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Abstract

Nonstandard growth conditions in partial differential equations have been the sub-
ject of recent developments in elastic mechanics and electrorheological fluid dynam-
ics [15,16,19]. In this work, elliptic systems with nonstandard growth conditions are
studied. Existence and multiplicity results, under growth conditions on the reaction
terms, are established.
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1 Introduction

Differential and partial differential equations with nonstandard growth condi-
tions have received specific attention in recent decades. The interest played by such
growth conditions in elastic mechanics and electrorheological fluid dynamics has been
highlighted in many physical and mathematical works. We can refer the reader to M.
Ruzicka [15,16], V. Zhikov [19] and the refernces therein.

The present paper deals with existence results to elliptic systems of gradient type with
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nonstandard growth conditions. More precisely, we consider the following system

—div (|Vu|p($)’2Vu) =%z u,v) in Q

ou
—div (|Vv|q($)_2Vv) =% (z,u,v) in Q (1)
u=0,v=0 on 052

where Q C RY is a bounded domain with a smooth boundary 99, N > 2, (p,q) €
C(Q)?, p(x) > 1, q(z) > 1, for every z € Q. The function F is assumed to be contin-
uous in z €  and of class C* in u, v € R.

Elliptic systems with standard growth conditions have been the subject of a sizeable
literature. We refer to the excellent survey article of D. G. de Figueiredo [2].

Here, problem (1) is stated in the framework of the generalized Sobolev space W, @) (Q)x
Wy ") () which will be briefly described in the following section.

2 Preliminary results and notations

For the reader’s convenience, we recall some background facts concerning the
generalized Lebesgue-Sobolev spaces and introduce some notations used below. We
can refer the reader to the book of J. Musielak [14] and the papers of X. L. Fan & al.
[4,5,6,7,8,9,10], P. Marcellini [11,12] and D. Edmunds & J. Rakosnik [3].

Let
C.() ={heC(Q): h(z) > 1 for every z € O},

hT = max{h(z), x € Q}, h~ = min{h(z), z € Q}, for every h € C,(Q),

and introduce, for p € C(f), the space
LPO(Q) = {u measurable real-valued function in € : / lu(z)|P@dx < +oo} :
Q

Endowed with the norm

p(z)
|u|Lp(m)(Q):inf{)\>0: / dxgl},
Q

the space LP®)(Q) possesses the Banach structure. The dual space of LP(*)(Q) is
LP®)(Q), where 1/p(z) +1/p'(z) = 1, Vx € Q.

As in the standard case, the space WP@) () is defined as follows

u(z)
A

Wl’p(x)(Q) = {u c [P . |Vu| € L”(I)} )
Endowed with its natural norm

[ullwrre @) = [Ulper @) + [Vl e



Wi#@)(Q) is a separable and reflexive Banach space. If we denote by W,* w)(Q) the
closure of C$°(Q) in W'(®)(Q)), then the Poincaré inequality

|U|Lp(m)(Q) < C|VU|Lp(m)(Q)

holds true. Moreover, WO1 () (€2), endowed with the norm |Vu/s@) (o), is a separable
and reflexive Banach space. Notice that the inequality

/ luP@dz < C/ Vu|P@dz
Q Q
is false in general [9]. Let us define, for every z € €,

Np(z) if
i Py if p(x) < N,
pr(e)=q "
+oo if p(z) > N.

As in the classical case, the embedding W,"” (x)(Q) C L'®(Q) is continuous (resp.
compact) if r(z) < p*(z) (resp. r(z) < p*(x )) for all z € €. For the other properties
satisfied by the the generalized Lebesgue and Sobolev spaces, we refer the reader to
[9]. However, we recall the following

Lemma 1 (see |9]). If we denote
p(u) = /Q @ dz, Yue LFO(Q)
then
(i) [ul ey <1 (resp. =1; > 1) <= p(u) <1 (resp. =1;>1);
(i) [u| ooy > 1= [uf? 0y < p(1) < [uf? iy

(ii1) |U|Lp(m)(g) <l= |u‘LP(m)(Q) < plu) < |U|Z;(m)(n);
() |u] oy @y — 0 (resp. — +00) <= p(u) — 0 (resp. — +00);

(v) p (u/|“|LP(w>(Q)) =1
For every (u,v) and (¢, %) in W := WiP™(Q) x W™ (Q), let

= / F(z,u,v)dz
Q

Then,
f,(u’ U)(@ﬂﬁ) = Dl}—(u’ U)(QD) + D2'7:(uav)(¢)7
where
D1 F(u,v)(p) = %F (z,u,v)pdr and DyF(u,v)(v) = (r;f (x,u,v) dx.

The Euler-Lagrange functional associated to (1) is given by

J(u,v) :z/Q o )|Vu|p(‘” da:—i—/ |Vv|q(”” dz — F(u,v).



It is easy to verify that J € C'(W,R) and that

J'(u,v) (¢, ¥) = D1J (u, v) () + DaJ (u, v) (), (2)

where

Dy J(u,v)(p) = /Q |Vu|P@)2VuVpdr — Dy F(u,v) (),
Do (u, v) (1) = /Q Vo1 @-2V Vg dz — DoF (u, ) ().
Let us choose on W the norm || .|| defined by
[1(u, )| == max {[|ull, + [[olls},

where || . ||, (resp. ||.||4) is the norm of Wy " () (resp. W™ (2)). The dual space
of W will be denoted by W* and ||.||. will stand for its norm. Therefore

1" (u, 0) |« = [| D1 (u, v)

xp T HD2J(“>U)H*,qa

where W=17'@) () (resp. W=1¢®(Q)) is the dual space of Wy () (resp. W™ (Q))
and || [|.p (resp. ||.[|«q) is its norm. Finally, | . [, will stand for the norm on L'@(Q),
for every r € C(Q).

Throughout this paper, the letters ¢, ¢;, 2 = 1, 2, ..., denote positive constants

which may vary from line to line but are independent of the terms which will take
part in any limit process.

3 Existence results

Before stating our results, we introduce some natural growth hypotheses on the
right hand side of (1). Theses hypotheses will insure the mountain pass geometry and
the Palais-Smale condition for the Euler-Lagrange functional J. We limit ourselves to
the subcritical case, 7.e. we assume that

(Hi) F(z,5,t) < 1+ cols[Pr) 4 caft|20) 4 ¢y s[*@ [PV (2, 5,) € Q x R,
where (p1,q1,a, 3) € CL(Q)* and

« . = _ _ A
p1 < p*, q1<q*,l;+g<1mﬂ,p1,a >ptand g7, 87 > q".

Precise that under the hypothesis (H;), the operator 7' : W — W* is compact [9].
To guarantee the Palais-Smale condition for the functional J, we will assume moreover
the following

(Hy) 3IM >0,360, >p", 30, >q¢" : Ve e, V(s t) e R : |s| 4 [t|%2 >
2M, on has

s OF t OF
)< ——— t —— t).
O<F($787)—91 88($’S’)+92 at(xasa)

Finally, we assume



(Hs) F(z,s,t)=o0 (\s|p+ + \t|q+) as (s,t) — (0,0), uniformlyw.r.t x € Q.

As we will show later, the hypotheses (H;) and (H3) imply the mountain pass
geometry for the functional J.

Lemma 2 Let (uy,v,) be a Palais-Smale sequence for the Euler-Lagrange functional
J. If (Hy) is satisfied then (uy,v,) is bounded.

PROOF. Let (un,v,) be a Palais-Smale sequence for the functional J. This means
that J(uy,v,) is bounded and ||J'(un, v,)||« — 0 as n goes to +oo. Then, there is a
positive constant ¢ such that

c> J(un, Un)

|Vun|p(w da:—i—/ |an|q @ dy —/ F(z,up,vp) dx
np( ) “

1 u 8F
> - p(w) n
_/Q (p(:r)wu"' 5 Bu — (=, un,vn)> dx +

1 v, OF
_ q(z) _ n _
/Q (q(x) |V, =9, 00 — (=, un,vn)> dr — ¢

where ¢; is some positive constant. Then,

11 11
>(= - =) [ |Vuaf@dz + [ — — — /an(””)d
C_<p+ 01>/Q| Un | x+<q+ 02> Q| v |1 dz +

*,p Un||q — Ca.

un||p - 0—2||D2J(un, Un) *,11|

Now, suppose that the sequence (u,,v,) is not bounded. Without loss of generality,
we may assume ||Uy|[p > ||vnllq-

Therefore, for n large enough, we get

1 1 - 1 1
> |- np__DJnan*__DJ ny Un *> ni|lp-
o2 (= g ) lunly = (1000l = G112 ) ) ]

But, this can not hold true since p~ > 1. Hence, the sequence (uy,,v,) is bounded. O

In the following lemma, we show a compactness result. More precisely, we show that
every bounded Plais-Smale sequence for the functional J contains a Cauchy subse-
quence. In the simple case where the functions p and ¢ are constant, the extraction of



Cauchy subsequences, based on the inequalities (3), is very standard. Here, we adapt

this method to the general case where p and ¢ are in C(Q).

Lemma 3 Let (up,v,) be a bounded Palais-Smale sequence for the Euler-Lagrange
functional J. If (Hy) is satisfied then (un,vy,) contains a convergent subsequence.

PROOF. Let (uy,v,) be a bounded Palais-Smale sequence for the functional J. Then
there is a subsequence still denoted by (uy,, v,) which converges weakly in . We recall
the well known inequalities

lz—y|" < 27 (|z]" 2z — |y ?y) - (z — y) if y > 2 )

z—y2 < (|2 + [y)* 77 (22 — |y 2y) - (z —y) if L <y < 2

for every z and y in RV, where - denotes the standard inner product in RY. We show
that (un,v,) contains a Cauchy subsequence. Let us define

U={z€Q: p(x)>2} and V,={z €Q : 1 <p(z) < 2},
U={zeN: qglx)>2} and V,={z€Q: 1<qg(x) <2}

For every x € €2, we set
= (|Vun ">Vt — [VugP V) - (Vi = V),
U, = (| V| + |Vug])? 7@,

Then,

/ |V, — Vuk|p(m)dx§c/ P, dz,
U, Q

p(z) p(z)

/ Vit — Vg [P@ dar < / o5 g g,
Vp Q ) bl

Recall that

/Q ®p j dz = (D1J (un, vn) — D1J (g, vg) + D1 F (un, vn) — D1 F (ug, vg)) (tn — )

< (D1 (uns vn)[[sp + [[ D1 (ur, k) [4p) [[un — wklp +
(D1 F (un, va) = Dy F (g, 0k) || 4,p) [ [1tn = k]l

Since ||J' (Um, Um)||« — 0, as m goes to +oo, and F' is compact then we can consider
that
0< / @n,kd:v < 1.
0

If
/ B, 4 dz = 0,
Q
using the fact that ®, ; > 0 in {2, we obtain that &, , = 0.
If
0</<I>n,kd:r;< 1. (4)
Q



Thanks to the Young inequality and (4), we conclude

=1 —1

p(z) 2 (2—p(z))w p(z) (@)
P, % / Prp(y)dy | W, " 7 dz< / P / Qup(y)dy)  + VY | dx
Vp ’ Vp ’ Vp Vp ’

<1+ / T g
Q )

Hence,

1
[ 1V = VPP < ( [ @ dx)2 (1+ IR dac).
Vo Q o ™

Notice that [, \Ilfb(,z) dz is bounded uniformly w.r.t n and k. Using again the fact that
|| (s V) ||« — 0, as m tends to +oo, and F' is compact, we obtain, up to a
subsequence,

lim / B dz = 0.
Q

n,k—+o00

Therefore, passing if necessary to a subsequence, we have

lim / IV, — Vg [P@dz = 0,
Q

n,k——+00

Applying the same arguments, we find a subsequence of (uy, v,) such that

lim / Vo, — Vo ["@dz = 0.
Q

n,k—+00

Hence, up to a subsequence, one has

n,kh—>n—|1—oo H(un: vn) - (ukavk)H = 0’

which implies that (u,,v,) contains a Cauchy subsequence and therefore contains a
strongly convergent subsequence. This ends the proof.

Remark 4 The proof of the previous lemma can be showed also via the Lebesgue
dominated convergence theorem.

Now, we can state the following existence result

Theorem 5 If the hypotheses (Hy) — (H3) hold true, then the problem (1) has at least
one weak solution.

PROOF. First, let A, p in Cy(Q) satisfying A(z) < p*(x) in Q. Using the continuous
embedding Wy "™ (Q) c IX®(Q) and Lemma 1, we get: 3 61,05 : 0 < 61,85 < 1 such
that

VF WD), | flhyanongy < 5 = Il < b o)

On the other hand, let &, 3 be two continuous and positive functions on 2 such that

a(z) +a(x) | Bz)+Bx) _ 5
(@) + (@) =1, Vx e




For ||(u,v)|| << 1, using the Young inequality, Lemma 1 and (5), we obtain

/‘u‘a(z)w‘ﬂ(m) dxg(/ | o@ dx) (W) N (/ [[#@) dx)(ﬂw‘)
Q Q Q
g/ |u|a(‘”)dﬂc+/ v|P@ dg
Q Q

<c(Ilulig” + 110l

Finally, notice that under the hypothese (H;), we have the continuous embeddings
WP (Q) ¢ 177 (Q) and Wy *™(Q) ¢ LT (Q). That is, 3C; > 0, 3Cy > 0 such that

[l o) < Crllully a6 gy and [[v]] Lo+ ) < Col[v][ 1.0
Now, let € > 0 such that
smaX(C{’Jr,CQqu) < %min(p*’,q*’).
It follows, from (H;) and (Hj) that V (z,s,t) € Q x R?
F(z,s,t) <e(|sP"+[t7") + Cle) (|sP@ + [t1) 4 [s|2@)[5)

Therefore, for ||(u,v)|| sufficiently small, we get

1 + + +
T, > el = <CF lully”+ —lollg” = Cf ol
O(e) [ (a4 o[+ [u]®) o] @) da
", Iols” T ——
> S+ gt = 0(e) (Il + I+ elfully” +elfolly)

Since p;,a~ > pt and ¢;, 8~ > ¢*, there is r > 0 and ¢ > 0 such that J(u,v) > ¢
for every (u,v) € W satistying ||(u,v)|| = r.

On the other hand, we claim that the assumption (Hy) implies the following
assertion: for every x € €0, s,t € R, the inequality

F(z,s,t)>c((Is| + %) — 1)

holds true. Indeed, consider the compact subset K of R? defined by

01 0
K = {(s,t)€R2 : wzl}.

For every (s,t) € K, we introduce the function

Glz,7) = F (x 177 s, mét)



defined on 2 x R. Then,

oG 1 1 1 t, L 1 1
T = TR (s, 1% t) + e B (e[, 1]t

where 0; denotes the partial derivative of F w.r.t its i-th variable. Therefore, for
|T| > M, we get

oG

T— > G(x,7) >0

or

which implies that G(z,7) > %M This means that
1 1

x,M"ls,M"2t>

M

1 1 F(
F (3: 7|7 s, mm) > 7], V|r| > M.
Set

¢1 = min min

Then F (ac, |T‘%S, \T\%t) > c1|7] — ¢, VT € R Moreover, every (u,v) € R? can be
rewritten as
1 L
() = (ol o), (sl 4 o) % ),

where (u',v') € K. Therefore, there is ¢ > 0 such that F(z,s',t') > c(|s'|® + [¢'|% —
1), V(s',t') € R%. This achieves our claim.

Now, Let @ € Wy (Q) \ {0}, 5 € Wy ™ () \ {0} and ¢ > 1. Then,

tP(@)| vz [P(e) @) vy
POV 4y 4 [ EELVOIE
Q

J(t, 17) = / dr — / F(x, 17, (%) do
Q

o  p(z) q(z)
<tp+/ |V |P®) . tq+/ |V |a() .
—  Ja p(x) o q(z)

ct"l/ \ﬂ|01dx—ct02/ 15(%2dz — ¢|Q.
Q Q

Therefore,

lim J(td, t7) = —o0
t—+o00

which implies that J possesses the mountain pass geometry. Applying Lemma 2 and
Lemma 3, we conclude that J has at least one nontrivial critical point [13,17,18]. This
achieves the proof. O

4 Infinitely many solutions

In this section, we prove under some symmetry condition on the function F
that the problem (1) possesses infinitely many nontrivial weak solutions. The proof is

based on Bartsch’s fountain theorem [1]. Since Wy ™ and Wy are reflexive and

10



separable (and their dual), then W and W* are too. Let (e;)ien C W and (€] )jen C W*
such that

W =span{e; : i € N}, W* =span{e; : i € N}
and
< 6:,6_7' >= 5ij: Vi,j €N,
where < .,. > denotes the duality product between W* and W, and ¢;; is the
Kronecker symbol. We define X; := Re;, Y}, := @?ZOX]- and Z; := EB;?’;ka.
Let us recall the version of the Fountain theorem which will be used in the sequel.

Theorem 6 Let J € C*(W,R) be an even functional, where (W, ||.||) is a separable
and reflexive Banach space. If for every k € N, there are 0 < ry < py such that

(i) max{J(u) : u € Yy, ||ul]| = px} <0,
(i) inf{J(u) : u € Z, ||u|| =1} — +00 as k — 400,
(11i) J satisfies the Palais-Smale condition for every level,

then J has an unbounded sequence of critical points.
For every a > 1, u € L*(Q2) and v € L*(2), we define

| (1, 0)|a := max{[ula, [v]a}.

In (H,), let &, 3 be two continuous and positive functions on 2 such that

o(z) +a(z)  Blz) + B(=)

r@) ol e
>t (z) + d(z) Be)+ Alo)
— max alr) + alx z)+ blo (). 1 (2
a = weﬁ{ p*(.f[,') ) q*(xz 7p( )7q( )}7
_fe@tal f@AB@
b= min { SR PO )00}

Then we have the following

Lemma 7 Define

Br = supq{|(u,v)|a : ||(u,v)|| =1, (u,v) € Zy}.

Then, lim [, =0.
k——+o00

PROOF. It is clear that the sequence (f) is nonincreasing and positive. Let £ > 0

such that klirf Br = £, and (ug, vp) € Zg with || (uk, ve)|| = 1,0 < €—|(ug, vi)|s < 1/k.
—1+00

Passing if necessary to a subsequence, there is (u,v) € W such that (uy,vg) converges

weakly to (u,v) in W. On the other hand, for every j € N,

< 6;7, (u’q)) >= lim < 6;, (Ukavk) >= 0.

k——+o00

Therefore, (u,v) = 0 and wuy (resp. vg) converges weakly to u (resp. v) in W()l’p(w)(Q)
(resp. Wy "™ (Q)). By vertue of the compact embeddings W™ (Q) c La(Q2), W@ (Q)
L*(Q2), it follows that (ug,vy) converges strongly to 0 in W and finally that £ = 0. O

11



In the following theorem, we show the existence of infinitely many solutions to the
problem (1) under some symmetry assumption on F'. We confine ourselves to the case
where p(x) = ¢(z) for every x € Q. Notice that the result remains valid for p # ¢ by
adding some slight (and technical) changes in the hypothese (H,).

Theorem 8 If F(x,u,v) is even in u, v and satisfies the hypotheses (Hy) and (Hy),
then (1) possesses infinitely many (pairs) of solutions with unbounded energy.

PROOF. It suffices to show that J has an unbounded sequence of critical points.
The proof is based on the fountain theorem (see [1]). Let (ug,vx) € Zi such that
||(ug,vK)|| = me > 1 (rr will be specified below). We may assume, without loss of
generality, that ||(ug,vk)|| = ||luk|l,- In what follows, we will use the mean value
theorem in the following form: For every v € C(Q), u € L7(Q2), there is £ € Q such
that

/Q|u|v(z) da = |u[7©

Indeed, it is well known that there is £ € ) such that

V= [ (/)" do = [ u® da/ul©),

and the claim is complete. It follows,

1
I (g, v) 2 — pt ||“k||p h C/ (1 + [ + |Uk|q1(w) + |Uk|a(m)|vk‘ﬁ(z)> dz

1
> ||uk||p _ C|uk|p1(£l — |2 q1(€5) _

G ("1)

(54‘5) 772
p*a/(a+a) - C‘Q|

p*B/(B+5)

where &F) €5 nF nk € Q and || denotes the measure of Q. Therefore,

1

EHuka — ey [P ) _ ¢ |vk|‘“(52 B

J(Uk, ’Uk)

(e+a)(nf

B)(nf) — Q)

1 - k k
zﬁww@—qmemMM—qmemm@—

—c1 (B [ug][ )7/ TN ¢, (B |ug[)P "BIB+H)m —c|9]

1 .
> —[Juelp — caBilluel* — cl€,

where a, b are defined above. At this stage, we fix r; as follows

T = B ) — 400 as k — +o0.
2copt

Consequently, if ||(ug, vg)|| = 7 then

12



(g, vr) Z o[y — ¢lQ

2p*
_ 1 P~

= Q?H(Uk, we) [P — [
On the other hand, it is known from (Hs) that F(z,u,v) > ¢ (\u\al + |v]% — 1), for
every x €  and u, v € R. Whence, if (u,v) € Y, with u # 0, v # 0, we get from
above that

lim J(tu,tv) = —oc.
t——+o0

This implies that
max{J(u,v) : [|(u,v)|] = pr, (u,v) € Y3} <0

for every py large enough. Applying the fountain theorem, we achieve the proof. 0O
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