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Abstract

We are interested in the type, the position and the move of singularities formed by
solutions of a singulary perturbed differential equation eu’ = ®(z, u, a, €) with respect
to the parameter a. We show in the case of a Riccati equation that the overstability
values are logarithmic singularities of the multivalued function « Indicatrice des pdles
»: which for each value of the parameter associates the poles of a specific solution
called « distinguished solution ». This means that after surrounding an overstability
value, the poles move exchanging their positions.



1 Introduction and general results

Let € be a positive infinitesimal number and D C C be a simply connected domain.
We consider a Riccati equation of the form

eu' = ¢?*(z,6) —u® + ea =: B(z,u,a,¢) (1)

where ¢ is a standard analytic function in a simply connected domain Q C C?, and
a is a complex parameter. We assume that for each z € D, (z,0) € Q.

For a fixed value gy (= 0) and ¢ small, the vector field associated to (1) is structured
by two limited analytic curves (where the vector field is limited) called slow curves
and defined by ®(z,ug(2), ag,0) = 0 (ug(2) := +¢(z,0)).

We suppose that the function

£) = 52y o(), 0, 0) ©)

has a unique zero zy, which is simple. We denote

P = [ f)is ®)
20
and we consider the landscape associated the slow curve ug
R(z) = R(F(2)). (4)

The landscape (4) is composed with two mountains and two valleys. We have the
following results ([3], [4])

e To each mountain corresponds a unique solution, called « distinguished solution »,
which remains close to the corresponding slow curve up to infinity, on the moun-
tain and the two valleys.

e The distinguished solution has a line of poles infinitely close to the Stokes lines
(the boarding lines of the domain where the solution exists).

In his preprint [4], J.L. Callot introduced a multivalued function, called « Indicatrice
des poles »I(a) which, to each value of the parameter a, associates the locus of the
poles of the distinguished solution. He observed also that there exist some values
of the parameter, « the overstability values », for which the distinguished solution
remains close to the slow curve on the second mountain too. He conjectured that these
values correspond to logarithmic singularities of I(a). In our work, for convenience
I(a) will be the image by F/e, see (3) and (12) of these singularities.



arg(z)=31/4
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Figure 1: Curves lines of the landscape associated to eu’ = 22 — ea — u?. the bullets
indicate the poles close to the Stokes lines.

In the case of the equation
eu' =22 —eca—u? (5)

it is well known that the overstability values are the odd positive integers. Hence our
purpose in this article is to prove the conjecture of J.L Callot for equation (5).

2 Setting and notations

Our main tool is a transasymptotic analysis based on the recent work of O. Costin
and R. Costin developed in [9] and [7]. By the elementary change of variables,

1 1-a
2 -1
= — d = (2 - —
x z°/e and y(z) = (22)" u(z) + 5 P
equation (5) can be brought to the normalized form ([costl], [cost2])
f_ o a ,  3—4da+a?
V=Y Y T e (6)



2.1 Formal solution and summability
Theorem 1  a) Equation (6) admits a unique formal solution jy € z *C[[z']].
b) The formal solution Gy is Borel summable.

¢) Given an open sector of the complex x-plane, of opening less than m, there exists
an analytic solution of (6) which is asymptotic to o in that sector. This solution
18 not unique.

2.2 Transseries solutions

Proposition 2 a) There exists a unique transseries which is a formal solution of
(6) in the form

Ze ke g ks 5 (x) € (C[[ef‘”:vf%,:v*l“ (7)

k>0

where the Sy are formal series

Furthermore

b) For all C € C the formal series

ZC"“ k3 5(z) € C [[e“‘x’%,aﬁ_lﬂ (8)

k>0
is a formal solution of (6).

¢) For each formal solution of (6) of the form

Ze *25(z) € Clle®z 2,27

£>0
there exists C' € C such that
Vk e N z, = C*5,

Note 3 A formal solution (8) is called transseries solution of (6).



In [7], O. Costin introduced a generalized Borel sum of transseries denoted by LB
which extends the classical Borel sum. He established a one-to-one correspondence
between analytic solutions and generalized Borel sums of transseries. In [9] the au-
thors study the position and the type of singularities formed by solutions when an
irregular singular point (the infinity) of the equation is approached along an antistokes
direction. The analysis of the singularities yields two-scale asymptotic expansions of

o0

solutions. The expansions have the form y ~ F(z,&(z)) = Zx’ij(ﬁ(aj)), where
=0

£(x) = Ce "2~ % and the functions F), satisfy a recursive system of differential equa-
tions whose solutions are expressible by quadratures.
We can summarize the results proved in [9] in the following.

e The expansion above is valid in a region which includes the directions along
which y — 0 and extends into regions where y is singular, as near as O (e~°"stl)
of these singularities.

e The singularities of y are grouped in regular arrays and are related to the
singularities of Fj in the following sense :
If & is an isolated singularity of Fy and if C' # 0 then y(z) is singular at a
distance at most o(1) of x,, € £71(&,) and

T = 2nmi — glog(eri)-i-log(C) —log(&,) + o(1) (9)

Remark 4 Note that in the case of equation (6), Fy(§) =
pole at & = —1.

which has a unique

&
E+1°

3 Main results and proofs

3.1 The poles of a distinguished solution

We denote by u,(z) := —z, one of the two slow curves. We consider the mountain
containing the positive real axis and denote by u* the distinguished solution associated
to it. It is well known that, for each value of @ % 2n + 1, n € N, the solution u*

3
has two lines of poles which occur infinitely close to the lines arg(z) = +I7r and
3T
arg(z) = —Z . 5
These two lines correspond in the new variable z to the lines arg(z) = ; and
(z) = —5
arg(z) = ——.
& 2

Consequently, if y* denotes the transseries solution of (6) corresponding to u*, then



y* may have poles infinitely close to the lines arg(z) = O et arg(z) = ~T This

means that the transseries solution y* is such that C' = 0 in the first quadrant, and
.. .. T o .

the solution is analytic in the sector {z : -5 < arg(z) < 7} of opening 37.

In vertue of Theorem 4 ([7]), when arg(z) varies in this sector, the transseries solution
y* changes only through the constant C, and that change occurs when the Stokes line
(R*) is crossed. Thus for y* the constant C is given by

’—%S for =0
0 for 0<o¢<2m

%S for o¢o=2m

C(¢) = S (10)
+S for 2r< o< 57”
=S for —5<¢<0
\
where S is the Stokes constant of (6).
The poles of y* near the antistokes line iR* are then given by
Tn = 2nmi — glog(Qnm') + log(S) —log(—1) + o(1) (11)

where o(1) is a function which tends to 0 as n tends to oco.

Definition 5 LetV be a small enough sectorial neighberhood of +i0c. The « Indicatrice
des poles» s the function

I: C —PV)
a +— I(a) = {Iny(a), Ing1(a), ...} (12)

which, to each value of a , associates the poles I,,(a) := x,, which are in V.

Theorem 6 The odd positive integers are logarithmic singularities of the function
« Indicatrice des poles ».

Remark 7 1. The multiple values of I(a) can be seen as the different values of
one function obtained by analytic continuation.

2. As the parameter a surrounds an odd positive integer, some given pole, say
Tn(a), moves to another pole : z,(ae*™) = x,,1(a).



3.2 Proofs
3.2.1 Proof of theorem 6

It is clear that the dependance of the poles on @ is tightly linked with the dependance
of the possible poles and zeroes of S on a. An explicit calculation of S, or a study of
S as a function of a is then necessary to prove theorem 6.

Proposition 8 The constante S is given by

st) = UL Y 13

2

Theorem 6 is a consequence of the proposition above. Using (11) taking into account
the proposition, the branches of the multivalued function « Indicatrice des poles »are
given by

I,(a) = 2nmi — glog(an') + log(S) —log(—1) + o(1).

The dominant term in I,(a) is an analytic function of a which admits the zeroes of
S as logarithmic branch points. The zeroes of S are the simple poles of I'(+5%) which
are the odd positive integers. 0

Proof of proposition 8

By the change of variables

()_U’+1+1—a (14)
IO =5 T ot T g

equation (6) can be brought to
V" = (#* — a)v (15)
It is proven in [11] that equation (15) has a unique solution vq = vy(¢, a) such that
e v is an entire function of (¢, a)

e 7y admits an asymptotic representation
a=1 —t? 1
vo(t,a) ~ £°7 e [1+0(t z)}

uniformly on each compact set in the a-space as = tends to infinity in any closed
subsector of the open sector

3
Lo = {t € G |arg(t)] < T}



e The functions v, given by
vg(t,a) = vo(e *2t, e *7q)

are solutions of (15) for each & € {0, 1,2, 3}.
Furthermore for each £ € {0,1,2,3}, the functions vy and vy, are linearly
independent (compare their asymptotics as ¢ — oo, arg(t) = kim). Therefore,
vk is a linear combination of vg; and v 9.

e For £ = 0 we have
Vo = C()(G)Ul —+ é()(a)UQ (16)
with

Cola) = —e~ 70+

L5a im(adl) - (17)
Cola) = P

The calculation of the constant S is done by comparing two expressions of the varia-
tion of y*. First, using the results above, one obtain an asymptotic representation of
the variation of y*, precisely

_Gola) v
C()(CL) Vg

vary® ~
On other hand, the variation of y* is linked to the Stokes constant by the following
statement :

Lemma 9 The variation of y* verifies

var (y*(z)) ~ S(a)e %z ~%?

We have Lo 11
* UO —a 2
= — — here z = —t
v =g et m Ve
hence
, 1 v(=t) 1 1-a ,
* 2iT 0 : 2im 2
= — — = — —t
y* (xe®™) 20=1) vo(—1) tot a Since ze (—1)
But as

Vo (—t) = V9 (t)
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we get
, Lop(t) 1 1-—a
* 2wy . — Y2 -
Ve = Sm T2
Using (16) one obtains
(S -|
. 2
vary'@) = 2E@U | v w |
2t C(a) v2 14 C(a) v1
C(a) v2
Since vy .
V2 a — ~3/2
= —t+O(t
@)~ 2 LHoET)
v(t), a+1 3
t— Ot/
V1 2t + ( )
and .
a a 2 1 - a a
Ul( ) ~ (_1)12 em%lt—aet _( 1)5_(16'”%1.%_56_'%
va (1)
we get
var y*(x) _C~'(a) U
C(a) v2

In vertue of (17),

hence

Proof of lemma 9

Let x be such that 0 < arg(z) < m/2. Then in vertue of (10)

y*(z) = LB(Jo(z))
and

y* (227 = Sk (a)ekmz k2 LB, (2)).

Because
,CB(gk(l')) ~ gk(.f) Vk and gjl,o =1

(18)
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we obtain

y*(@e®™) —y*(z) ~ S(a)e Tz (19)

Comparing (18) and (19) one obtains

3.2.2 Sketch of proof of theorem 1

For a) we first rewrite equation (6) in the form :

3 —4a+ a?

:1 2—1_! 2
y=(1+a/2x) YAyt s

We denote by F := x7'C[[z~!]] and define an operator F

F . E—F
y— F(y)

such that
3—4da+a?

Fly)e) = 1 +a/22) " |=y' + "+ —

We endow E by the distance d : (y1, 1) — 0 if y; = yo and e~?%®~%2) if not. We
prove that (E, D) is complete and F is a contraction.
For b) a complete proof in a more general setting is given in [5] and also in [2].

Item c¢) is a result of classical asymptotic and follows from the proof of Theorem 12.1
of [12].

3.2.3 Sketch of proof of proposition 2

k=00
By a formal substitution of y = Z yre ™ in equation (6) we obtain
k=0
, _ 3—da+a? a 5
Yo = W—yo—%%‘i‘yo
Y1 = o + 2yt
x

a _
Y, = (k= 1y, — 5 Uk + 2y5  yk + Pr(Yo, y1, - - - yk—1) for k > 2
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where P (vo, y1,.--yk—1) is polynomial on y;,¥s,...ykx_1 whose coefficients are in
Cl[z™", yo]] and satisfy
Py (40, Cy1, C?ya, - .. C* 1) = C*P(y0, 1, - - Yo 1) (20)

In order to find the equations satisfied by §;, we replace in the system above y; by
z7%/25, and we obtain exactly the same system. Hence the statement a) can be
proved by studying the equations for each k. b) is a consequence of (20) and c)
results from @) and b).
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