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Abstract In this paper, we prove an existence result for a degenerated
nonlinear elliptic equation posed in the upper half-space of R?. A logarithmic
weighted Sobolev space is used as a framework to describe the behaviour of
functions at infinity.
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1. INTRODUCTION

In this work, we deal with the elliptic degenerated problem posed in
R% as follows:

( 0,(g(0r)) + 3,(8y0) = 0 in RZ,
Oyp(w,0) = VM #(x) on | =3, 3],

d,¢(x,0) =0 on R\]—12,1

2720

[ (020, 0y0) — (0,0) as /22 +y? — +o0.

where, for any real number ¢, g(t) = — 2 (ue — t)*]? + L, (by t*
we mean the positive part of t), v and u,, are positive constants, M, is
in ]0, 1] and close to 1 and z belongs to W, (] — L i) with0 <z <1,
This boundary value problem corresponds to the degenerated ellip-
tic model for the Euler equations of a transonic steady state two-
dimensional irrotational compressible flow around a thin profile. The
considered flow is supposed to be uniform at infinity with speed (1, 0)
and symmetric with respect to the axis (o0, x). Thus the study is taken
in the higher half-space. We recall that the Euler equations consist of

the conservation law of mass and the Bernouilli law for the velocity.
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They can be written into the following second-order nonlinear elliptic-
parabolic and hyperbolic equation for the velocity potential ® defined
on the exterior of the profile by:

div(p(|V®[*)V®) =0
where p is the fluid density. This density is defined by:

1

y—1

-1
p(VOP) = |14+ 1o—=MZ(1 - VaP)

where M, is the Mach number at infinity and 7 is the ratio of the
specific heats (y = 1.4 for the air). For some general mathematical
modelizations, the reader can consult Pogu and al. [16].

The flow around the profile is considered as a perturbation of the one
at infinity. After the decomposition V& = (1,0) + V¢ where V is the
perturbation of V&, we get the small disturbance model:

( 0:(f (0zp)) + ay(ay‘P) =0 in Ria

ang(ZE,O) =0 on R\] - %a%[a

[ (G20, 0y0) — (0,0) as /22 +y? — +o0.

with f(¢) = =2 (uer — t)? + 2 w2, and u,, is the critical speed.

The systems (P) and (P;) are equivalent if d,¢ < u,, i.e. when the
problem remains elliptic or parabolic.

Since forty years, many numerical and mathematical works have been
done for the study of the exact equations of transonic flows of per-
fect compressible fluids. ;From theoretical point of view, there are
not complete results to ensure the existence and uniqueness of solu-
tions. Currently, only methods based on conjectures are performed
(8,9, 12, 13, 15]. But from numerical point of view, many simulations
are realized, the results obtained are in accordance with the experi-
mentation (see for example [6, 10, 11]).

We know an existence result for the problem (P) when the domain is
reduced to the bounded rectangle Q =] — R, R[]0, R,[ with R, R, > 1
(see [1, 2]). In that case, the associated minimization problem provided
a coercive functional with respect to the Wh'(Q)NL?(—R, R; W'2(]0, R,]))-
norm. This coerciveness is obtained under the condition of thin profile

9 /My,

v+1 u?

(1) R, >
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and according to the Poincaré-Wirtinger’s inequality. When the do-
main is unbounded, the arguments which can be used in the bounded
case break down because of the lack of compactness. To overcome
this difficulty, it is necessary to introduce a weighted Sobolev space as
a variational setting of the problem (P), extending that used in the
bounded case and taking into account the compactnesses properties.
Our aim here is to prove the existence and the uniqueness of the solu-
tion to Problem (P). For this purpose, we formulate it as a minimiza-
tion of an associated total energy in an appropriate reflexive space.
We show that the ”energy” functional is coercive on the set of subsonic
flows and that this associated solution is unique. But globally, the
functional is not coercive. The difficulty of the problem is related to
the lack of this property. Introducing perturbed problems of the total
energy, existence of a unique couple (g(u.),v,) for the dual problem
with respect to the given perturbations, is proved. Next, by means of a
minimizing sequence, existence of a function ¢ defining the solution of
the problem is established. Notice that this function is linked to (u., vy)
by 0,9 = u, +v and 0,¢ = v, where v is a nonnegative bounded mea-
sure. As a consequence, the solution ¢ is not unique unless v vanishes.
The paper is organized as follows. First, we present the notations and
the functional spaces needed in the sequel. Therefore, we reduce the
problem to the minimization of a suitable ”energy” functional F'. After
the study of the functional settings, we give the properties of the func-
tional F', in particular its coerciveness property. Using the concept of
perturbed problems, (see for example Ekeland and al. [7]), we establish
a duality approach and prove the existence of a weak solution. At last,
we give some comments about the uniqueness.

2. NOTATIONS

Let Q be an open set of R?. For any measurable positive function o, we

define the weighted p-norm (1 < p < 00) [|€|lp.0,0 = ([, o(z, v)|E(z,y) [P dz dy)
and denote by LP(€),0) the space of all measurable functions £ such
that ||€]|p.0,0 is finite. We consider the basic weights

/0((95,/)3/) = V2> + 97, w(p) = ma p'(x) = p(z,0) = |z| and ' =
De/;in.e the weighted spaces

(2) HQ) = (L*Q)NLQ) x L*(Q),

(3) V(Quw) = {f € L*(Q,wH) N L} Q,w),VE e ]HI(Q)} ,

(4) WY (Quw) = {€€L*(Q,w?),VEe (L*(Q)°}.

=
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Endowed respectively with their natural norms,

(2 Dllmey = lplloos + [pll301 + llgll20.1,
||§||V(Q,w) = [€ll2,0w? + I€lls,0ws + ||V§||H(Q),
I€llwrzwy = [l€ll2,owe + (V201

H(Q), V(Q,w) and W%(Q,w) are Banach spaces. Denote by |.|v (o)
and | . |y12(qy) the semi-norms:

Elvew = [IVEIue,
|f|W1a2(Q,w) = ||Vf||2,9,1-

We abbreviate V() = V(Q,1) and W2(Q2) = W2?(Q,1). Denote by
Vo(Q,w) and Wy (9, w) the closure of D(Q) in V (, w) and W(Q, w)
respectively. Let R2 = {(z,y) € R?;y > 0} be the upper half-space of
R2 and {(z,0); z € R} = R its boundary. It is known that W2?(R, w')
is the trace space of W'?(R%,w) (see Amrouche and al. [4]). It is
defined by

+o0
WH2(R, W) = {u € L*(R,w'); / t2dt / ( +1,0) = p(z, 0)[Pdw < oo} :
0 R

By adequate truncature and regularization procedures (see for exam-
ple Amrouche and al. [3]), we prove that D(R2) is dense in V(R2 ,w).
It becomes from this density result and the inclusion of V(RZ,w)
in W?(R?,w) that the mapping & — ¢ defined on D(R2) can
be extended to a linear and continuous mapping, still denoted by 7,
from V(RZ ,w) onto a subspace of W%’Q('R, w'), denoted by M(R,w").
Equipped with the norm

W) = i f y
lillarcmen = inf [Ellvies o

M(R,w') is a Banach space.
For any positive real number R, B = B(0, R) denotes the open ball
in R? with center 0 and radius R and B, the exterior of Bg.

3. WEAK FORMULATION OF THE BOUNDARY VALUE PROBLEM

The a priori natural weighted space associated to (P) is V(R? ,w) and
we may see @ as a solution of a variational problem, associated with
an integral convex functional:

Minimize F(€) such that £ € V(R%,w) where
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VE € VIR, W), F(E) = | [G(axﬁ) ¥ 1(%)?] dsdy+/ii, [ Zeda,

o Vi € R, G(t) = %[(ucr _ t)+]3 _ ’Y+1u2 (ucr _ t) + 'y+1 3 and
G'(t) = g(t).

o Fis Géteaux—differentiable in V(R ,w) with derivative:

VEL & € V(RS w),

< F'(&),& > /[95& 0z + 0,610,&] dx dy++/M, / Z&d.

e As F' is invariant with respect to the constants and zero is the high-
est degree of the polynomials contained in the reflexive space V(R , w),
then the variational problem can be rewritten as:

() Jp e V(R w)/r, F(p) < F(E) V€ V(RL,w)/r.

4. SOME PROPERTIES OF THE FUNCTIONAL SETTINGS

In this work, we are concerned with the existence and the uniqueness of
the solution to (P). To do this, it remains to establish the coerciveness
of F' on the quotient space V(R ,w)/g. Since F depends only on the
gradient (this will be proved below) we have to prove a Poincaré type
inequality on the space V(R?%,w)/g. In order to, we proceed in three
steps. The first step consists in proving this inequality on V(B%, w),
defined as the closure of D(BY%) in V(B%,w), where B}, denotes the
exterior of the closed ball in R? with center 0 and radius R. Therefore,
the second step consists in extending it on V(R?,w)/R by using an
adequate partition of unity, that will enable to consider separately a
bounded domain and the exterior of a closed ball. And the last step
is to use a linear continuous extension operator from V(R? ,w) into
V(R?, w).

Before establishing the first step, some results are necessary and the
first is given by:

Theorem 1. (Amrouche and al. [3]) For any large enough real number
R, there exists a positive constant C}, such that

VE € Wy (B, w),

R’
Lemma 1. V(BY%,w) is compactly embedded into L3(B}z,w ).

Proof.  We verify that V(B%,w) is continuously embedded in the
weighted space W defined as follows:

W = {€ € L*(B}, (2+p?) "1 log 2(2+p?)); VE € L*(B, (2+p%) "1 log 2(2+p))}.



6

Therefore W is compactly embedded into L3(B%,w?). This compact-
ness result is a particular case of that mentionned in Kufner and al.
[14], 20.7. Example, p.290 which says:

Lemma 2. (Kufner and Opic, pp. 289-290 [14]) Let K be a compact
set in R? and let @ = R?\ K. Set a, = inf{|X|; X € Q} and a, > 1.
Let 1<p<qg<oo, apB,70d€R and

w(X) = |X|*log” | X|,v0(X) = | X [P Plog’ | X| and v,(X) = |X|’log’ | X].
We consider WHP(Q;vg,v1) = {€ € LP(Q,v,),VE € LP(Q,v1)}. The
embedding of WP (Q; vy, v1) in LY(Q,w) is compact if and only if

2 2 2 2

2 20950 and 2-P42 201 ¢

q D g9 p 4q p
We can now prove the Poincaré inequality in Vj (B, w).

Theorem 2. For any large enough real number R, there exists a posi-
tive constant C% such that

(6)
VE € Vo(BR,w), [I€lla,,w2+Els,8rw8 < CRUIVEl2,By1+ 11026

Proof. Since D(BY}) is dense in V;(B%, w) then it suffices to prove this
inequality on D(B%). To do this, we shall proceed by contradiction. If
(6) is not true on D(BYy) then for any n > 1, there exists &, in D(BY%)
with:

1én |2,B§Q,w2 + & |3,B§2,w3 >n (||V§n||2,33%,1 + ||0x&n
Remark that &, # 0, so that, using I3

3,B0,,1)-

3,332,1) .

u instead of
Toor oo el oo &ns

we can suppose that ||, l2,p, w2 + [|&all3,8,we = 1 and {&u}as1 is a
bounded sequence in V (B}, w). The compactness result of V (B}, w)
into L3(BY,w?) in Lemma 1, combining with the reflexivity of V (B}, w)
imply the existence of a subsequence, still denoted by {&,},>1, that con-
verges strongly to an element ¢ in L3(Bp,w?) and weakly in V (B%, w).
Therefore, it becomes from ||V§n||2139%,1 + ||0z&n |3,B;2,1 tends to 0 that
IV€ll2,B;,1 + [|0:€]]3,8,1 = 0. Thus £ = cte in By. The continuity of
the trace mapping from V (B}, w) into L?(0B%) leads to £ = 0 in B,
Now, we need a strong convergence of the sequence {&, },,>1 in L?(B, w?)
to conclude by contradiction. For this, we use an adequate partition of
unity:

Y1,02 € CP(BR), 0 <41, <1 ¢+ =11in By
with
suppyy C Bagio and suppis C Byy.
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Since, for fixed R, V(Bagi2 N By, w) coincides with V(B N By),
which is compactly embedded into L?(Bagio N Bf) then
& — 0 strongly in L*(Bagrio N BY),
V1€ — 0 strongly in L?(Byg.o N BY).
Using the fact that v; vanishes outside Byg. 9, it comes
1€, — 0 strongly in L?(BY)

and so
V1€, — 0 strongly in L?(Bj, w?).
Applying Theorem 1 to 15§, € WOI’Q(BQR,w), we get

lebulle i < ChlIV(Wabnlloz.m,
< Ch(IV@sEllonmypnanes + IV W@aEn)llos,ms,,) -

Notice that ¢ = 0 in Bygr N By and 9, = 1 in Bjy ,, then the last
inequality leads to

Vo, — 0 strongly in L?(Bhp, w?®) and in L*(Bj, w?).
This completes the proof.

Theorem 3. The semi-norm | . |y(g2.) is a norm on the space V(R?,w)/r
which is equivalent to the quotient norm.

The proof is similar to that of Theorem 2. In fact, take an adequate
partition of unity and consider separately the bounded domain Bpg
where the topology of V(B%,w) coincides with that of V(B%), and the
exterior of By where the result of the Theorem 2 can be applied.
Corollary 1. The semi-norm |. |y(r2 ) s @ norm on the space V(RS ,w)/r
which 1s equivalent to the quotient norm.

This result can be proved via a linear continuous extension operator
from V(R? ,w) in V(R?,w) (by reflection).

At this stage, let us characterize the dual space of M (R,w'). Applying
classical arguments, we can prove the following

Proposition 1. (i) For any & in (M(R,w"))’, the dual space of M(R,w'),
< <a 70§ >R
1<l ar(rwryy = sup —— =,
eev®z we20y 1€llvirz w)
(ii) For any p in L*(R,w'), we can identify p as an element of (M (R,w"))’
and

< 1, 70€ >(M<R,w'>)',M(R,wf):/ Wulyed) da
R
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for any & in V(RZ ,w).

Let us point out now some results on the divergence operator in the
half-space. Consider the space

L(R? @ 1) = {u:(ul,uz) e (L3(R?) N L2(R?)) x L2(R?);

1 g 3
wldiva € Li(R2) N L?(Ri)},
which has the Banach structure with the norm

||u||IL(R3_,w—1) = ||U1||g,R2+,1+||U1 |2,R3_,1+||u2| 2,Ri,1+||w71divU—Hg,RiJ‘*’”wﬂdiV11||2,R2+,1-

By adapting the proof, based on the Hahn-Banach theorem and the
density result of D(R%) in V5(R?,w), we get the following result:

Theorem 4. (D(R%))? is dense in L(R3 ,w™?).
The following lemma holds

Lemma 3. Denoting by n the unit outer normal to R, then the map-
ping v, : u — un defined on (D(RZ))? can be extended to a lin-
ear and continuous mapping, still denoted by ~,, from L (]Ri,w_l) m
(M(R,w"))', the dual space of M(R,w'). Moreover, we have the Green
formula:

/R (€ divut+uVE)dody=<un, > VE € V(R,,w), Vu € L(R,w™),

2
+

where < .,. > is the duality (M (R,w")) and M(R,w').

5. SOME PROPERTIES OF THE FUNCTIONAL F

In the sequel, we will denote, for any £ in V(R%, w) /g,

b(E) = /Mo / " 2 (@)e(x) do.

1
2
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Lemma 4. Let R, be a real number which satisﬁes Hypothesis (1) and

let Qy =] — 5,5[><]0 Ry[. Then, for any & in V(R%,w)/r we have
b(§) = _\/Moo (1——>afdxdy— 20£dxdy,
Ri‘/ Ry Qo
7+1 fy+1
P@)E—TTMW4W 0e6) M3 1+~ terllter = (uer — 08) I3 2

v+1 M,
e L
Y

N 1
5 Uer 9:€) ||1,R?H1+Z||a

M3 : ’
— Myt — %Ry with ¢, = (/ |z'(x)|2dx) :

1
2

Proof. After rewriting b(§) as follows

= —\/ My 2 (1—i)n§do
Qo Ry Y

where n = (ng, n,) is the unit outer normal to 0€), we apply the Green
formula in the bounded case and obtain the result.

Remark 1. i) In the context of subsonic flows, the problem is posed
in the closed convex set K = {£ € V(R% )/R, 0z€ < U ace. in R}
More precisely, we have the existence of a unique minimizer ¢ of F in
K satisfying < F'(¢),€ — ¢ >> 0 for any £ € K where F'(yp) is the
Gateaux derivative of F' at ¢.

ii) If there exists a constant 7 > 0 such that d,¢ < u., —n a.e. in R%
then the function ¢ satisfies

9:(9(9:)) + 0y(Oyp) = 0 in Ria

(g(awgp)’ay(p)'n =V My Z’(l’) in (M(,R”wi)),

where n is the unit outer normal to R and Z is the extension of z by

zero outside | — 1, 1.

iii) F" is not coercive in V(R% ,w)/k as the following example shows:
we consider for any n € N*

(7)

cr - 1
G

cr - 1

fn(xay) = nn_tl (1_|icy)2 if |‘T‘ < )
cr 3 1

(1+w1;(1+y)2 if 22>,

then F(&,) remains bounded but |||y (g2 ) tends to infinity.

It becomes that the problem (5) does not necessarily have a solution.
Thus it is convenient to introduce the dual problem associated to (5).
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Indeed, the dual problem is generally simpler than the initial problem
and permits to obtain more information about the solutions of this one.

6. PERTURBATIONS AND THE ASSOCIATED DUAL PROBLEM

Let us set £ = i?f2 )F(f), where F' is the functional to be mini-
Ecv R+,w

mized. It can be rewritten as F'(§) = I(VE) + b(§) with I is the func-

tional deﬁned of H(R%) into R by: Vq = (¢1,¢2) € H(R?), I(q) =

fR2 2c12) dx dy. We introduce now the functional, denoted by

é, on V(]Ri,w) x H(R? ) into R such that ¢(&, q) = I(VE+q) + b(E).

We see that ¢(&,0) = F(&).

We consider the minimization problem, for any q = (g1, ¢2) in H(R?%),

8 J(q) = inf q).

(8) (q) v A

The problems (8) are said the perturbed problems of (5). Let ¢,

be the conjugate function of ¢ defined from L(R%,w™) x H'(R%)

into R; it is based on the duality between V(RZ,w) x H(R2) and

L(R%,w™") x H'(R%). The function ¢, is defined, for every p €

L(R?,w ') and u € H(R%), by

¢«(p,u) = sup [< P, & >L®2 w1, VR w) T < WA >w ) m
¢V (RLw),q € H(RY)

where < p,& >yge 1) v®2 w)= fRi (Edivu+uVE)dxdy.

The dual problem consists in finding U in H'(R? ) such that

(9) —¢(0,U) = sup [-¢.(0,u)].

uel (R%)
Theorem 5. There exists (Uy,Us) in H' (R?) such that
)VE e VIR, w), / Ulawfdxdy—i—/ Us0,6dzdy+b() =
R2 R2

ii) ~Us + /M Z'(2) = 0 in (M(R, ")),

ii) Uy < g(ue) a.e.in RY,
1
w) L = / (G(gl(Ul)) — g 1 (U)U, + §U22) dzdy,
RY
where Z denotes the extension of z by zero outside ] — 2, 2[.

Proof. Since F' is convex, inf F(§) is finite and [ is continuous
fEV(R+,w)

on H(R? ), the conditions of theorem 4.1 of (Ekeland and al. [7], p.58)
are satisfied. Hence problem (5) is stable i.e.

inf  F(&)= sup |[—¢.(0,u)l,
il PO = s [-6.0.)

—¢(£,9)],
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and (9) has at least one solution U in H'(R? ).

Therefore,

EZ_*O,U — 'f [ 9 _<U, >[ 2 2i|
#ul ) fGV(Ri,LI;,qu(Ri) 9(8q) q ~m (R3),HR? )

and get

L < inf [J — < U,q > rw 2 ]
S el (a) A > (R2),H(R2)

In particular, for any £ in V(R? ,w), we have
E S J(V 6)— < U,Vf >IHI’(R3_),H(R3_) .

Moreover,
J(VE)
. 1
=it | [ Glue+ o) dudy+ 5 [ @6+ O dedy+ b +)| - b
CeV(RLw) | Jr2 2 Ja
= L-b¢)),
and, since V(Ri,w) is a linear space,
(10) < U, V€ >p @) mr2) +b(§) = 0.
Whence, divU =0 a.e in R? .
2. Since
6.(0,U) = sp < Ua >pgue) ~I(VE+a) = b(©)]
€€ V(R w),q € H(RZ)
we can write
%0,U)=  sip  [<U,p-VE>mpmm) —(0) - b))
£eV(R%,w),p €H(RY)
= sup [< U,p>pee)ur:) — <U,VE>pr)mr2) —I(P) — b(f)] :

§E€V(RL,w),p €HR])
Thus, if we set for p = (p1,p2) and U = (U, Us), Equality (10) leads
to

#.(0,U) = sup [< U,p >w®2)mr2) —I(P)]
p € H(RY )

1
= sup / (Urp1 + Usps) dxdy — / G(p1) dzdy — 5/ P dxdy]
p1 € L3(R3)NLA(RY), [JRY RZ L
p2 € L2(R%)
1
= sup / (Uipr — G(p1)) dzdy | +  sup [/ (Uzpz - 51’3) dxdy] :
p1 € L3(R3)NLA(RE) [/ RE p2 € L2(R%) |/RY
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Whence, by using (Ekeland and al. [7], proposition IV.1.2), we get
U, < 7J2rlugr = g(u.,) and

6.(0,U) = / v, (ucr—\/uzr— : Ul) dady
R2. ’7+1
2 1

— — 2 _ N

/]R [G’ (ucr \/ucr 7+1U1) QUZ} dzdy
1

= / <U1g_1(U1)—G(g_l(U1))+§U22> dzxdy.

=

3. Thanks to the Green formula, Equality (10) leads to point ii).

2
+

Remark 2. i) If we define u, = g~ (U1) and v, = U, we get u, < U

and
1
L= / (G(u*) - u*g(u*) - —’Uf> dxdy
R% 2

ii) Problem (5) may have or not a solution. But if it has a solution ¢
such that 9, < u. a.e. in R%, then Vo = (u,,v,).

Proposition 2. Assume that Hypothesis (1) is verified. Then, every
minimizing sequence {&,}n>1 in V(R ,w)/r for the functional F sat-
1sfies:

[ {ter — (e — 0:60) T, converges strongly to wu,
in L3(R%) and in L*(R%),
{0y€n122, converges strongly to v, in L*(R?),

{(uer — 026n) 7322, is bounded in L'(R%),
lim / (ther — Uy )* (Uer — Opén) " daxdy = 0.

n—-+o0o 2
IR+

N\

Proof.  Any minimizing sequence {&,},>1 for (5) in V(R%,w)/r
satisfies

Fé) — L = / (G(Bstn) — Glus) — (Butin — w)g(us)) dudy

3
1 2
+ _/ (ayé-n _'U*) dﬂcdy
1
> Y0 e = (e — 882)* —wPdzdy
6 R?I-
1 1
+ 1 (ter — Us)? (Uer — Oobp) " dxdy + —/ (0,6, —vi)? dz dy.
2wy 2 Jr2
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Moreover, since for any s,t € R, s,t < 4,
y+1
G(s)=G(t)—(s—t)g(t) = ——

then
v+1
2

uc'r/ |ucr - (ucr - azgn)—i— - ’U,*|2 dx dy
R}

1

1 2
p 1 ’ ’
< —+L (/ |u*‘3dﬂ7dy> (/ |ucr_(ucr—awén)+_u*|3dxdy> .
n 2 R2 R2

Then {ue — (Uer — 026n)* In>1 converges to u, in L*(R2 )N L3(R%) and
{8,&n}n>1 converges to v, in L?(R%). Therefore, according to Lemma
4, {(uer — 05&,) " }n>1 is bounded in L'(R%). This ends the proof.

Remark 3. Let {&,},>1 be as above. It results form

™
[ aldsy <\l
R2 O

+,wa
+
/w2|ucr_(ucr_az£n)+|dxdy < 1 2["“07_ (ter — agn) ||21R2 1
R og
[, e = 0u60) 1wy < e~ 0260
%,
[ agldzay < SQ\f 0,6l o
R2

—+

that {w?&, }n>1 belongs to L' (R?), {w?V¢E,} is bounded in (L'(R%))?
and no conclusion on the boundeness of {w?&,, }n>1.

As a consequence of the Gagliardo-Nirenberg-Sobolev inequality, there
are two positive constants C and C’' (C' depends on C') such that

o < Cllwénlligz 1+ Clw'Véallige 1

In order to derive a sufficient condition for the existence of solutions
to Problem (5), a first suitable way is to ensure the boundeness of the
sequence {w?¢,}n>1 in L'(R%). Such a condition can be obtained, in
the bounded case, by establishing a Poincaré-Wirtinger’s inequality on
a non reflexive W! type space (see [1, 2]).

Theorem 6. If {{,}n>1 is bounded in L'(R3 ,w?) then there exists a
function ¢ in L*(R%,w") and a bounded nonnegative measure v on R%
such that 0y = U, + v, Oyp = v, and v{(z,y) € R:; u,(2,y) < uer} =
0.
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Proof. According to the previous remark, there exists a subsequence
of {&,}n>1 that converges weakly to an element ¢ in L*(R% ,w*). Fur-
themore, we have v, = dyp a.e. in R%. Now, for any nonnegative ¢ in
D(R%), we have:

< Opp — Uy, >= lim (Uer — 0x&n) Y daxdy. So, Opp —uy > 0

n—o0 Rz

in the sense of distributions and 0,¢ = u, + v, where v is a nonneg-
ative measure defined for any nonnegative ¢ in D(R%) by: v(¢) =
lim (ucr - axé.n)_w dz dy

n—oo R?i-

We set A = {(z,y) € R%;u,(z,y) < tug}. Then A = U,>14,,, where

Ap = {(z,y) € R;u(z,y) < ue — =}. Since {Ap}m>1 is a non-

decreasing sequence of v—measurable sets then v(A) = lim v(A,,)
m— 00

and

1 1
—v(Ay) = — lim (Uer — O0p&n) dady

2 2

S lim (ucr - u*)Q(ucr - 816-71)7 dxdy

n—oo A
m

< lim (ter — )2 (Uer — 02én) " daxdy = 0.
Remark 4. If the condition of Theorem 6 holds true, then
e Using the properties of each minimizing sequence {&, },>1 of the prob-
lem (5), we prove the uniqueness of the couple (u,,v,) in H(R?Y ).
o If 9,0 < uy aein RE then u, = dpp ae. inR%, v =0 and ¢ is
the unique solution of (5).
o If u, < u, a.e. in ]RfL then 0, = u, a.e. in R%r, v =0 and ¢ is the
unique solution of (5).

+o0
e If 0 and 7 are two solutions of (5), then there exists f in L? (]R, / w dy)
0
such that

o(z,y) = Y(z,y) + f(z) for almost every (z,y) € R3.

REFERENCES

[1] M. Amara, A. Obeid & G. Vallet, Ezistence results for a degenerated nonlinear
elliptic partial differential equation. Submitted.

[2] M. Amara, A. Obeid & G. Vallet, Relazed formulation and existence result of
the degenerated elliptic small disturbance model. Submitted.

[3] C. Amrouche, V. Girault & J. Giroire, Weighted Sobolev spaces for Laplace’s
equation in R™. J. Math. Pures et Appl., IX. Ser. 73, n°6, pp.579-606, 1994.



15

[4] C. Amrouche & S. Necasovd, Laplace equation in the half-space with a nonho-
mogeneous Dirichlet boundary condition. Math. Bohem. 126, n°2, pp.265-274,
2001.

[5] T. Z. Boulmezaoud, Espaces de Sobolev avec poids pour 1’équation de Laplace
dans le demi-espace. C. R. Acad. Sci. Paris Sér. 1 Math. 328, n°3, pp.221-226,
1999.

[6] J.D. Cole & L.P. Cook, Transonic aerodynamics. North Holland, 1986.

[7] I. Ekeland & R. Temam, Convex analysis and variational problems. North-
Holland, Amsterdam, 1976.

[8] H.P. Gittel, Studies on transonic flow problems by nonlinear variational in-
equalities. Z. Anal. Anwend. 6, pp.449-458, 1987.

[9] H.P. Gittel, A variational approach to transonic potential flow problems. Math.
Meth. Appl. Sci., 23, pp.1347-1372, 2000.

[10] R. Glowinski, Lectures on numerical methods for non linear variational Prob-
lems. Springer-Verlag, 1984.

[11] A. Jameson, Transonic flow calculation, in numerical methods in fluids dy-
namics. H.J. Wirz & J.J. Smolder eds., Mac Graw Hill, 1978.

[12] P. Klouc¢ek & J. Necas, The solution of transonic flow problems by the method
of stabilization. Appl. Anal. 37, n°1-4, pp.143-167, 1990.

[13] P. Kloucek, On the existence of the entropic solution for the transonic flow
problem. Nonlinear Anal. Theory methods Apll. 22, n°4, pp.467-480, 1994.

[14] A. Kufner & B. Opic, Hardy-type inequlities. New-york, wiley, 1985.

[15] C.S. Morawetz, On a weak solution for a transonic flow problem. Comm.
Pure.Appl.Math, 38, n°6, pp.797-817, 1985.

[16] M. Pogu & G. Tournemine, Modélisation et résolution d’équations de la
mécanique des milieux continus. Ellipses, 1992.



Liste des prépublications

99-1 Monique Jeanblanc et Nicolas Privault. A complete market model with Poisson and Brownian
components. A paraitre dans Proceedings of the Seminar on Stochastic Analysis, Random
Fields and Applications, Ascona, 1999.

99-2 Laurence Cherfils et Alain Miranville. Generalized Cahn-Hilliard equations with a logarith-
mic free energy. A paraitre dans Revista de la Real Academia de Ciencias.

99-3 Jean-Jacques Prat et Nicolas Privault. Explicit stochastic analysis of Brownian motion and
point measures on Riemannian manifolds. Journal of Functional Analysis 167 (1999) 201-
242.

99-4 Changgui Zhang. Sur la fonction g-Gamma de Jackson. A paraitre dans Aequationes Math.

99-5 Nicolas Privault. A characterization of grand canonical Gibbs measures by duality. A paraitre
dans Potential Analysis.

99-6 Guy Wallet. La variété des équations surstables. A paraitre dans Bulletin de la Société Math-
ématique de France.

99-7 Nicolas Privault et Jiang-Lun Wu. Poisson stochastic integration in Hilbert spaces. Annales
Mathématiques Blaise Pascal, 6 (1999) 41-61.

99-8 Augustin Fruchard et Reinhard Schafke. Sursabilité et résonance.

99-9 Nicolas Privault. Connections and curvature in the Riemannian geometry of configuration
spaces. C. R. Acad. Sci. Paris, Série | 330 (2000) 899-904.

99-10 Fabienne Marotte et Changgui Zhang. Multisommabilité des séries entiéres solutions formelles
d’une équation aux g-différences linéaire analytique. A paraitre dans Annales de I’Institut
Fourier, 2000.

99-11 Knut Aase, Bernt @ksendal, Nicolas Privault et Jan Ubge. White noise generalizations of
the Clark-Haussmann-Ocone theorem with application to mathematical finance. Finance and
Stochastics, 4 (2000) 465-496.

00-01 Eric Benoit. Canards en un point pseudo-singulier nceud. A paraitre dans Bulletin de la
Société Mathématique de France.

00-02 Nicolas Privault. Hypothesis testing and Skorokhod stochastic integration. Journal of Ap-
plied Probability, 37 (2000) 560-574.

00-03 Changgui Zhang. La fonction théta de Jacobi et la sommabilité des séries entiéres g-Gevrey,
I. C. R. Acad. Sci. Paris, Série | 331 (2000) 31-34.

00-04 Guy Wallet. Déformation topologique par changement d’échelle.

00-05 Nicolas Privault. Quantum stochastic calculus for the uniform measure and Boolean convo-
lution. A paraitre dans Séminaire de Probabilités XXXV.

00-06 Changgui Zhang. Sur les fonctions g-Bessel de Jackson.



00-07 Laure Coutin, David Nualart et Ciprian A. Tudor. Tanaka formula for the fractional Brown-
ian motion. A paraitre dans Stochastic Processes and their Applications.

00-08 Nicolas Privault. On logarithmic Sobolev inequalities for normal martingales. Annales de la
Faculté des Sciences de Toulouse 9 (2000) 509-518.

01-01 Emanuelle Augeraud-Veron et Laurent Augier. Stabilizing endogenous fluctuations by fiscal
policies; Global analysis on piecewise continuous dynamical systems. A paraitre dans Studies
in Nonlinear Dynamics and Econometrics

01-02 Delphine Boucher. About the polynomial solutions of homogeneous linear differential equa-
tions depending on parameters. A paraitre dans Proceedings of the 1999 International Sym-
posium on Symbolic and Algebraic Computation: ISSAC 99, Sam Dooley Ed., ACM, New
York 1999.

01-03 Nicolas Privault. Quasi-invariance for Lévy processes under anticipating shifts.

01-04 Nicolas Privault. Distribution-valued iterated gradient and chaotic decompositions of Pois-
son jump times functionals.

01-05 Christian Houdré et Nicolas Privault. Deviation inequalities: an approach via covariance
representations.

01-06 Abdallah ElI Hamidi. Remarques sur les sentinelles pour les systemes distribués

02-01 Eric Benoit, Abdallah EI Hamidi et Augustin Fruchard. On combined asymptotic expansions
in singular perturbation.

02-02 Rachid Bebbouchi et Eric Benoit. Equations différentielles et familles bien nées de courbes
planes.

02-03 Abdallah EI Hamidi et Gennady G. Laptev. Nonexistence of solutions to systems of higher-
order semilinear inequalities in cone-like domains.

02-04 Hassan Lakhel, Youssef Ouknine, et Ciprian A. Tudor. Besov regularity for the indefinite
Skorohod integral with respect to the fractional Brownian motion: the singular case.

02-05 Nicolas Privault et Jean-Claude Zambrini. Markovian bridges and reversible diffusions with
jumps.

02-06 Abdallah EI Hamidi et Gennady G. Laptev. Existence and Nonexistence Results for Reaction-
Diffusion Equations in Product of Cones.

02-07 Guy Wallet. Nonstandard generic points.
02-08 Gilles Bailly-Maitre. On the monodromy representation of polynomials.

02-09 Abdallah EI Hamidi. Necessary conditions for local and global solvability of nondiagonal
degenerate systems.

02-10 Abdallah EI Hamidi et Amira Obeid. Systems of Semilinear higher order evolution inequal-
ities on the Heisenberg group.



03-01 Abdallah El Hamidi et Gennady G. Laptev. Non existence de solutions d’inéquations semil-
inéaires dans des domaines coniques.

03-02 Eris Benoit et Marie-Joélle Rochet. A continuous model of biomass size spectra governed
by predation and the effects of fishing on them.

03-03 Catherine Stenger: On a conjecture of Wolfgang Wasow concerning the nature of turning
points.

03-04 Christian Houdre et Nicolas Privault. Surface measures and related functional inequalities
on configuration spaces.

03-05 Abdallah EI Hamidi et Mokhtar Kirane. Nonexistence results of solutions to systems of
semilinear differential inequalities on the Heisenberg group.

03-06 Uwe Franz, Nicolas Privault et René Schott. Non-Gaussian Malliavin calculus on real Lie
algebras.

04-01 Abdallah El Hamidi. Multiple solutions to a nonlinear elliptic equation involving Paneitz
type operators.

04-02 Mohamed Amara, Amira Obeid et Guy Vallet. Relaxed formulation and existence result of
the degenerated elliptic small disturbance model.

04-03 Hippolyte d’Albis et Emmanuelle Augeraud-Veron. Competitive Growth in a Life-cycle
Model: Existence and Dynamics

04-04 Sadjia Ait-Mokhtar: Third order differential equations with fixed critical points.

04-05 Mokhtar Kirane et Nasser-eddine Tatar. Asymptotic Behavior for a Reaction Diffusion Sys-
tem with Unbounded Coefficients.

04-06 Mokhtar Kirane, Eric Nabana et Stanislav I. Pohozaev. Nonexistence of Global Solutions to
an Elliptic Equation with a Dynamical Boundary Condition.

04-07 Khaled M. Furati, Nasser-eddine Tatar and Mokhtar Kirane. Existence and asymptotic be-
havior for a convection Problem.

04-08 José Alfredo Lopez-Mimbela et Nicolas Privault. Blow-up and stability of semilinear PDE’s
with gamma generator.

04-09 Abdallah El Hamidi. Multiple solutions with changing sign energy to a nonlinear elliptic
equation.

04-10 Sadjia Ait-Mokhtar: A singularly perturbed Riccati equation.

04-11 Mohamed Amara, Amira Obeid et Guy Vallet. Weighted Sobolev spaces for a degenerated
nonlinear elliptic equation.



