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Abstract

In this paper, we analyse a family of stationary nonlinear equations with
p&q- Laplacian —Apu — Agu = Ac(z,u) which have a wide spectrum of ap-
plications in many areas of science. We introduce a new type of variational
principles corresponding to this family of equations. Using this formalism, we
exhibit intervals for the scalar parameter A where there exist positive solutions
of the considered problems. Furthermore, we prove, in another interval, the
nonexistence of nontrivial solutions. These results are different from those of
existence and nonexistence for stationary equations with single Laplacian.

AMS Subject Classifications: 35J70, 35J65, 4TH17

1 Introduction

This paper is devoted to the study of the existence and non-existence results
for solutions to the following stationary nonlinear equation

—div ([|Vu|p_2 + |Vu|q_2] Vu) + q(a:)|u|p_2u + w(w)|u|q_2u = )\f(a:)\u|7_2u (1)

considered in a bounded domain Q2 C R", n > 1, under Dirichlet boundary
condition

u=0 on 0N. (2)



We study problem (1)-(2) with respect to the real parameter A\. Hereafter, We
suppose that the boundary 012 is sufficiently smooth, and that the coefficients

P, q,~y satisfy

pn

I1<p<y< d~ < p*, wh = nP
p<~v<gq and vy <p, where p {+OO if p>n.

if p<m,

(3)

We also assume that

p* ;
fawel’(Q), with{ '~ 7 LP<m
r> 1 if p>n. (4)

and ¢(z) > 0,w(z) > 0 a. e. on .

The boundary value problem (1)-(2) arises in the study of stationary solu-
tions of reaction diffusion systems. A general reaction diffusion system has the
form

wy = div[D(u)Vu] + c(z, u). (5)

This equation has a wide range of applications in physical and related sci-
ences, e.g. in biophysics [11], plasma physics [16], and chemical reaction design
[2]. In such applications, the function u in (5) describes a concentration, the
first term corresponds to the diffusion with a (generally non-constant) diffusion
coefficient D(u), whereas the second one is the reaction and relates to source
and loss processes. Boundary conditions are taken as zero flux, that is, the
domain’s boundary is assumed impermeable to chemical species. Typically,
in chemical and biological applications, the reaction term c¢(z,u) in (5) has a
polynomial form with respect to the concentration u.

Thus, in our case, we discuss stationary solutions of (5), with a diffusion
coefficient having a power law dependency D(u) = (|Vu[P~2 + |Vu|?"2) and
reaction terms c(z,u) = —q(z)|uP2u — w(z)|u|? 2u + \f (z)|u]" 2u.

Another important example where equation (1) arises is the study of soliton-
like solutions of the nonlinear Schrodinger equation

W = —Ap +q(z)y — Af (@) 9772 — Agyp + W (2, %)), (6)

where Agtp = div(|Ve|92V4) is a g-Laplacian. This class of equations was
proposed by C.H. Derrick [7] as a model for elementary particles (see [5, 3, 4]
for details). If we consider standing waves of (6) in a bounded domain 2

h(t, ) = u(z)e ™"
then, in order to find A € R and u one has the following eigenvalue problem

—Au+ (V(z) - wju — Agu+ W'(z,u) = Af(z)|[u]"?u, z€Q,

(7)
u=0, on Of.



which belongs to the class of problems (1)-(2) forp =2 < v < 2*, (V(z) —w) =
q(z), and W(z,u) = w(z)|ul.

Equation (1), which contains only one of the Laplacian, i.e., the p-Laplacian
Apu = div(|VuP72Vu) or the g-Laplacian Agu = div(|Vu|?"2Vu) has been
widely considered (see e.g. [15] and the references therein). However, there does
not seem to have been much work when both p-Laplacian and g-Laplacian occur
in (1). As far as we know, only the papers [5, 3, 4] deal with such a problem.
Note that, in general, problem (1)-(2) is non-coercive, non-homogeneous, the
corresponding Euler functional is unbounded both from above and below, and
the nonlinear term f(z)|u|”?u is indefinite, i.e., f(z) may change sign in Q.
Another obstacle here is that only little is known about the regularity of the
solution of (1) (see [8]), which makes it difficult to apply for example powerful
tools such as the super-sub solutions or bifurcation methods. Nonhomogeneity
and indefinitness of the nonlinearity makes it difficult to apply the constrained
minimization method and the Mountain-Pass Lemma for arbitrary .

In our approach, the main idea to overcome these difficulties lies on the
nonlinear spectral analysis recently developed in [12] by one of the authors of
the present paper. Based on this idea, we introduce a well-defined variational
principle which, in general, corresponds to problem (1)-(2) on a discrete sub-
set of the values A. Firstly, this variational principle enables us to prove the
existence of non-negative solutions to (1)-(2) for some specific characteristic
values A = /\f, A7 . Then we prove the existence of non-negative solutions in
the whole intervals A > )\f', A < A7 . This variational principle enables us also
to find a priori bifurcation points —oo < A] < 0 < A] < +o0 and to prove the
non-existence result of any non trivial solutions for (1)-(2) as A €]JA7, A{[.

It should be noted that, in case of a single Laplacian in (1), the behaviour
with respect to A is distinguished. For instance, when equation (1) contains
only the p-Laplacian and w(z) = 0, ¢(z) > 0, f(z) > 0, it is well known (see
for example [15]) that for all A > 0 (1)-(2) possesses a positive solution. Nev-
ertheless, under the same conditions, but with the addition of the g-Laplacian
term in (1), one has (see below) a gap A € (0,A;) of non-existence of solution
for (1)-(2).

The paper is organised as follows. In section 2, we briefly present our
results. In section 3, we introduce a 0-homogeneous variational problem which
corresponds to (1)-(2). In section 4, we show that there exists an interval for A
in which problem (1)-(2) only admits the trivial solution. In section 5, we prove
the existence of a non-trivial non-negative solution for two characteristic values
of A. In section 6, we apply the Mountain-Pass Lemma, in order to achieve the
existence of a whole branch of non-negative solutions, starting from these two
characteristic values. Finally in section 7, we prove that problem (14)-(2) has
a unique weak solution in WO1 Q).



2 Statements of the Results

Introduce the following functionals
Hyf0) = [ (V9P + q@)lop)dz,  Hyo) = [ (9ol +w(z)ol)do,
Q Q
and F,(v) = / f@)||"dz, veW, (8)
Q

where W = WO1 (Q) is the usual Sobolev space endowed with the norm ||u||y =
(Jq |Vu|?dz)'/9. Recall that there is a continuous embedding W14(Q) C L7 (Q)
if ¢* < +o00 and observe also that if p < ¢ < n then p* < ¢*. Hence under
assumption (3) the functionals in (8) are well-defined on the Sobolev space W
and belong to the class C1(W).

The problem (1)-(2) has a variational form with the following Euler func-
tionnal on W

1 1 A
I(u) = —Hp(u) + —Hy(u) — —F,(u). 9
A()pp()qq(),y’y() (9)
We will deal with a non-trivial weak solution ug of the problem (1)-(2), i.e.,

with a function ug € W that is not identically zero on 2 and satisfies

S D)) = T(w)@) =0 (10)

for every ¢ € C*°(Q). Thus the existence of weak solutions of problem (1)-(2) is
equivalent to the existence of critical points for the Euler functional Iy defined
above.

First, based on the nonlinear spectral analysis [12], we introduce the follow-
ing two characteristic points

=7 =P
H -» H -
A} = inf{ Tpas p(?q: (O p ) >0, vew\ {0}, (11)
v
and
Cpair Hy(v) =7 Hy(v) 7=
q—p q—p
AT = sup{ 222" VT Fw) <0, veW\{0}}  (12)
Fy(v)
where in case meas{z € Q: f(z) >0} =0 or meas{z € Q: f(z) <0} =0 we
put A] = +o00 or A] = —o0, respectively. Here we denote
q—p
Cran =

1P PR
(y=p)ev(g—n)e>
It can be shown that A7 < —K < 0 and A] > K > 0 (see below) where K is
a constant depending on p, q,v,7,, and || f|lo,-

Our main result on the non existence of solutions of (1)-(2) is the following



Theorem 2.1 Under the assumption (3) and (4), the problem (1)-(2) has no
non-trivial solution when X €]A7, Af[.

Actually, in (11), (12) we deal with general variational principles (see below
Theorem 3.1) so that in particular every solutions of the variational problems
(11) (resp. (12)) correspond to weak solutions of (1)-(2) with a specific charac-
teristic value of A which can be expressed as following

Y _ y _
Ai— = WAT’ (resp. )\1 = WAI ) (13)

Here and from now on we denote o = %. Remark that under the assumption

(3) we have 0 < a < 1. Notice also that the strong inequalities A < A\ and
A7 < A7 hold (see below).

We now state our main result on the existence of non-negative solutions

Theorem 2.2 Let suppose that (3) and (4) hold.

(1) Assume that meas({zx € Q : f(z) > 0}) # 0. Then for every A > A]
there ezists a non-negative weak solution uy € W\ {0} for the problem (1)-(2).
Moreover, I/\1+(u/\;r) =0 and I (uy) > 0 for every A > Af.

(2) Assume that meas({z € Q : f(z) < 0}) # 0. Then for every A < A\|
there ezists a non-negative weak solution uy € W\ {0} for the problem (1)-(2).
Moreover, I/\l_(u)\l—) =0 and I)(uy) > 0 for every A < AJ.

To prove this theorem we use the following idea. First, using the variational
principles (11), (12), we prove the existence of non-trivial solution of (1)-(2)
for the separate given values A = Ai", A7 - These results enable us to apply the
Mountain-Pass Lemma, and then, to prove existence results for A > )\f’ and
A < Ay, respectively.

Our last result deals with the existence and the uniqueness of the solution
for the following reaction-diffusion equation

—div ([|[VuP™2 + |Vu|?™] Vu) + g(2)[uP"?u + w(z)|u|"*u = g(z), z € Q(14)
with Dirichlet boundary condition (2). We will prove the following

Theorem 2.3 Let assume that (3) and (4) are satisfied, and that g € W14 (Q).
Then the problem (14)-(2) has a unique weak solution.

Throughout the article, we assume that (3) and (4) hold, we set p’ = %,

q = q%l, and we denote by (.,.)q 4 (resp. (.,.)r p) the duality product between
the spaces W14 (Q) and W, "/(Q) (resp. between W1 (Q) and Wy (1).)
We also denote by ||.||o,y the norm in L7(€2), and by ||.||0,cc the norm in L*°(£2).



3 Homogeneous variational principles

In this section, following the ideas of the spectral analysis [12], we introduce a
0-homogeneous variational problem which corresponds to (1)-( 2).

As in the fibering scheme [12, 14] we associate the original functional I
with a new fibering functional T, on 0, +oo[xW \ {0} defined by

In 10, +oo[xW\ {0} — R,

tP t? t7
(t,v) — L(tv) = EHP('U) + 5Hq(v) — A—F,(v).
} (15)
Then I, is a C! - functional and we are able to extract the C'-submanifold
8 82
%a = {(t,0) €10, +oo[xTW \ {0} = £ 13 (,0) = 0, 55 Ta(t,0) # 0.

We recall that, according to the base lemma of the fibering scheme [12, 14], if
(tx,v\) € Ty is a critical point of Iy on 0, +oo[xW \ {0} then uy = tyvy is a
critical point of the functional 1.

In accordance with the conception of the spectral analysis [12], we first
consider the boundary (in the strong topology of W) of the set X, i.e., the
subset d) = 0% C {(¢,v) € [0,400) x W} of the solutions of the system

%I)\(t ’U) = 0,
) (16)
52 L(t,v) = 0.

Then to find possible (a priori) bifurcation points it is natural to extract extreme
points A} of the set

{A:dy #¢} CR (17)

Observe that in our case the system (16) on dy, = 0X) is equivalent to the
system

{ H,(v) +t7PHy(v) — M7PFE,(v) = 0

- - (18)
(p = D Hp(v) + (¢ — D)* PHy(v) = Aly = D)7 PFy(v) =

It is easy to see that this system is solvable, i.e., for each v in W \ {0}, we are
able to define the real numbers t(v) > 0 and A(v) which are the unique solution
of (18). Moreover, very simple calculations lead to

(Aw) = Gy 2l Ug“) ,
\ tl) = E ; (19)
Crar =15 —p)1 O‘(q — )




Thus the set (17) can be exactly described and we are able to introduce the
following characteristic points:

Af =inf{\(v) : F,(v) >0, v € W\ {0}}, (20)

Ay =sup{A(v): Fy(v) <0, ve W\ {0}}. (21)

Here we deal with variational principles, i.e., variational problems (20), (21)
corresponding to the problem (1)-(2) in the following sense

Theorem 3.1 Let assume that (3) and (4) hold. Suppose v € W \ {0} is a
critical point of A(v) on W such that F,(vo) # 0. Let

1

50 = s(v0) = (g)”two), do = dafon) = —TAew). (22

Then uy, = sovg € W \ {0} is a non-trivial critical point of I, on W. Fur-
thermore, it holds I,(uy,) = 0.

Proof Let vy € W\{0} be a critical point of A. Then we have (X (vg), @)y 4 =
0, VYo € W. By direct calculations, we obtain:

Hp(vp) ! p—2 p—2
@» Cpan( ) ( /Q Vool 2(Vvo, V) d + /Q aluol? 2o o dz )

H,(vg)\ @ _ _
+ (1= 0)  Cpay (F22)" ([ 19002V, Vo + [ wlunlt2unsp )
Q Q

Hq("’O)
— 7)\('00)/ f|vo\7_21)0<pdx = 0.
Q

for every ¢ € W. Multiplying this equality by and setting uy, = sovo,

aql—a
we obtain after simplifications the weak equality (10). Using (15) and (19),we
derive straightforwardly that Iy,(uy,) = 0.

Let us prove the following

Proposition 3.1 Let assume that (3) and (4) hold. Then there exist two con-

stants C1 = C1(p,v,7m,Q2) > 0 and Cy = Cs(q,7,7,Q) > 0 such that

ce Cy
£ llo.r

(1) AT <AL < = Cpgy

(1) 0< Cpany < AT < AT,
cy Gy °
[1f{lo,r

Proof Let us prove the first estimation. Let v € W \ {0} and F,(v) > 0. By
the following continuous embeddings

< 0.

W, P(Q) < L¥(Q) < L'(Q) Vy<s<p,



it can easily be shown that we have

F p F q
Hy(0) > Cuprr D (TA2)7 and Hy(w) > Colqor (1LY, 23)
[1fllo,r [ £1lo,r
where 0 < Ci(p,7,r,Q) and 0 < Cs(y,q,7,12) are some Sobolev’s constants
occuring in Holder’s inequalities and Poincaré’s inequalities. Hence, since a% +
(1-a)l -1 =0, we get by (19) and (23) that

Ci(p,7,m, ) Ca(y,q,7m,Q)" @
Hf 0,r

It remains to prove that A\] > A , which also can be written as following
(see (13))

Av) > Cp,(m

(’)’)q—p

i — 1
Setting p = L2 >0, n=2L"L50, the last inequality yields to (1+7)7 >
p p

1

(I4p)#. Observing now that the function z — (1+a:)% is decreasing on |0, +o0|
and since p > 1 we derive the proof.
The proof of the second estimation is similar.

4 Non-existence result

In this section we prove Theorem 2.1, i.e. the non existence of non trivial
solutions for every A7 < X < Af.

Let A € [0,A][. Assume the converse that there exists a solution u € W \ 0 of
the problem (1)-(2) Let v = u/||u|| and ¢ = ||u||. Then by assumption it should
be

O Bltn) = (I3(10),0)pg =0. (24

It is easy to see that in case F,(v) < 0 and A > 0 this equality is impossible.
Suppose that F,(v) > 0. We set

o - L
—I\(t,v) = 77" Ri(t,v), (25)
ot
with Ry (t,v) = 77 Hp(v) + t977 Hy(v) — XF,(v). By (16), (18), (19), we
infer R)(,)(t(v),v) = 0. It is easy to see that R\(t,v) > Rx(t(v),v) for every
t > 0. Moreover, according to (11), (19) and since A < A < A(v) it follows
that Rx(t,v) > Ry, (¢ v) for every ¢ > 0. Hence we get

R)\(t,’l)) > R,\(t('u),'u) > R)\(v)(t(’l)),’l)) =0



and from (25) we conclude that for every A < A} and every v € W such that
F,(v) >0

o -~
SrIA(t0) #0VE> 0.

Thus we get a contradiction with (24) and therefore the functional I, has no
critical point in W\ {0} as A €]0, A{[. The proof of the theorem for A € JAT, 0]
is similar.

5 Existence of solutions for A = A\ and )\ =
AL

In this section we prove the existence of a non-negative, non-trivial solution of
(1)-(2) for the separate given values A = A\] and A = A]. To this aim, we first
prove the following

Lemma 5.1 Assume that (3) and (4) hold.
(i) If meas ({z € Q, f(z) > 0}) # 0, then there exists v € W \ {0}, non-
negative, such that

Avi) = AT = inf{A(v); Fy(v) >0, ve W\{0}}.
(it) If meas ({z € Q, f(z) < 0}) # 0, then there ezxists v; € W \ {0}, non-
negative, such that

Awvy) = AT = sup{A(v); Fy(v) <0, ve W\{0}}.

Proof We start with the proof of i). Remark that the application A : v —
A(v) is a 0-homogeneous function, i. e.

A(tv) = Av) Vt>0, Vv € W such that F,(v) # 0.

Moreover, for any v € W \ {0}, we introduce the strictly positive real value

R R 1
t =: t(v) = T
(Hp0) Hy(v)=)"
such that
(Hp(tv))* (Hy(0))'=%) = 7 Hy(v)* Hy(v)!
= 1.
As a consequence, if we set
M = {ve W\ {0}; Hy(v)“ Hq(v)l_o‘ =1}, (26)

the definition of the characteristic point A} (see 20) reduces to

AT = inf{\(v): F,(v) >0, ve M }.

10



Let us now prove that A] is achieved. Let (v,)nen be a minimizing sequence
of A(v), i.e. satisfying
Mvn) — Af, withwv, € M and F,(v,) > 0. (27)

n—-+o0o

Since v, € M, we deduce that

lon 1%, llonlfy @ < 1. (28)
0
So the continuous embedding W —» WO1 P(Q) implies that

loall'5 )" < C lloallly @7, € >0.
0

This yields
[vallfs < .

and we deduce that v, is bounded in WO1 P(Q).

Consequently, using the compact embedding WO1 P(Q) cc L7(Q), we infer the
existence of v1 € WO1 P(Q) and a subsequence (vy;) converging to v; weakly in
WO1 P and strongly in L7. Moreover, since F, is a continuous function from L7
into R, we have

Fy(vn,) —  Fy(v). (29)

nj—+oo
Thus it results that F,(vi) > 0. Let us show that F,(v;) # 0. Assume the
converse that F. (v;) = 0. Then (8), (19) yield

Hy(vg;)* Hy(vn;)' 1
Awvn,) = C, A L Ak = Cpgy 77— . —2_ +oo,
( n]) D,q,Y F’y(vnj) Y21 bel F’y(vnj) n]—)—f—oo

that is in contradiction with A1 (vn;) — A{. So we conclude that Fy(v1) #

mj —>+00

0, and therefore v; # 0.
Since (vn;) converges to v1 # 0 strongly in L7(Q2), we derive that for n; large
enough ||vy,;[loy > ¢ > 0, ¢ being a constant. Therefore, the continuous embed-
ding WP (Q) — L7(Q) leads to

0< ' < oy
and then, using (28), we finally get

[om; lw < € < +oo.
We deduce from the last inequality that v;1 € W, and that at least for a
subsequence that we still denote vy,

|| Lp,
W

Ung TS UL weakly in W. (30)
J

11



Since the functions H, and H, are weakly lower semi-continuous in W and
W,P(Q) respectively. Then,

Hp(vi) < liminf Hp(v,) = Hy,
H(v) < 71”%0;1{( ) o= @ (31)
) < limint -

Hence by (19), we deduce

liminf A(v,;) = liminf
nj—>+o0 nj—>+o00

CP;Q:’Y

HP(UH]‘ )a Hq (U'ﬂj )lia
Fy (vn;) ’

and consequently, with (27), (29), (31) and since F,(vi) # 0

1
Af > Cp.ay hmlnf( (vnj)o‘) hmlnf( (’Unj)l_a) liminf( 4 )

nj—>+00 nj—+00 n;—>+00 F’Y(Un])
[e% l—a
1
2 Cpay (%ugng( )) (}éﬂf&gH( )) 7y (v1)
—1—a

H H, (Hp(v1))* (Hy(v1))' ™
> — > =
= Cp,tm F'y('Ul) = Upay F7(U1) A(v1)

Thus, we get A(v1) = A]. Furthermore, the function A : W\ {0} — R being
even, we have A(v1) = A(Jv1]) = A, and we infer the existence of at least
one non-negative solution v;" = |v;| of the minimizing problem.

Notice that the characteristic point A] can also be viewed as:
—A7 =inf{-\(v); ve W, F,(v) <0,}.

Thus, our previous arguments are still suitable for proving that A is achieved.

A consequence of Lemma 5.1 is the following

Lemma 5.2 Assume that (3) and (4) hold, and that meas ({z € Q; f(z) >
0}) #0 (resp. meas ({z € Q; f(z) <0}) #0.)

Then, for A\ = X (resp. X\ = X[ ), there exists Unt # 0 (resp. Uy- #0),
non-negative weak solution of problem (1)-(2), satisfying Iyt (u)\fL) = 0 (resp.

I)‘f(u)\f) =0).

Proof  ;From Lemma 5.1, we infer the existence of v{" and v;, non-
negative critical points of A(v) on W. Then, it results from Theorem 3.1 that

1
Uyp = (%)ﬁ t(v]") v{ is a non negative weak solution of problem (1)-(2) asso-

ciated with A\ (= 7 A(v)). In the same way, Uy- = (%)ﬁ t(vy ) vy

paql—a
is a non negative weak solution of problem (1)-(2) associated with A\ (=

'7
o —7—=A(v;)). Moreover we have I)‘;r (uA;r) =0 and I>\1_ (uAf) =0.

12
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6 Existence of solutions for A > A\{, A < A\

This section is devoted to the proof of Theorem 2.1, i.e. we prove the existence
of non-negative, non-trivial solutions of (1)-(2) for A > A] and A < A\]. We
first prove three Lemmas which will be useful afterwards for the application of
the Mountain-Pass Lemma [1].

We say that (u,) C W is a Palais-Smale (P.-S.)-sequence if it satifies the
following condition
(32)

7
1Ty 0,

{ [Ix(un)| < D Vn >0,

with some constant D > 0.

Lemma 6.1 We assume that (3) and (4) are satisfied, and X € R.
Then any (P.-S.)-sequence (u,) C W is bounded in W.

Proof Let (un,) C W be a (P.-S.)-sequence, i.e. it satisfies conditions (32).
Then by (9) we have

<I:\(un)a<p>q’,q = /‘Vun‘p2(Vun,V(p) d$+/Q‘un|p2un(Pd~T+
Q Q
—I—/ |Vun|q72(Vun,V<p) d:v—l—/w|un|q2un<pdx—/\/ f\un|772un<pd:1:.
Q Q Q
for every ¢ € W. Thus

(I (un), un)grg — 7 Ia(un) = (1— %) Hy(un) + (1= 7) Hy(um)

Using (32), it follows that

(1- %) Hy(un) + (1= 7) Hy(un)

IA

[\ (un)lly 10 lunllw + D,
o(1) llunllw + v D.

IN

Furthermore, since 1 < p <y < p* and v < ¢, then 1 — % <0,and 1 — % > 0.

So, there exists a constant ¢ > 0 such that (1 — %)Hp(un) > (—c) |lun|hy-
Finally, we get
(1=2) llunllyy — cllunlly — o(1) llunllw < ¥ D, with1—2>0.

Consequently we deduce that the sequence (u,) is necessarily bounded in
w.

Lemma 6.2 Under the assumptions (3) and (4), if (un) C W is a Palais-
Smale sequence of Iy, A € R, then (uy,) has a strong convergent subsequence.
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Proof The case g > n is simple. We only detail the proof in the case ¢ < n. If
(un)nen is a Palais-Smale sequence, then I (uy,) is bounded and I, (uy,) == 0,
n o

and we infer from Lemma 6.1 that u, is bounded in W. Thus, there exists
u € W, and we can extract a subsequence (uy,) satisfying:

. — u (weakly) in W,(9), (33)
up, — u (strongly) in L7(2) with n < g¢". (34)

Un

. . . !
Furthermore, since uy, is bounded in W and I (uy, ) —+> 0 we have:
N —r+00

! /
(B n)s v, =) | < M) -1 (lamlw + ullw ) =0

Therefore

(In(Uny ) Un, — U)g' g nk_>—+>oo 0. (35)

Moreover we have

- -1
/Qw [n |77 Jun,, —ul dz < Jwllog [lun, 1§ g llun, = ullog.

*p > *q
=7 qa —q
_ rq <
n= " .
(r—1g¢ —r(g—1)
Since 4y, is bounded in W, it follows from ( 34) that

By assumption r > . This implies that

q—2 _
/Qw|unk| Uy, (Un, u)da:nk_>—+>000.

Proceeding as above, we also obtain

/f|unk\7_2unk(unk—u)d:c — 0 and /q|unk|p_2unk(unk—u)d:c — 0.
Q Q

nE—r+00 nE—r+00

This, combined with (35) lead to

Vi, [P 2Vun, V(up, —u)ds + Vi, |9°Vu, V(t,, —u)de — 0
Q k k k Q k k k

Np—>+00
which also can be written

(=Aptuny; Uny, — u)p’,p + (—Aquny s Uny, — U)q’,q nkjoo 0. (36)

We record that —A, (resp. —Ap) can be seen as a duality mapping between
W, 4(Q) and W14, (resp. between Wy (Q) and W% (1),) corresponding



to the normalization function p(t) = 9! (resp. o(t) = * 1)(cf. [13], [9]).
As a consequence, we have

(—Aqun, + Aqu, Up, —U)g q

1 1
> (Jlunllfy " = Iz (|unk||w Julw) (37)
> 0 (because ¢(t) = t97! is an increasing function),

v

and

(=Apun, + Apu, Un, —u)yp
-1 -1
> (a5 = Tullls) (lm g = llullyas) 2 0.
(38)
Furthermore, since Ayu € W9 (Q) and Ayu € W' (Q) then (33) and (36)
yield the following

(—Aptn, + Apt, Up, — Uy p+ (—Dgtn, + Agts,up, —u)yq —> 0. (39)

nk—+00

Using (39), (37), and (38), we obtain
0 < (lhuny 5" = Nty ") (lmelhw = llelw) =0,

and we conclude

4
O (40)

According to (33) and (40), we finally achieve the strong convergence of (uy, )
in the space W = W,"%(q).

Lemma 6.3 Assume that (3) and (4) hold, and that X # 0. Then there ezist
constants p > 0, @ > 0 such that I\(u) > « for each u € W satisfying
l[ullw = p.

Proof We consider the case A > 0. The case A < 0 is very similar and will
be omitted. According to the following embeddings

W o W,P(Q) — L*(Q), Vs<p,
there exist two constants C1,Cy > 0 such that

follygo < Gt llw,

- 41
and  fo Sl dz < Colflor Nl 4

If we assume that u € W satisfy ||ul|lw = p, p > 0, then, using (9) we have

pq 1 ACQ
Llw) = "+ I;IIUIIIV’V&,p == £l lall 0
pl 1 P ( ACQP )
> ol 17l 1wl

15



Let us set

= i( g )fp_
Ci \AICop (1 llogr
Then, for every 0 < p < p*, it follows from (41) that

)\Czp —
1= 222 | flog full, , >0
Consequently, we get
pl
I)\(u) > ;,

and the proof is complete, provided a = P
q

Theorem 6.1 Let assume that the hypotheses (3) and (4) are satisfied.

(i) Under the assumptions meas ({z € Q; f(z) > 0}) # 0 and for all
A > A, there ezists uy € W\ {0}, non-negative weak solution of problem
(1)-(2), such that Ix(uy) > 0.

(ii) Under the assumptions meas ({z € Q; f(z) < 0}) # 0, and for all
X < A7, there ezists uy € W \ {0}, non-negative weak solution of problem
(1)-(2), such that Ix(uy) > 0.

Proof We only prove (i), the case (i¢) being very similar. The proof relies
on the application of the Mountain Pass Lemma. Indeed, according to Lemma
6.2, we know that any Palais-Smale sequence for I, has a strong convergent
subsequence in W. Moreover, for every A > A, the functional T, satisfies :

(i) I\(0) =0,

(77) Let take p satisfying 0 < p < min{ p*, ||u>\;r |lw }, with p* as in Lemma
6.3 and u ar € W defined in Lemma, 5.2. Then there exists a > 0 such that

Vu € W s. t. ||lullw = p, then I)(u) > « (cf. Lemma 6.3).

(797) Furthermore, we have HUATHW > p, and (cf Lemma 5.2)
+ _
VA > )] I)\(u)\1+) <I)\fL(u)\;r) =0.

Hence we can apply the Mountain Pass Lemma [1] and therefore we conclude
that for every A > A{ the functional I, possesses a (non trivial) critical point,
i.e.

Juy € W\ {0} s.t. Iy(uy) > a >0 and I:\(uA) =0.

Moreover, uy for all A > A is non-negative. Indeed it follows from the argu-
ments
In(u) = I\(Ju]) YueW and Unt is non-negative.

16



(cf. [6]). Thus for every A > A, the existence of non trivial non-negative
(weak) solutions for problem (1)-(2) is ensured. And the proof of Theorem 6.1
is complete. This also ends the proof of our main statement, since Theorem 2.2
is a direct consequence of the Lemma, 5.2 and Theorem 6.1.

7 Proof of Theorem 2.3

In this section, we prove the existence and the uniqueness of the solution of
problem (14)-(2).

The existence of the solution follows from standard arguments. Indeed, let
us consider

T(u) = %pr) + L Hyw) - /Q gud,

q
with H,, H, defined in (8).
It is easy to check that the functional J : W — R is weakly lower semi-
continuous and of class C! on W. Let us show briefly that it is also coercive.
The Young’s inequality implies

1 /
| | uda] < lally-so Il < gollully + C gl
with C > 0. Then it follows that

1 /
q q
T > ol —Cllal

which tends to +00 as ||u|lw — +o0o. Thus J is a coercive and the existence
of the solution of (14)-(2) can be obtained by the minimizing problem (see
Theorem 1.1.2 in [15])

J(u) = vienva J(v). (42)

Let us prove now the uniqueness of the solution. Suppose on the contrary that
there exist two distinct solutions u1, ug in W for problem (14)-(2). It yields

(—Apur + Apup, ur —uz)yp + (qurPur — qluzP~?uz, w1 — u)y p+
(—Aqu1 + Aqug,ur — ug)g g + (wlur]T%ur — wug|" Pug, uy — ug)g 4 =0.

The function x — |z|"~2 z being increasing when r > 1, then, the last equality

reduces to
(—Apul + Aqu, uy — 'U/2>p”p + (—Aqu1 + Aun,ul - UQ)q’,q S 0. (43)
A consequence of the strict convexity of the spaces W and WO1 P(Q) is that the
duality mappings —A, and —A,, are strictly monotone (see [13], [9]), i.e., since
up # U
(—Aqu1 + Aun,ul — 'UIQ)q/,q > 0,
(44)
(—Apu1 + Apug, up — ug)y p > 0.

Thus, combining (44) with (43), we get a contradiction.
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