Gl dxdy—i- / / / Gt dxdyds
o) sy — Y g
4tG)/ / / )’Y(t—s)ys
> )/ ydy + / / TPyt Pdyds
0
(to) / / 148 (1) (1=5)8
>
> 1+5 dyds,

where we used the inequalities 0 <t—s <t < (1—¢)fand 0 <tG(t) <1,0<t<1.

o0

Vs ( 1+ﬂ (y)dydzds

wc\

Yees(y — 2)ul P (y)dydzds

4
/

v

\c\M\

v

v

to

v

Holder’s inequality yields

148

([on) " 5 ([ soms) ()

1
= ¢’ / uy P (y)y =V dy,
0

hence letting 4(t) = fol uy(z)dz we get

u(t) > _Klt)_ + V—gﬂ/ s7u P (s)ds, t<(1—¢e)BAL.
0

—4(1+p) 4
It remains to choose ¢y such that the blow-up time of the equation
. K(ty) veP /t 11p
u(t) = +— [ s%a s)ds, t<(l1—¢)B N1,
is smaller than (1 — )8 A 1. O

12



Choosing v; = uf in Lemma 3.2 yields immediately:

Corollary 3.1 Let 0 € R and v > 0. If the solution u; of

8’U)t

—, () =Twn(y) + viCw P (y),  we =,

satisfies

lim inf w(z) = oo,
t—o0 0<z<1

then u; blows-up in finite time, in the sense that there exists t > 0 such that

/01 u(z) dr = oo.

4 Existence of global solutions

We have the following non-explosion result, obtained originally by Nagasawa and Sirao

[9] for integer § > 1.

Theorem 4.1 Let 0 € R and f,v > 0. Assume that

o b
| T |2, dr < —
| il ar <

for some b > 0. Then the equation

0
% = I'wy 4 vt®w, wp = @, (16)

admits a global solution u(x) which satisfies
b} p(x)
1/8
(6= vB fy rolTr olbodr)

Proof.  This is an adaptation of the proof of Theorem 3 in [15] to our context of

0 S ’U,t(SE) <

, reRy, t>0.

time-dependent non-linearities. Recall that the mild solution of (16) is given by

t
() = T () + v / ro T W8 (z) dr. (17)
0

Defining
-1/

¢
B(t) = (b — BV/ 7"”||Trr<p||fodr> , t>0,
0

13



we have B(0) = b~'/# and

d

t -1-1/8
B0 =Tl (b= v [T eldr) = IR B )
0

hence :
B(t) = b /P 4 1// r"||TTFg0||goBl+ﬂ(r) dr.
0

Let (¢,z) — v(z) be a continuous function such that v;(-) € Co(Ry), t > 0, and
TF () <w(z) <V VPBUT p(z), 20, 2 €Ry.
Let now :
RO)( ) = Tola) +v [ 17TE ol @),
0

We have
t
RW)(ta) < Tro(a)+vb/8 / P BB () TL (T () P dr
0

t
< Tlo(@) + vb /8 / P BB ()T T () | T |2, dr
0

t
= 001ipt) (5 o [ BTl )
0
hence
T () < R(v)(t,2) <V/PB)T} p(z),  ¢t>0, z €Ry.
Let
ud(z) =T} o(x), and u?™(z) = R")(t,z), n€EN.
Then ul(z) < uj(z), t > 0, z € Ry. Since T} is non-negative, using induction we
obtain
0 < ul(z) < ul(z), n > 0.
Letting n — oo yields, for t > 0 and x € R, ,
b0} o(x)
/8
(0= w8 Jy rolTr o ldr)

0 < uy(z) = lim u'(z) < BYPB)TF p(z) <

n—00 -

Consequently, u; is a global solution of (17) due to the monotone convergence theorem.

g

As a consequence, an existence result can be obtained under an integrability condition

on .

14



Corollary 4.1 Let 1 < g < oo, 0 > —1 and v > 0. If p € LI(R,) is non-negative
and B > 2q(1 + o), then the solution u, of

ow
= Iw, + l/t"wiw, wy = @,

ot

s global and satisfies, for some c > 0,
0 < uy(x) < et/ z €Ry,

for all t large enough.

Proof. From Hoélder’s inequality and (3) we have

T o)l < llellgllvells,  1/p=1-1/g,

where

0 ,p(t—1) 1/p
Il = ( d)
0

G(t)r
_ G =)+ e eyt N
= pt_lG(t) (/0 G(p(t _ 1) T 1)6 d$>

G(p(t—1)+1)¥r
pt—l—l—l/pG(t)
~ (p(t — 1) + 1) DRI/ (QW)71/2+1/(210)
pt—1+1/pgt—1/2
1o (L= 1/t +1/(p0) (p(t = 1) + 1) /Pl
(t—1+1/p)p'/»
1/2 (pt—1)+ 1)1/(2p) ( 7T)—l/(2q)

(t—1+1/p)p'/»

~ T V/24109)p1/20) ()1 (20

(2m) —1/(29)

~ (27rt)_1/(2q)p_1/(2p),
as t — oo. Hence for some £y > 0 and ¢ > 0,

o0 to [e’s}
| eIl < ol [ edtclel [l < oo
0 0

to

provided 8 > 2¢(1 + o), and the conclusion follows from Theorem 4.1. O

Under a polynomial growth assumption on ¢ we get the following more precise result

as another corollary of Theorem 4.1.

15



Corollary 4.2 Let 0 € R and assume that there exist ¢ > 0, a > 0 and xq > 0 such
that

a

o(x) < czx™?, x > .
If a8 > 1+ o then the solution u; of

ow
—t:Fwt—H/t"thﬂ, Wy = @

ot

15 global, and there exists C > 0 such that
0 < u(z) < Ct™°, z eRy,

for all t large enough.

Proof. Apply Theorem 4.1 and (5) of Lemma 2.1. O

5 Blow-up of solutions

In this section we obtain a partial converse to Corollary 4.2.

Theorem 5.1 Assume that ¢ > 0 satisfies p(x) > cx™® for all x large enough, where
a,c>0. Let v>0, >0 and af <14 o. Then the equation

ow
= Iw, + l/t"wiw, wy = @,

ot

blows up in finite time. In the critical case af = 1+ o, a # 0, finite-time blow-up

occurs under the additional assumption > 1, i.e. a <1+ 0.

This result is a consequence of the lemmas 3.1 and 3.2 above, and of the lemmas 5.1

and 5.2 below.

Lemma 5.1 Assume that ¢ > 0 is such that o(x) > cx™® for all z large enough,
where a,c > 0. Letv >0, >0 and af <1+ 0. Let g; be the solution of

awt

i W) = Tw(y) + vt (T o) (Ywily),  wo=¢. (18)

Then

lim inf T) = oo.
t—)ooOSwSlgt( )

16



Proof. Let 0 < n < 1. The Feynman-Kac representation and (5) yield, for 0 < y <
n—+1t/2,t> 6ty (where t; is defined in Lemma 2.1), and some ¢ > 0:

9:(y) = /yoo p(x) 1z —y)Ey [eXp (z/ /Ot(t - s)”(iI}FScp(Xf))ﬁds> ‘Xf = x} dx

00 t/2
> / o(z)vi(z —y)Ey, |exp (COI// Lioge—s) (X3 ) (t — s)"“ﬁds) ‘XF = x] dx
Y

to

>dx

2t t/2
> / o(@)ve(z — y) exp (cm// (t =5 Py 0 < Xy <n+t—s|X] =x)ds
t—1/3 to
2t t/6
> / o(x)y(x — y) exp C()Z// (t—5)""P,(0 < X! < 25 +1/2|X] = x)ds | dv
t-1/3 to

to

ColV t/6 5
> 011[0,n+t/2](y)t_“exp 7/ (t_s)a—a ds 7

where we used (6) and (10) to obtain the last inequality. Hence

v 18
9t(y) > Loyt (y)ert™ exp 7/ (t—s)""*ds (19)

to

—a ColV a 5¢ 1+o—ap
= lpge/z(y)ert “ exp (m ((t— to)' o — <E> ,

and it suffices that aff < 1+ o in order to get infocy<1 g:(y) = 00 as t — oo. O

Notice that the criteria for blow-up of Lemma 5.1 can easily be adapted to other

time-dependent non-linearities. We now turn to the critical case af =1+ o.

Lemma 5.2 Let 0 > —1, v > 0, and assume that ¢ > 0 is such that p(x) >

cx— /B for all z large enough, where B > 1. Then the solution hy of the equation

ow
8—;(?1) = Twy(y) + vt°wi(y)g; (v), wy = ¢,

where g; solves (18), satisfies limy_,« info<z<1 hy(z) = 00.

Proof. Let 0 < n < 1. Since af = 1+ o, with a > 0, we see from (19) that there
exists to > 0 such that for all ¢ > 3t,,

g1(y) > et Lo pre/n(y)- (20)
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Jensen’s inequality, (7) and (9) yield, for ¢ > ¢y and 0 < y < n,

hi(y) = /yoo e(@)n(r —y)Ey [eXp (V /t(t - 8)”95_5(X5)d8) ‘Xr = w] da

0

o0 t
> / p(z) (T — y) exp (V/ E, [(t —5)7g0 (XD)|XT = x} ds) dx
0
t/3
2 / p(x)y(z —y) exp CV/ (t—s5)"P,(0 < Xy <n+(t—s)/2|X; =z)ds
to
t/3
> / o(x)y(x — y) exp cu/ (t—35)"P,(0 < X} <n+s|X; =7)ds | dzx
to
t/3
> / x)v(z — y) exp et (t—s)7 s | dz
2 Ji,
ot o—a+1
= t—(l+0’)/,3—1/2 v t—1 o—a+1l _ [ =% )
C3 exp 0 +o—a) ( 0) 3
Hence the conclusion holds provided ¢ —a+1 > 0, i.e. 8> 1. O

6 Systems of semilinear equations

First we consider the following system of semilinear equations

0
aqit _ F)\lut'i‘l/luﬂn P12
(21)
ov
_att F,\21)t+l/2uﬂ21 522’

where uy = @1 and vy = @9 are nonnegative bounded measurable functions, vy, v, > 0,
and 3;; € {1,2,...}, 4,5 = 1,2. The solution of this system can be expressed in terms
of a continuous-time, two-type branching process evolving in the following way. The
particles of type i = 1,2 live independent exponential lifetimes of mean 1/1;. During
its lifetime a type-i particle develops an independent Markov motion of generator
I'y, and, at the end of its life, it branches, leaving behind £;; individuals of type 1
and f; individuals of type 2 that appear where the parent particle died, and evolve
independently under the same rules. The state space of such branching process is the

space N;(S) of finite counting measures on S := Ry x {1, 2}, where a measure

B= Z Oz;,1) + Z Ow; 2)
i=1

=1

18



represents a population consisting of n individuals of type 1 at positions 1, ..., Ty,
and m individuals of type 2 at positions y, . .., ymn. Let X! be the random element of
N;(S) representing the population configuration at time ¢ > 0, starting from a given

p € N¢(S). For any bounded measurable f : S — [0, 00) we define

w(p) =B, [ [ f2)|,  neNi(S), t=0,
z€supp(X})
where E, denotes expectation with respect to P(-|Xo = p), and S; = 14 f(f N, ds+
Vo fot N; 2 ds, where N, ; is the number of particles of type ¢ in the population at time
s. Choosing f so that f(-,7) = ¢; for i = 1,2, one can show [8] that the solution of
(21) is given by u; = wy(-,1) and vy = wy(+,2), where for shortness of notation we

write wy(x,4) when p = d(;;). We now prove the following theorem.

Theorem 6.1 Let the initial values 1, o of (21) be bounded measurable functions
such that 0 < p1(z) < 1z and 0 < po(z) < coz™® for x large enough and some
constants cy,cy > 0, where aj,as € (1,00). If (a1 Aag)[(B11+ i) A (Br1+ Pi2) —1] > 1

and ¢y, co are sufficiently small, then the solution of (21) is global.

Proof.  Without loss of generality we assume that f(z,1) := ¢;(z) < ¢;(z7% A1) for
allz > 0 and i =1,2. Let k = k(t) denote the number of branchings occurring in the
interval [0, ], and let w{® (1) = E, [est HzESupp(Xg) f(2); k=k|, p€Ni(S), k€N

Therefore,

wi(w) =Y w W),  peN;(S), t=0.
k=0

Writing fyt)“' for the transition densities of the gamma process of parameter \;, i = 1, 2,

and defining
7th(,’13,7;) = / f(y,z)%/\l(y - iC) dya (CC,Z) € Sa t Z 07
R

we see that, for = > 71" | §z,1) + D 5o Oy;.2)s

w” (n) = (H m f (i, 1)) (_H mf(ym))
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w1 = 1{#0}:»12 [ [pr=a sy o us2) a

X Hﬂ-swt s xla Hﬂ-swt s yh» ds

l;éz

+ 1{m#0}ll2z/ / Z—yj 7Tt sf(Z 1))ﬂ21( t—Sf(Z7 2)),322 dz

X H’]Tswt s xla Hﬂ-swt s yha

h#J
n t Br1+p12—1
< v [mef o) [[mef(om2) / (sup st(Z)) ds
1=1 h=1 0 \z€S
n m t Ba1+B22—1
+ VQmHﬂtf(xl,l)Hmf(yh,Q)/ (sugwsf(z)) ds,
1=1 h=1 0 \z€

where we used ||f||oc < 1 and Wswt(g)s(z,i) =mf(z,4), (2,1) € S, t > 0. Hence,

) [(B11+B12)A(B21+P22)]—1

W) < (n V) (n+ myu® () / ds,

0
u= 25(“’1) + Zd(yj,g), t > 0.
i=1 j=1

By induction on k one can prove that for ¢ > 0, = Y71 §g;1) + D5 O(y,,2) and
k>1,

t B.—1 k
w () < k.H”+m+Z(ﬁ*—1)) ( / (supmf(@) ds) wl” (), (22)

z€eS

(st

Z€ES

where v = 11 Vg, B = (Bi1+Fi2) A(Bar+Pe2) and * = (B11+Fi2) V (Bor+ Paz) -
Setting Xo = 1 = d(,,5 in (22) yields

wy(z,1) < mf(z,1) <1+ka ) t>0, (23)

) = %iju +i(B = 1)) (,, /Ot (i‘é? st(z))ﬂ*_l ds)k

Taking M > 0 large enough we obtain from Remark 2.1 that

Bx—1 00 k
vE(t) < (B*l/ (/OM (iLelg st(z)> ds + Const. /M ((e1 v 02)3_“1/\“2)’8*_1 ds)) .

If ¢1, co are so small that vy (t) < 1 uniformly in ¢ for all &, then the solution of (21)
is global. O

where

20



Next, consider the nonlinear system of equations:

ou
8—tt = Dyug + vt®u, PP

ov
a—tt = Iy + Fi(ug, vt),

Uy = 1, Vg = Pa, A, i, v > 0, where F} is a positive and measurable function.

(24)

Proposition 6.1 Assume that ¢1(x) > cx™ and ps(x) > cx™* for x large enough,
with a1,ay > 0. Then (24) blows-up if a101 + asfe < 1+ 0, and also if a1, + asfy =
1+ o under the additional assumption 51 > 1.

Proof. From Lemma 3.1 and Lemma 2.1 we have T} s(y) > cop®t™10,4(y), and
v (y) > (T ea(y)™ > 21725 1 1 (y).
We conclude by an application of Theorem 5.1 and Lemma 3.1. O

In the remaining part of this section we obtain conditions for explosion in finite time

of the system

ou
a—tt = [uy + t7 uyvy
(25)
ov
a—tt = F’Ut + (1 \% t)U2UtUt,

with Uy = Y1, Vg = P2, and 01,09 € R.

Lemma 6.1 Assume that oo > o, and that for some initial conditions o1 < @9, the
solution u; of (25) satisfies

0321 uy(r) = 00

as t — oo. Then u; blows-up in finite time, in the sense that there exists t > 0 such

that .
/ u(z)dz = oc.
0

Proof. By linearity, u; — v; is solution of

8 o1 02
5 (= v) = D = v0) + u(t7 = (LV 1)), (26)

with ug — vg = 1 — 2 < 0, hence from the integral form of (26):

(ur — ve)(x) = T, (ug — vo) + /0 (57 = (LV 5)™) T} (usvs) (z)ds,

we have u; — vy < 0, t > 0. It remains to apply Lemma 3.2 to the equation

ou v
=) = Tui(y) + 7w (y)uy),
with 8 =1, v =1, and to use the inequality v; > u;. O
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The above explosion criterion also implies blow-up in all L? norms, p € [1, 0], and is

used in the next proposition.

Proposition 6.2 Assume that oo > 01 and p1(x) > cx™™, po(x) > cx™, for x large
enough. Then (25) blows-up if min(a1,as) < 1+o01. In the critical case min(ay, ag) =

1+ 01, blow-up occurs if max(ay, as) < 1+ o5.

Proof. 1t suffices to prove blow-up for any pair of functions ¢y, @9 such that ¢;(x) =
cx™™ and @o(x) = cx™ for x large enough. Moreover, without loss of generality we
may assume that a; > as and ¢; < 9. From (5) of Lemma 2.1, there exists to > 0
such that for all t > t; and y € R,

u(y) > T ¢1(y) > et o pin (¥)

and
v(y) = T} @a(y) > ct™ g 40 (y)-
The Feynman-Kac formula, (6) and (10) yield, for 0 <y <n+t/2 and t > 2V 1y,

t

wt) = [ oyt =0, [ [ o (xbas|xt = o) do

(%) t/6
> / e1(2)n(z — y)Ey |exp (C / (t—s) =" g e ( Xy )d8> ‘Xtr = l‘] dx
Y to

> [ Y @iz —)

~1/3

to

t/6
X exp (c/ (t—s)" """ P,0< X, ,<n+t—s|X/ = x)ds) dx

2
2 / e1(@)n(z —y)
t—1/3
t/6
X exp c/ (t—s)"2tP,(0 < X[, <2s+1t/2|X] =z)ds | dz
to
2 G
> / e1(z)y(z —y)exp | 5 / (t —s) 2*1ds | dx
t—1/3 2 /i
>

1 [t/
cot ™™ exp —/ (t — s)~t91ds
2 to
c AN
> oyt ™ t—ty)rm 2t [ = .
e (1 (9

Hence, with n = 1, we infer blow-up from Lemma 6.1 if a; < 1 + o;. Turning to the

critical case, if a; = 1 4+ 0y the above estimate yields u:(y) > coljoy4¢/9(y)t™*, and
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from (9) and (7) we have, for all 0 <y <,

wt) = [ eaeule— 08, [exw [ (XDas|X] =]

o

> /tt p2(x)1e(z — y)

-n

¢
X exp (02/ (t—s) TP, (0 < X} <n+(t—s)/2|X] = x)ds) dx
¢

0

AV,

[ extanite =)

0

t t/3
- 02/ ea(a) dat P exp 2 / (t — 5) 1 *ods
t—n 2 to
ey [H3
2 Cgt_az—l/ZeXp _/ (t_S)—al—i—azdS '
2 )i,

t/3
X exp (Cg/ (t—s)""t2P, (0 < X} <n+s|X] = x)ds) dx
t,

Hence, Lemma 6.1 implies blow-up provided a; < 1 + 05. 0
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