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1. Introduction.

The group G of polynomial automorphisms of the complex plane can be en-
dowed with the structure of an infinite-dimensional algebraic variety (see [10]). Fur-
thermore, using the structure of amalgamated product of G, one can define the mul-
tidegree of an element o of G (see below). It is a finite sequence d = (dy,...,d;) of
integers > 2. We then say that [ is the length of 0. A natural question is: What
are the relations between the (Zariski) topology of G and the multidegree? A first
answer is given in [6]. It is shown that the length is a lower semicontinuous function
on the group G (a family of automorphisms of length [ can only degenerate in an
automorphism of length I’ <1).

Let us denote by G, the set of automorphisms of G whose multidegree is
d = (dy,...,d;). We obtain a partition of G by the G4 when d describes the set D
of finite sequences of integers > 2. It was conjectured in [6] that G4 (the Zariski
closure of ;) is satured for the equivalence relation “to have the same multidegree”,
i.e. there should exist a subset F(d) C D of multidegrees e = (eq,...,e,) such that
G, = U G.. This is equivalent to saying that if G. N Gy # 0, then G, C Gg.
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In(t)his paper, we show that this conjecture is false. We make explicit a result of



[2] to obtain a family of automorphisms belonging generically to G(11,3,3) and degener-
ating in an automorphism of G(19). Therefore, we have G(19y N G(11,33) # (. However,

for grounds of dimension, one cannot have G9y C G(11,33). Indeed, G(q,,...q,) 15 a
constructible subset of G' of dimension d; + - - -+ d; + 6 (see [4] and [5]).

2. The multidegree of an automorphism.

This notion is introduced by Friedland and Milnor (see [4]).

We denote by G the group of polynomial automorphisms of the complex plane
Al = Spec(C[X,Y]). An element o of G is identified with its sequence (f,g) of
coordinate functions, where f, g € C[X,Y]. We define the degree of o by dego =
max{deg(f),deg(g)}. Let 0 = (f,g9) € G and o' = (f',¢') € G. We denote by oo’
the composition, i.e. oo’ = (f(f',¢"),9(f',9"))-

Let

A:={(aX +bY +¢c,d X +b'Y +); a,b,c,a,V/,d € C,ab' —a'b +# 0}
be the subgroup of affine automorphisms and let
B:={(aX + P(Y),bY +¢); a,b,c € C, P e C[Y], ab# 0}

be the subgroup of triangular automorphisms (B may be viewed as a Borel subgroup
of G).

If o € G, by the Jung-van der Kulk theorem (see [7] and [8]), one can write
0= ...04Pk0+1 where the a; (resp. ;) belong to A (resp. B). By contracting
such an expression, one might as well suppose that it is reduced, i.e. V j, 8; ¢ A
and V j, 2 <j <k, o ¢ B. It follows from the amalgamated structure of G that if
o= aif]...q B, is another reduced expression of f, then k¥ = [ and there exist
(¥j)1<j<ks (0j)1<j<k in AN B such that of = ayy;', o = §;_1057; " (for 2 < j < k),
Qi = Opapq1 and B = ’Y]‘/Bjéj_l (for 1 < j < k). Following [4], we define the
multidegree of o by d(o) := (deg 4, . ..,deg fx) which does not depend on the choice
of the reduced expression. Therefore, we have a multidegree function d : G — D,
where D denotes the set of finite sequences of integers > 2 (including the empty
sequence).

3. The structure of infinite-dimensional variety of G.

This notion is introduced by Shafarevich (see [10]).

When n > 1 is an integer, we set G<, := {0 € G, deg 0 < n}. The subset
G<p, is naturally endowed with the structure of an algebraic variety (see [BCW]). The
equality G = U G <, endows G with the structure of an infinite-dimensional algebraic
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variety.

Let us recall that a set V with a fixed sequence of subsets V,,, each of which has
a structure of finite-dimensional algebraic variety, is called an infinite-dimensional
algebraic variety if the following conditions are satisfied:

NV=V;

2) V, is a closed algebraic subvariety of V,, ;.

Each of the V,, will be considered with its Zariski topology and we endow V
with the topology of the inductive limit, in which a set W C V is closed if and only
if W NV, is closed in V,, for each n.

4. Families of automorphisms of the affine plane.

4.1. The Nagata automorphism.

The first non trivial example of a family of automorphisms of the plane comes
from the Nagata automorphism (see [9]). Let us set R = C[Z]. The Nagata automor-
phism is the R-automorphism of A% = Spec R[X,Y] defined by N = (X —2Y (X Z +
Y?) - Z(XZ+Y??2Y + Z(XZ+Y?). We thus obtain a family of automorphisms
of A% parametrized by A, = Spec C[Z], i.e. a morphism from A} to G.

4.2. The group G(R).

When R is aring, let us denote by G(R) the group of polynomial R-automorphisms
of A% = Spec R[X,Y]. We still identify an element o of G(R) with the couple (f, g)
of its coordinate functions, where f,g € R[X,Y].

Let us notice that knowing an element of G(R) is equivalent to knowing an
(algebraic) family of automorphisms parametrized by the affine scheme V' = Spec R.
In particular, when R = C[Z], an element o of G(C[Z]) induces a morphism from Ag
to G. We denote by oz_,, the image of 2 € A, = C by this induced morphism.

For example, if N denotes the Nagata automorphism, we have N,_,, = (X —
2Y (2X +Y?) —2(2X +Y??% Y +2(2X +Y?)) for all z € C and in particular N;_,o =
(X —2Y3)Y).

4.3. Degeneration.

We shall say that a family 0 € G(C[Z]) degenerates at a point z, of C if
the multidegree of o;_,,, is different from the generic multidegree of o, i.e. the
multidegree of o as an element of G(C(Z)). For example, one could easily check that
the Nagata automorphism splits in N = (X —Z Y2 Y)(X, Z?°X+Y)(X+Z 'Y2Y)
in G(C(Z)). This last expression shows that the generic multidegree of o (which is
also in this example the multidegree of Ny_,, for all z € C*) is (2,2). However, the
multidegree of Nz_,y = (X —2Y3,Y) is (3), hence Gz N Gz # 0.

This family degenerates for z = 0 and we observe that the length has strictly



decreased. This illustrates the main result of |6]:
Theorem 1. The length map | : G — Z is lower semicontinuous.

However, even if the length behaves well with respect to the topology, it seems
that it is not the case of the multidegree (at least in length 3).

4.4. Constructing the elements of G(C[Z]).
The next result (see Lemma 1.1.8. p. 5 of [3]) is very useful to construct the
elements of G(C[Z]).

Proposition. Let o = (f, g) € G(C(Z)), then the following assertions are equivalent:
(i) o € G(C[Z));
(ii) f,9 € C|Z][X,Y] and Jac o € C*, where Jac o := 2L029 _ 27 93

Remark. We reformulate the assertion f,g € C[Z][X,Y] by saying that the coeffi-
cients of f and g (or even the ones of o) belong to C[Z] (the coefficients are of course
the ones of X?PY1).

Furthermore, since C(Z) is a field, we know (by the Jung-van der Kulk the-
orem) that any element of G(C(Z)) can be expressed as a composition of affine and
triangular automorphisms.

Therefore, to construct any element of G(C[Z]), it is sufficient to compose
affine and/or triangular automorphisms o7, ..., 0, with coefficients in C(Z), in such
a way that:

1) 0 = 01 - -0, has its coefficients in C[Z];

2) JaCU:HJaC o; € C.

7j=1
For example, using the splitting of the Nagata automorphism in G(C(Z)) (see
4.3.), one can verify assumptions 1) and 2) and the proposition shows that N belongs
to G(C[Z]).
5. Some families of automorphisms with generic length 3.

Our main outcome is the following:

Theorem 2. Let a,b > 2 and ¢ > 1 be integers, then

G(a—l—c(ab—l)) N G(a—l—(c—l)(ab—l),b,a) ?é Q)



Example. Fixing some values for (a, b, c), we obtain:
Gy N Gopay #0, Guy N Geszy#0 and  Gug N Guigs) # 0.

>From Theorem 2, we can deduce the

Corollary. Let a,b > 2 and ¢ > 1 be integers with (a,b) # (2,2), then the closure of
G(a+(c_1)(ab_1) ba) in G 1s not saturated for the equivalence relation “to have the same

multidegree”.

Proof. Let us recall that Gg,,....q4) is a constructible subset of G' of dimension d; +
«++d;+6. Let us set d = (a+ (c—1)(ab—1),b,a) and e = (a + c(ab—1)). We
argue by contradiction. If G; was saturated for the equivalence relation “to have
the same multidegree”, then we would have G, C Gy \ G4 by Theorem 2. Hence the
dimension of G, would be strictly less than that of G4, whence a+c(ab—1)+6 < a+
(c=1)(ab—1)+b+a+6, ie (a—1)(b—1) <2, which is absurd. O

Example. We have thus shown that G(232) and G(11,3,3) are not saturated for the
equivalence relation “to have the same multidegree”.

Theorem 2 is a direct consequence of the following one:

Theorem 3. Let a,b > 2 and ¢ > 1 be integers.

Let us define triangular automorphisms 8,3, 8" € G(C[Z]) by
Bi= (X +Y%Y),
B = (X +2ZY"Y) and

— 1 bn +1
IB” — (X —ve ZO r— (a( nn+ )) (_Zyab—l)n, Y)

and affine automorphisms o, o' € G(C(Z)) by
a:=(Z°X,Y) and
o = (Y, X).

If o0 € G(C(Z)) is defined by
o= oflﬂ”oz’ﬁ'o/ﬁa,

then o0 € G(C[Z]) and 070 = (X + (=1) (a(bc + 1)>ya+6(ab—1)’ Y).

be+1 c
To obtain Theorem 2 it is enough to remark that the multidegree of o is
generically equal to (deg 5", deg f',deg 8) = (a + (c=1)(ab—1),b, a) and that oz_,¢

is a triangular automorphism of degree a+c(ab—1), so that d(c7-,0) = (a + c(ab — 1)).

The proof of Theorem 3 is based on the following result:



Lemma 1. Let a > 1, b > 0 be integers. Let S(T) = anT" € C[[T]] be the power
n>0
series defined by the functional equation

S(T) = (1+TS"(T))",

then
(i) S(T) = Z bn1+ 1 (a(bnn—i— D)T" and
(it) S (-T(1+T)* ") = ﬁ

Proof. (i) Let us set u(T) := T'S°(T), then % =T, hence u is a local;/nalytic

diffeomorphism around 0 with inverse v, where v is defined by v(W) := armE
It is clear that sq = 1.
If § denotes integration around a little circle around the origin and if n > 0 is

an integer, it comes out (by the Lagrange formula):

1 S(T)dT_L?{(l—i—u(T))“

= — = dT
2mg ) Tntl 211 Tn+l

Sn

_ 1 r@+w) : _
=5 WU (W)dW  (setting T = v(W))

a1 [(1+W)e!

== W) dW (integrating by parts)

T n2mi Wwn n n—1

_ m (a(bnn+ 1)) _ bnl—i— 1 <a(bnn+ 1)>.

a1 (1 + W)abnta=t aw = <abn +a— 1)

(i) Let us set h(T) := —T(1 + T)®~1. Then h is a local analytic diffeo-
morphism around 0. Let us denote by k its inverse. It is sufficient to show that

1
SO = Ty

. 1 .
For this, let us set S(7T') := AT k)" and let us show that S satisfies the

same functional equation than S, that it is to say S(T) = (1 4+ T.5%(T)).



1 T
Thi f th lity —————~ =14 ——————, which itself
is comes from the equality - k() + A+ B(T)™ which comes itse

from the equality h(k(T)) =T. O

Remarks. 1. Let us set A = ab. One could show that the ra/\diys of convergence
of the power series S(T') is equal to +oo (resp. 1, resp. %), if A =0 (resp.
A =1, resp. A >2).

2. It is pleasant to explain the Lagrange formula by complex analysis; never-
theless, it would have been possible to use a purely algebraic version of this formula
(see Corollary 5.4.3. p. 42 in [11]), which would have allow us to replace the field C
by any field of characteristic 0.

3.Using the functional equation satisfied by S(7'), one could show that S(T) €
Z[[T]]. Hence, there exists a version of Theorem 3 where the field C is replaced by
any field (possibly of positive characteristic).

Proof of Theorem 3.

Let us set P(Y) := Y°S_.(—ZY*™) € C[Z][Y],
where S..(T) denotes the series S(T) truncated at the order c,
that is to say S<.(T) = cz_i spT™.

We have 8" = (X — P(Y),Y) by (i) of Lemma 1.

) g =Y +Z(Z°X +Y*)°
and if we set { f=X+2Z"<Y*=P(g) (1),
then o = (f, g).

We prove that 0 € G(C[Z]) using the proposition of § 4.4. Tt is clear that
Jac 0 = 1 and that g € C[Z][X,Y], hence to show that o is an automorphism of
C[Z][X,Y], it is sufficient to show that Y* — P(g) is divisible by Z¢ (in the ring
C[Z][X,Y]), which can be written using congruences Y* — P(g) = 0 [Z¢].

But, to compute oz_,q, we need to compute Y*— P(g) modulo Z¢!. Therefore,
let us carry out directly this computation.

We have g = V(1 + ZY%~1) [Z°™1], hence

ye _ P(g) Ye — gaS<c(_Zgab71)

YeQ(zy® ) [z (2)

where Q(T) :=1— (1 +T)*S<. (-T(1 +T)*71).
But, by (ii) of Lemma 1, we have:

(1+T7)*S (-T(1+T)® ") =1, hence



QIT) = (1+T7)8s (-T(L+T)®71), with Ss.(T) =) s, T"

n>c

(=1)°s. T [T+,

(=1)¢ fa(bc + 1)\ e rett _
be + 1 c T¢ [T°"], by (i) of Lemma 1.

bc+1 c
that f € C[Z][X,Y] and o € G(C[Z]) by the proposition of § 4.4. Furthermore we

—1)¢ 1
whence Y — P(g) = \ 1) (“(bc+ )>zcya+c<ab—1> [Z°"Y] by (2). By (1) this shows

—1)¢ 1
have: f=X + % (a(bc—i— )) yetea=b (7] by (1) and ¢ = Y [Z] which shows
c c
(=1)¢ (a(bc+1) B
that = (X yateab=1) 1y, O
at 070 = +bc+1 c ¥)

6. The collapse power of a multidegree.

Definition. If d = (dy, ..., d;) is a multidegree with [ > 1, let us define the collapse
power of d by cp(d) := max{k € Z, k> 2 and Gy N G4 # 0}.

Using the well known fact that if the multidegree of o is (dy, ..., d;), then the
multidegree of o1 is (d, ..., d;), it is easy to show the next result

Lemma 2. If (dy,...,d;) is a multidegree, then
Cp(dla sy dl) = Cp(dla Ty dl)

Theorem 2 yields a lower bound for cp(dy, dz, d3).

Theorem 4. If (di,ds,d3) € D is a multidegree such that di — dz is a multiple of
dg min(dl, d3) - ]., then Cp(dl, d2, dg) Z max(dl, d3) + d2 min(dl, dg) — 1.

Proof. By Lemma 2 and since the assumption in Theorem 4 is invariant by ex-
changing d; and dz, we can assume that d; > d3. We set a = d3, b = dy and
¢ =1+ (di — d3)/(dads — 1) then max(d;, d3) 4+ dy min(dy,d3) — 1 = a+ ¢(ab— 1) and
Theorem 4 follows from Theorem 2. O

Acknowledgments. We would like to thank Mireille Bousquet-Melou for her indi-
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