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Local limit theorem for supremum of an empirical
processes for i.i.d. random variables

Jean-Christophe Breton* and Youri Davydov'

Abstract

In this paper, we establish the convergence in total variation norm of the
law of the supremum of an empirical process constructed from a sequence of
i.i.d. random variables to the law of the supremum of a (generalized) Brownian
bridge.

Introduction

Let (&)ien< be a sequence of independent identically distributed random variables
with common distribution function F' assumed to be smooth. Consider the empirical
process given by:

Z oo (&) = F(1)]. (0.1)

The well known invariance principle [B, Th. 14.3] states the following weak conver-
gence of ((,), in D(R) (the space of right-continuous functions with left-hand limits):

Cn = W};, n — 0o, (0.2)

where W) is a generalized Brownian bridge, that is a continuous Gaussian process
with independent increments and with covariance function given by

F(t) A F(s) — F(t)F(s). (0.3)

In the uniform case (F(t) = ¢, t € [0,1]), we note W for the standard Brownian
motion on [0, 1], and the related standard Brownian bridge can be realized taking
Wo(t) = W(t) —tW(1), t € [0,1].
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The goal of this work is to study the behaviour of the sup of empirical processes
and their asymptotics in law. Of course, (0.2) yields immediately when n — oo, the
weak convergence

sup G, (t) = sup Wa(t).

teR teR
In this paper, our aim is to strengthen this convergence to the convergence in variation.
In the sequel, this later convergence will be denoted ~=+ and the relative norm will
be denoted simply || - ||. Since the laws are absolutely continuous, such convergence
are equivalent to convergence in L!'(R) of their densities, which yields a local limit
theorem for this law.

In the case of linear piecewise processes, such stronger convergences in variation
have been yet derived in [DLS, Sect. 20] and [BD] for a broad class of functionals
for which the key is the existence and non-degeneracy of directional derivatives. For
instance, in this class, there are smooth functionals and supremum or integral type
functionals. In the case of empirical process, the problem is much more difficult since
even with the simplest functionals of estimation, f,(z) = x(ty), the law of estimated
empirical process f,((,) is atomic and can thus not converge in variation to the
Gaussian law of W) (to).

For this reason, we deal with specific functionals of interest and we begin in
this paper with supremum-type functionals. The main result is the following:

Theorem 1 Let (&);~0 be a sequence of i.i.d. random variables with a continuous
distribution F, and (I be the related empirical process given in (0.1). Then

L(sup Cf(t)) RN E(sup Wg(t)), n — 400
teR teR

where L(X) stands for the law of a random variable X .

Remark: It is enough to prove Theorem 1 for a Gaussian i.i.d. sequence since
when (&;);en+ is a sequence of i.i.d. random variables with continuous distribution F,
the random variable F'(¢;) are i.i.d. uniformly distributed and we have easily

G (1) = G (F (1)

where ¢ and ¢V stand for the empirical processes related to the F' and the uniform
distribution; but in the same way, ¢®(¢) = ¢V (®(t)) where @ is the standard normal
distribution. Since F' and ® are surjective from R to [0, 1] we have

sup C, (t) = sup ¢ (t). (0.4)
teR teER

Moreover, W2 and W2(®'o F) have the same finite dimensional law since both have
the same covariance function, namely (0.3). Finally,

L(supWp(t)) = L(supWg).
teR teR

So that Theorem 1 holds for any i.i.d. sequence (;);en With a continuous distribution
F whenever it holds for i.i.d. Gaussian sequences.
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The sequel is thus devoted to the (long) proof of Theorem 1 for an i.i.d stan-
dard Gaussian sequence (&;);>o. In order to derive such convergence in variation, we
shall apply the so-called superstructure method relying on the behaviour of the law
of empirical processes in admissible directions for the asymptotic law (of Brownian
bridge). For a complete account on this method, we refer to [DLS]. In particular, we
shall make a fondamental use of the following result:

Theorem A ([DLS, th. 18.4]) Consider a sequence of probability mea-
sures {Pn,n € N} defined on the Borel o-algebra By of a complete separable met-
ric space (X, d). Suppose that P, = P.. Furthermore suppose that, for Ps-almost
all x, there exists an open ball V centered at x, a number ¢ > 0 and also a family
(Gn,c, neN, ce (0, e]) of measurable transformations of X such that the following
five conditions are fulfilled:

(i) for each ¢ € (0,€) and each 6 > 0,

lim P, {z||Gpex — Goocx| > 0} = 0;
n—00

(1) for each c € (0,¢€), the mapping G . is Pe-almost everywhere continuous; more-
over suppose that p(S,c) = sup,cgd (2, Gooc2) = 0 when ¢ — 0, for each open
ball S;

(i4d) lime_,olimy, o || PGt — Pull = 0;

(iv) for each 6 € (0,¢€),
[ Poagnt = Xoagsl Palds) — 0 asn e,
gy

where @n () = f(Gpc2) withn € N and c € (0,€;

v) for each § € (0,¢€), the mapping z — Nosivar, of V into Z(R), the Banach
[ 9 } o0,z
space of signed measures on R normed with the total variation, is Ps-almost
everywhere continuous.

Then
Pnf_1 BN Poof_l, n — +00.

The rest of the paper is organized as follows: as empirical processes lie in the
Skorokhod space D(R) (that is the space of right-continuous function with left-hand
limit), we first define suitable transformations G, . and our purpose is to show the
conditions of Theorem A are fulfilled. We start describing a setting where Theorem
A applies and each condition is derived in this setting. The proof of conditions (i)
and (iv) in Sections 1, 4 are intricate and lenthly.



Notation

First, we note in the sequel ® for the standard Gaussian distribution function and
p(t) = ﬁe‘ﬁ/ 2 for its density.

Let remember some notation for the Skorokhod space. The space of sample
path of the empirical processes (0.1) is the Skorokhod space D(R). But since (,(t) — 0
as t — 400, we shall rather consider as sample space the subspace Dy (R) = {3: €
D(R) | lim a(t ) =0}.

We equipp this space with a complete separable topology brought from the
usual Skorokhod space ([0, 1]) as follows: consider a bijection from R to |0, 1[ ; in
our setting the simplest choice (we will do!) is to consider the bijection

whose inverse is denoted W. Define then the following Skorokhod metrics on Dy (R):

dO,R(m, y) = d()(l‘ O \I/, Yo \II),

da(n,y) = dzol,yow), 1%y ED(R) (0.5)

where dy and d are the basic Skorokhod metrics of D([0, 1]) given by (see[B]):

do(z,y) = inf | sup |2(A(t)) —y(t)| + sup [A(?) —tl),

AEA \ tefo,1] te[0,1]
( At — A
d(z,y) = inf | sup |z(A(¢)) —y(t)]+ sup log 5 ,
AEA te[0,1] s<t, t—s
\ s,t€[0,1]

z,y € D([0,1]) and A = {A : [0,1] — [0, 1] nondecreasing continuous bijection} and
where by convention, we take

zoW(0) = }gr(}:r o W(t) zsglinoo:r(s) =0, z0o¥(l) = 121%33 o U(t) :Slgglo z(s) = 0.
Since d is a complete metric for D([0,1]), it is an easy matter now to see that
(Dy (R), dg) is a complete separable metric space. But, since dy and d define the

same convergence on ([0, 1]), we will work henceforth with dor. We refer to [B] for
the study of the Skorokhod space D([0, 1]).

The first step consists in the definition of the transformations G, and G .
To this way, we consider the following transformations acting as translations on the
underlying Gaussian variables:

More precisely, since the support of P, is B(R)-measurable, take G, .z to be given by
(0.6) if z = (,(w) € Supp(P,) and 0 if = & Supp(P,).



The asymptotic transformation is chosen to be a mere translation:
Goocx(t) = z(t) — @' (2). (0.7)

Applying the Skorokhod’s representation theorem [B, Th. 6.7], we can suppose
we are on a probability space (€2, F,P) where the weak convergence (0.2) turns in the
almost sure one ¢, — W3 in Dy (R), n — oo. But since W is a continuous process,
the convergence turns out to holds also for the uniform metric (see [B, p. 124)).

The only point to take care about, when we apply Skorokhod’s theorem, is
the fact, we have to consider an array of variables (§~1,1, e ,énn) rather than a mere
sequence (;)ien, the n-th empirical process being constructed from the n-th line of
the random array (&1,...,&,,)- In our study, this is not a cumbersome point since
we shall work anyway with the triangular array of order statistics.

Henceforth, we forget the array (51,1, e ,énn) and note (£7,...,&") for the
triangular array of order statistics of (&1, ...,&,).

Localization

The study of argmax of G, .z and G .z for x =, or W2 has some importance in
this proof. In order, to ensure the argmax occur in finite points, we use the following
localization procedure, consisting in the choice for Py -almost all  in Theorem A of
the open ball V(z) and € > 0.

Since P,, almost surely #argmax (z) =1 and argmax (z) € R (i.e. the maxi-
mum does not occur at oo, see [T]), for such an z, define

e:=¢(x) = ——supz(t), V:=V(z)={yeD|dor(z,y) <e}.

Then for w € Q(z) := (W3) H{V(z)}, We(w) € V(z) and dor(Wi(w),z) <
ensuring Go, (W3 (w)) take positive values, so that its argmax does not occur at
+o0.

Since from the Skorokhod’s representation Theorem (, — W2 in Dy(R) a.s.
when n — +oo, for n (randomly) large enough, (,(w) € V(z) for z € Q(z) and
Goo,c(Cn(w)) take positive values, so that its argmax does not occur at foo.

The next sections are devoted to the study of conditions (i)—(v) of Theorem A.

1 First Point

In our setting, point (i) of Theorem A, expressed in terms of the process (,, rewrites:
Ve >0, P{dor(Gnc(Cn);Goo,c(Cn)) >} =0, n— o0 (1.1)

where dy g stands for the Skorokhod’s metric on Dy (R). Note that for ¢ € [0, 1]:

Got(t) = =3 (Uomwion®) — 2(¥()
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(10a(@(€) 1), (12)

=1

Il

GreGuo U(t) = (11-cwi01(& + e/v/m) — @(2 (1))

=1

Sl= Sl= 5
M=

-

(1oa(@E + c/vm) - t). (1.3)

=1

We have
dO,R(Gn,c(Cn), Goo,c(Cn))
= dO(Gn,c(Cn) o \II’ Goo,c(gn) o ‘Il)
= 10f ([|Gre(Gn) (T (M) = Goo,e(Gn) (T (1)) [loo + (1A = 2] o)
— inf {H% > (11000 (®(& + ¢/V/) = Mt = 1o (®(&) +1) + (1.4)

AEA
+ @ (W()|| -+ 1IN tlle }-

We estimate infyc, with the appropriate )\, that cancels the indicator terms. To this
way, take ), the piecewise linear function in A given by

A®(&) = D& + %), i=1,...,n, and M\(0)=0, \(1)=1.
For this choice of A,, we have for any 1 <7 < n:
Lo, (®(& + ¢/v/n)) = 19 (2(&))- (1.5)
Moreover, ||[A,t — t|| is obviously reached at some ®(&;) and is computed as follows:
[Ant =tlloc = sup [A®(&) — (&)
1<<
= sup [®(& +c¢/vn) — (&)
1<i<n
< c/vn.

since ® is obviously 1-Lipschitz. So that, a.s.
[Ant — t||oo — 0, 1 — 0. (1.6)

Using (1.1), (1.4), (1.5), (1.6), it is enough, by now, to derive for all £ > 0:
Ant — t — ——&'(T(2))

P
{v7 Vi
First, note that (& o W)(t) = e Y®*/2/\/2r — 0 ast — 0 or 1 and fix,

[a,1—a] C]0, 1] such that (®'oW)(t) < £/(20) for t €]0, 1[\[2a, 1 — 2ct]. Writing A, (%)
for A\t —t — %@'(\I}(t)), we have:

>€}—>O, n — 00.
o

f
P{\/ﬁtzl[tpl]\fln(t)l >6} SP{\/ﬁtz}ép]\An(t)\ >6} (1.7)
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-HP’{\/E sup ]|An(t)\>€}+1[”{\/ﬁ sup |An(t)|>8}.

telo,l—a te[l—a,l]

Clearly for ¢t € [®(&}'), ®(£7,1)], the supremum of |\t — ¢| is reached at ®(&)
or at ®(&7, ), and is equal to

c c c
D& — P& = —=0'(0,;) ~ —=0' (&) = —=D' o U(D(ET
(6 + /i) = () = —=0'(0,0) = —-8(e) = =0/ 0 W(2(E))
or to the same for index i + 1. But for ¢ € [0, ], ¢ € [0, §] and n large enough:
Vi sup [ At — t — —— &' (W(t))

te[0,a] B \/ﬁ
< sup Vn|At —t|+ 6 sup [®'(T(¢))]
t€[0,a] t€[0,a]

< sup VX @(&) — ®(&])| +¢/2

{i| B(P) OT (£ ,)€0,0]}

< sup /mloEr+

C
—) —®(&)| +¢/2 (1.8)
{i | ®(€7)€[0,20) vn

where in the later inequality we bound the sup over the range
{i| ®(&) or (&) € [0, ]} by those over {i | ®(£") € [0, 2]} using

sup {®(&ih ) — ®(&)} = 0

1<i<

following from forthcoming (1.13) so that for n large enough we have

@& 1) — B(E)| < a. _
Now Taylor-Lagrange formula yields 6, ; € [, & + ¢/+/n] such that:

2
n ¢ n n ¢ ] n
Vi | ®(& + \/ﬁ) — (&) = [c@(&) + \/E(I)”(Hn,,‘) < o[ (E)+0(1/v/n) (1.9)
since ®"(z) = —ze */?//27 is bounded. But, since we consider indices i for which

D(Er) < 2a, we have @' (€') = &' o U(P(E)) < €/(20), so that for n large enough,
(1.8) and (1.9) give:

c
sup |Apt —t— —@'(‘Il(t))‘ < e+ 0(1/+/n)
te[0,0] Vvn
and the probability P { v/n sup |\t —t — i<I>'(\Il(t))‘ > ¢ ¢ is zero for n large enough
te[0,a] \/ﬁ

as should be the probability of an empty set. The same being true for the probability
relative to the sup over {t € [1 — «, 1]}, it remains to deal with the term relative to
the sup over {t € [a, 1 — a]}. To this way, note first that for t = (&),

At — £ — %@'(w» = B(& + ¢/V/n) — B(E7) — ¢/v/n®' (€]) = (c/V/n)*®" (7).



Let us do it more precisely. The extremum of A\t — ¢ over [® (&), ®(&])] is reached
at ®(&') or at ®(&,). Using again Taylor-Lagrange formula, there is some 6, ; €

J®(EF), @(£ )] such that

®'(U(1)) = @' (T(D(E))) + (¢ — D(E))( 0 V) (Br).

It follows with previous notation

- %(t — (1)) (" 0 W) (6n)

c
and taking supremum over [®(&]"), ®(£F,)] yields:
V[ An (8) o,

c ! n
n /\nt—t—%@(@.)

where we note |||| = || ||

Aalt) = At—t——Sa'(er) -

Sre-sen@ow@)| )

00,8

00,2

g = sup {-}. For the first term in the
Sl seraen) o)
right-hand side of (1.10), the supremum is reached

e cither at ®(£) and is thus equal to

O(1/vn) (1.11)

V[ e(€) - o) - —=0'(eD =\/ﬁ(%) (0] =

with 6,; € [€,€" + ¢/+/n] and this goes to zero uniformly (since ®”(z) =
—ze **/2/\/27 is a bounded function).

e cither at ®(£7, ;) and is equal to

A€ = B(Eh) — )
= \/ﬁ‘q)(fz‘nﬂ +c/vn) = ®(&lh) — %(p'(gi")
~ f\ ) + 8 (ni) — —=0'(€))

2 ~
= @' (e7,,) — V(€7 + %\@"wn,m

= ¢c[®" 0 W(P(&7 1)) — @' o W(R(E)+ O(1/vn). (1.12)

But, [o,1 — ] C U[CIJ({;“Z”), ® (&' ,)] where the union is taken for those indices 4 for

which ®(€") € [a/2,1 — «/2]. The sup over [, 1 — ¢] is thus bounded by the greatest
of the sup’s over [®(£F'), ®(£],,)]. Now, in order to compute

c
sup | At —t — —0'(V(1))],
S NG (W(2))



considering (1.12) and the uniform continuity of ® o ¥ on [/2,1 — /2], we are left
with the study of sup;;, |®(&,, — ®(&)| for which we dispose of the Glivenko-
Cantelli Theorem: since U := ®(£F) is uniformly distributed on [0, 1], the variables
U™ are the uniform order statistics. But Fy(t) = ¢, ¢t € [0,1] and

Fy(U) = U¢, Fu(UF) = i/n,

2

whence

sup |®(&7h ) — @(&)| = sup [Ujh, = Up| = sup [Fu(Uf,) — Fu(U7)]

1<i<n 1<i<n 1<i<n
< sup |[Fy(Ujhy) — Fu(Uih)| + sup [Fo(UfL) — Fu(U7))
1<i<n 1<in
+ sup [F,(U}") — Fy(U7")|
1<i<n
<2 sup |F,(t) — Fy(t)| + sup |[(i+1)/n—i/n| — 0, as.

te[0,1] 1<i<n
using Glivenko-Cantelli Theorem. So that, for uniform random variables on [0, 1]

sup U, —U'| — 0, n—o00 as. (1.13)
1<i<n

and now using (1.12) and uniform continuity of ® o ¥ on [a/2,1 — a/2]

Vn sup A®(E) — (&) — id>'(f?) — 0, n—o00 as.
il e(Eels 1-5] vn

since it is true in the both situations by (1.11), (1.12). To finish with point (i), there
is still the second summand of (1.10) to deal with, but it is an easy matter since

_ 9(v(®)

(@) (1) = ¥ (Y() = Frgr

— (1)

is bounded for ¢ € [®(£]), ®(£71)] C [§, 1—5] and since the convergence of sup; <;,, [®(£}, ) —

®(&M)| to zero has just been derived in (1.13).

Finally, (1.10) goes to zero uniformly with respect to all 7 for which ®(£") €
[a/2,1 — a/2] so that

]P’{\/ﬁ sup

te[a,1—a)

Vn

Gathering all the intermediate results from (1.7), point (i) is satisfied.

AJ—%——i%QKQQD‘Ze}——+Q

2 Point (ii

In our setting, this point is straightforward. The function G« . is obviously continuous
since we have chosen G, .z =z — c®'. And

doR(Gooc®y ) = d(Goo 0 W, 20 V) < ||Goo e 0¥ — 20 V| o = || 0 V|| — O,

as ¢ — 0, uniformly in z € Dy (R) since @’ is bounded.
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3 Point (iii
The purpose of this section is to justify

lim iy oo | PaGrye = Pall = 0.
But from expressions (0.1), (0.6) we can write

=L(On(&1,---,6n)); PuGrt=L(On(& +¢/Vn,.... & +c/V/n)),

where ©,, : R* — D(R) is given by

3

%\H

=1

We derive now

[1PaGre = Pall < lIL(& +¢/Vn,. . éa+c/v/n) = L&, ... &)
/Rn Hp dxy---dz,. (3.1)

Now, we can apply Lemma 20.1 in [DLS] (to {(¢) = t) in order to get from (3.1):

”PnG;,lc — Bl <e

from which point (iii) follows immediately.

4 Point (iv)

In this section, we study point (iv) of Theorem A, that is for all § € (0, €]:

/ osent = Noseatll Pa(dz) — 0, 1 oo, (4.1)
’

where @, ,(¢) = sup;cr(Gn2(t)), n € NU{oc}, c € (0,6] and V is some V(x) defined
in the localization procedure.

Since P, = P, (4.1) is obtained if we show that for P,-almost all z, the
convergence z, — z implies

I X0,61%5 5, — A0,61Po0.z, || = 0 (4.2)

(see the remark after Theorem 18.4 in [DLS]). To derive such convergence in varia-
tion, we dispose of the following result of Davydov in [D] for one-dimensional image
measures:

Proposition 1 Let f, : [0,1] = R, n € NU{oo} be a sequence of absolutely contin-
uous functions such that

* fn(0) = foo(0),

11



o fn— fo in L}([0,1]),
o fl_#0 a.e

Then Ao, fr ' = Ao, fa -

n

Unfortunately, Proposition 1 can not be applied directly in our setting because (4.2)
is concerned with the asymptotic distance in variation of two sequences of measures,
whereas Proposition 1 deals with a single converging sequence. Hence, we introduce
)\[O,g]go;lng and split the study of (4.2) into those of

IMo.s1850¢, = Moa®oomgll — 0, (4.3)
1 Mo0.51 P, — )\[O,J]QO;},Wgn —0 (4.4)

for both of which Prop. 1 (or with weaker hypothesis, see Proposition 2) is usable. In
this section || - || stands for the variation norm computed on €2(z), the sub-probability
space related to V() in the localization procedure. To this way, we study the following
functions and their derivatives

(,On,(n(c) = Squn,ch(t) (45)
teR

QOOO;Cn(c) = Squoo,ch(t) (46)
teER

Poowe(c) = sup Goo Wa(t) (4.7)
teR

with the tranformations G, ., n € NU {oo}, given in (0.6) and (0.7).

4.1 Derivatives

In order to use Proposition 1 (or Prop. 2), the first step is to compute the derivatives
of ©n.c0s Pootns Poo,wg- This is the purpose of this section.

4.1.1 Derivative of ¢, .,

First, ¢, reaches its maximum at some a.s. unique &; (unique since almost surely the
&’s are all distinct). Similarly, G, ., reaches its maximum at some else &; + ¢//n.
We can suppose again unicity of this max for almost all ¢, since if G, ¢, (" +¢/v/n) =

Gn,cgn (é‘]n + C/\/ﬁ), we have
?

Vn

= e+ S
—\/ﬁ\/_@@]-lr\/ﬁ)

(& + %) —o(& + Jn

which is possible for at most two distinct values of ¢, as follows from an elementary
study of ®. So that,

—ﬁ@(&%ﬁ
7 —1

|
i

)

R -
V(i + ) = = V(g +

12
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#{C € [0’5] | H(Za])’ \/ﬁ

)} <o
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and finally for almost all ¢, #argmax G, .(, = 1.

We compute now the derivative of ¢, ¢, at almost all c.

Assume #argmax {G,,.(,} = 1 and note iy the corresponding index, realizing
argmax Gy (, = &, + ¢/+/n. For d near enough ¢, G, 4(, reaches its maximum for
the same index 4y in &, + d/+/n, so that

(pnagn (d) B (pn;Cn (C)

! — 1
gon,gn (C) dl—)nl d _

e OV 06 4ol
- _q),(§i0 + C/\/ﬁ)
= —&'(argmax (G (Gn))- (4.8)

4.1.2 Derivative of ¢,
We study the derivative of ¢ c,, given in (4.6). First, rewrite

1 n
sty (€) = sup (G (t) — c®'(t)) = sup | —= 1 on(&) — @) —c®'(2) | .
Proa(0) = 51D (Gu(#) = e'(1)) = sup (ﬁZ{ oea(6) = (1)} ())
Fort € [}, &), Goocln(t) = ﬁ —/n®(t) — c®'(t). But since the jumps of G (. (2)
are non negative and since

(= Vn®(t) — (1)) = —y/n®'(t) — c®"(t) = ' (t)(—V/n + ct),

the function G ((, is increasing for ¢ > y/n/c (it is obtained adding positive jumps
to an increasing function). Since, its limit as ¢ — +o00 is 0, its sup for t > /n/c must
be reached in +o00 and equals to 0.

Note that the sup can not occur at £oo since we consider w € (z) for which
we have seen in the localization procedure that, at least for n large enough, G (s
reached its maximum in a finite point.

But, on the other hand, for ¢ < /n/c, the expression —/n®(t) — c¢®'(t) is
decreasing and one obtains the function G ., adding jumps +1/y/n at & < \/n/c
to a decreasing function. For ¢t < y/n/c, local maxima are located in the &;’s and are
all distinct for at least almost all ¢ since if Gooc(n(§]') = Goo,cCn(&]), We have

7 n_c/n:i_nﬂ_cln

%—m@ V(E) = o~ V() - ()
L (®(er) — B(ED))

=TT — () va.

= (2(E]) — 2(&])) ,
So that, finally, for c & { n_ ¢ __ J \/ﬁ}’ the maximum
19&39 o (gj) -0 (gi )

over R of G« ((n is reached necessarily once at some &' and equals

Goooal€l) = # — RD(ED) — e (€D).
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For almost all ¢, we can thus define without ambiguity argmax (G cCp)-

For such a ¢, note 2y = £ the corresponding argmax, so that

10 ’
ono,c(Cn) - Goo,ch (tO) - \/ﬁ \/ﬁ(b(tO) C(b (t())
For ¢, — ¢, note also t, € argmax {Gu,,(n}. Since ?, belongs to the finite set
{&, ..., &}, for any subsequence (%), extract further (t)y» with ¢ — ts. First,
we show that necessarily ¢, = ¢y so that the whole sequence (t,), converges to t,. To
this way, in order to simplify notation, write henceforth ¢, for ¢,..

Note that (,(t,)), must converge to (,(t«). Indeed, it is clear whenever ¢, is
continuous at t, or at least (by right-continuity) if (¢,), decreases to t. Else (,),
increases to a jump-time to, of (, and in this case (,(t,) = (,(t3) = Gu(to) — 1/v/n
as p — oo and for p large enough: (,(ty) < (u(teo) — 1/(24/n). It follows

1

Galty) = et) < Cole) = (1) + (@' (1) = ¥'(1y)) 5=

~
goes to 0, as p—oo

And for p large enough:
Ca(tp) — @' (tp) < Gultoo) — @' (too)

which contradicts t, € argmax (Geo,c,(n). Finally, (¢,(%,)), must converge to (u(teo)-
Now, since

Goo,e,Cnltp) = Cultp) — @' (tp) > Gult) — o ®'(1), W,
taking limit in p — oo yields

Caltoo) — €@ (too) > Cu(t) — c®'(t), Vi

We can thus rewrite Go ((n(too) > GooeCn(t), s0 that te € argmax {Goo ('} = {to}-
This justifies the convergence of the whole sequence (t,), to .

We have oo, (€p) = Goore,Cn(tp) > Gooye,Cn(to), so that

Poo,n (Cp) = Pooa(C) 2> Goo,cpgn(tﬂ) — Goo lalto) = (¢ — Cp)cbl(tﬂ)-

And similarly, @, (€) > Goo,cCn(tp) implies

Po0,(n (cp) — Poo,Cn (c) < Goo,cpCR(tp) — Goo clulty) = (¢ — Cp)q)I(tp)

and it follows

(€ = cp)®'(t0) < P00 (Cp) = Pooca(€) < (=)' (ty),

from which we derive for almost all ¢:

‘Ploo,gn (c) = =P/ (ty) = —P'(argmax (Goo (n))- (4.9)
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4.1.3 Derivative of ¢, w0

The first step, in this section, consists in deriving #argmax {G Wg} = 1 for almost
all ¢. Then similar computations as for ¢, allow to derive the expression of the
derivative.

For ¢ = 0, Goo oWy = W has almost surely an unique argmax.

Since limy ,1, ®'(f) = 0 and ® € L?*(R) is absolutely continuous, ®' is an
admissible direction for the process W3. It follows L(WQ — ¢®') < L(WQ). Whence
W3 — ¢®' has also an unique argmax since

1 = P{#targmax (Wg) =1} = Pyyo {z | #argmax (z) =1}
implies
P{#argmax (Wg — c®') =1} = Py_.q{z | #argmax (z) = 1} =1

where {z | #fargmax (z) = 1} is measurable since we can rewrite it as for example

ﬂ U {x eD| uesup z(u) > sup x(u)},

neEN*  t,s€Q [t,5]NQ u€lt,s]cNQ
t

<s
[t—s|<1/n

which is measurable in C(R). Since (w, ¢) = Goo WV (w) = W (w) — ¢®’ is bimeasur-
able, using Fubini Theorem, we derive that almost surely #argmax {Go W9} = 1
for almost all c.

The only point to revise to apply the computations of ¢ ¢, in this case is the
fact that for ¢, — ¢ and ¢, € argmax Go ., W§ we still have the convergence ¢, — to :=
argmax Go, [Wa. To this way, for any subsequence (¢, ),s, we have extracted in Section
4.1.2 a further subsequence (t,),» converging to some ¢, and we have derived o, = .
The extraction of the convergent sequence (t,),» was straightforward in Section 4.1.2
since t, lay in a finite set {£},...,&"}. This point has to be revised in the present
case: let ¢y be such that the related argmax ¢y is unique and I(ty) = [to — 1,5 + 1] be
a neighborhood of t;. We have

t;}l(%)){Wg(t) —c®'(1)} < Stlelﬂlk?{wg(t) — co®'(t)} = Wal(to) — co®’(to).

Note o = supyp{Wa(t) — co®(t)} — sup,g;){Wa(t) — co®(t)} > 0. For ¢ €]cp —

@a,co + @a[ (where 1/v/27m = sup,cg ®(t)) and ¢ & I(to), we have

Wa(t) — c®'(t) = Wa(t) — co®'(t) + (co — ) ¥'(t) < igﬂ{g{ch () — @' (1)} - 2a/3,

whereas
Wa(to) — c®'(to) = Walto) — co®'(to) + (co — ¢)@'(to)
> Stlelﬁlg{Wg(t) —c®'(1)} — a/3,
so that for all ¢ & I(ty), Wa(t) — c®'(t) < W2(to) — c®' (o) and
sup(Wa () — c®'(t)) = sup (Wg(t) — c®'(t)).

teR tel(to)
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For p large enough the argmax t, of G, W3 thus lies in I(t;) and we can
extract from any subsequence (t,/) some further converging subsequence (¢,~). Finally,
we finish the computation as in Section 4.1.2 and obtain

e mo(€) = —¥'(argmax (Goo, W3))- (4.10)

4.2 Convergences of image measures in (4.3) and (4.4)
4.2.1 The case of )\[o,a]ﬁpgol,gn

In order to derive (4.3), we shall use Proposition 1. Remember we are working on
a probability space given by the Skorokhod’s representation Theorem on which the
weak convergence (0.2) is strengthened into (, — W2 almost surely for the uniform
metric, that is

16 — Walloor — 0, n — oo. (4.11)

Since they are obviously 1-Lipschitzian, the functions

Poocn(€) = SUPser Goo,cla () Poowg(c) = SuPer Goo, W (t)
= sup;er(Ca(t) — c®'(1)), = supyer(We(t) — c®(2)),

are absolutely continuous, with the derivatives computed in (4.9), (4.10) in Sections
4.1.2, 4.1.3. For the other points of Proposition 1:

First, since ¢, — Wy uniformly, we have o ¢, (¢) — ¢oows(c), Ve.
Second, since

Proca(€) = —P'(argmax (Gooeln)),
Coms(©) = —¥(argmax (Goo VD)),
and the function @’ is continuous and bounded, it is enough to derive
argmax (Goo () — argmax (Goo JW9), n — +00. (4.12)
But we dispose of the following elementary result:

Lemma 1 Let f, and f be real functions such that f, — f uniformly and #argmaz {f} =
1. Then for any sequence (t), with t, € argmaz {f,}, we have

t, — argmaz f, n — Q.

Moreover, on the set of functions whose maximum is reached only once, argmazx is a
continuous function.

Proof: Indeed, let ¢, € argmax {f,} and ¢, = argmax f, and note Vj =
to— 1,10+ e some compact neighborhood of ¢;. We have
1 1| b ighborhood of We h

sup f(t) < sup f(¢).
t&Vo teER

Note a = sup,cg f(t) —sup,gy, f(t), and choose ng such that for n > ng, || fn — flleo <
/3. For any t € Vo, we have f,(t) < f(t) + a/3 < sup,gy, f(s) + /3. So that

sup fn(t) < sup f(t) + «/3 = sup f(t) — 2c/3.
t@Vo AL teR
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On the other hand, f,(to) > f(to) — @/3 = sup,er f(t) — «/3. From the definition of
a, it follows sup;gy, fn(t) < fu(to) for any n > ng so that argmax {f,} C V.

For any subsequence (t,),, we can thus extract some further (¢,), converg-
ing to too, fur(tnr) > far(t) yields as n" — oo, f(tx) > f(t) by uniform convergence.
We deduce t, = ty, and since any subsequence of (t,),s has some further subsequence
converging to tg, the whole sequence converges to tg. |

Since the following argmax are unique, applying Lemma 1 yields,
argmax {(, — c®'} — argmax {W3 — c®'},

for almost all ¢, from which we deduce easily the convergence in L'([0,d]) of the
derivatives (4.9) to (4.10), using dominated convergence.

Finally, ¢'_.(c) = —®'(argmax G, Wg) # 0 a.e. since argmax Goo W3 is

00, W0
finite and @' vanishes only at 00 when w € Q(z).

We can thus apply Proposition 1 and derive (4.3): almost surely on Q(x),

var

A0.8Po0c, — A0 e T 0. (4.13)

4.2.2 The case of A[O’J]Sogol,é-n

We study in this section (4.4), for which we shall still use the almost sure uniform
convergence (, — W2, obtained from the Skorokhod’s representation theorem. The
functions

PnCn (C) = sup Gn,cgn(t)a Poo, Wl (C) = Sup G00,6W<g (t)
teER teR

are absolutely continuous, with derivatives given by (4.8) and (4.10) respectively. The
case of o, wo has been derived in Section 4.2.1.

For ¢y ¢,, observe first that ¢, can be made explicit on the subset where
argmax Gy, ¢, is identified: that is

oncel0) = 3 [ = = viR(Er + /)| 14,0 (414

with A4; := {c € [0,9] | argmax G, (, = & + ¢//n}. Since for ¢ € A; and d near
enough ¢, G, 4 reaches also its maximum at £ + d/y/n, we have d € A;, so that A;
is an open set and is thus a countable union of open intervals. The union is in fact
finite as the following argument shows. Note that

G, cGn(& + ¢/Vn) > GucGal&f + ¢/ V) (4.15)
holds ff o
c c i—
Plem 4+ Sy _p(en 4 S
€+ 52 -0l + =) <
But the function ¢ — ®(£+ % ) D(EF+ ) is non-decreasing (resp. non-increasing)

it when

for ¢ > —y/n= 24 251 and non-increasing (resp. non-decreasing) for ¢ < —y/n=
i < j (resp. i > j). From this elementary study, it follows:
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e when ¢ < j and (4.15) holds for ¢; and ¢, it holds also for any ¢ € [c1, ¢3].

e when ¢ > j and (4.15) holds for ¢; and c,, then it holds for any ¢ € [c1, ¢o] \ I;
where I; is some subinterval that may be empty.

The finiteness of the open union of A; comes as follows: ¢y, cy are in A; iff
(4.15) holds at ¢, ¢y for any j € {1,...,n} \ {¢}. But from the previous argument,
(4.15) still holds for any 5 € {1,...,n} \ {i} and for any ¢ € [¢1,¢] \ (L U---UI,).
This is possible only if the open union of A; is finite. From now on, we write this
union Az = Ug);lIz,]

Then,

e since [0, 4] can be splited as follows
0.6 =U_ 4= L= U L,

1<i<n 1<i<n
1<5<pi 1<5<pi

e since the restrictions of ¢, ¢, on those intervals are absolutely continuous, see

expression (4.14),

e and since the values of ¢, , coincide on the common frontier of two intervals
Ii,j7

the absolute continuity of ¢, ¢, comes from the following elementary lemma

Lemma 2 Let a; < --- < ap, and [ : [a1,a,] = R such that flja;e,.,] = fi, where
fi is an absolutely continuous function on [a;, a;y1] with derivatives g; and fi(a;11) =
fix1(aiy1). Then f is absolutely continous on [ay,a,)

f(@) = fla) + / " g(t) de

ai
with derivative g(z) = S0 6:(2) 11a;.01,1] (%)

Since the last hypothesis of Proposition 1 can not be obtained (at least easily)
for the function ¢, , of (4.4), we use the following version of Prop. 1, whose weaker
last hypothesis can be satisfied for ¢, ¢,. The proof of this proposition can be found
in [BD, p. 44-45].

Proposition 2 Let for n € NU {0}, fr : (2 x [0,6], F x B([0,0]),P® \) — R,
Q* e F,Q* C Q be such that

1. Yw € Q*, ANy (w), Yn > Ny (w), fau(w, ) is absolutely continuous;
2. fu(w,0) N foo(w,0) on Q*;

3. fulw,8) == foo(w,d) on QF;

4. Yw € QF, ANy (w), Yn > Ny(w), %fn(w,c) > 0 A-a.e. force€ (0,6);
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9 foolw, ) on Q.

g

d. %fn(w, c)
Then on 2* -
||)\[O,6]fn(w: ')_1 - )\[O,J]foo(wa ')_1” — 0.

First for ¢ = 0, ¢, (0) = sup,eg (a(t) and @u, o (0) = sup,eg Wa(t). Since,
Cn — Wy uniformly, we still have ¢, (0) — o0 w2(0).

For the point 3, we dispose of {,, — W3 uniformly and of point (i) of Theorem
A, yet justified in Section 1:

IP- 11_}1’[1 dO,R(Gn,ch, Goo,ch) =0, Ve.
Since

dO,R(Gn,cha Goo,cWQ?) S dO,R(Gn,ch Goo,cgn) + dO,R(Goo,ch Goo,chg)
S dO,R(Gn,CCna Goo,cgn) + ”Cn - thnom

we derive
P- lim dog(Gn.cCn, Goo,cWa) =0 (4.16)
n—ro0

and we can obtain the same for the uniform norm as follows: first, remember by
definition of the Skorokhod metric dor on R that:

dO,R(GTL,CCTH Goo,ch(g) = dO(Gn,cgn o \Ila Goo,chg o \I’), (417)

where dj stands for the standard Skorokhod metric on D([0,1]). Note that G, 3 o
U = W) —c®' oW where W)} is a standard Brownian bridge (on [0, 1]) and ® oW can be
extended as a continuous function on [0, 1], with 0 on the edges. So that G, W3 o ¥
is an uniformly continuous function. By definition of dy, choose now A, € A([0,1])
such that

”Gn,cgn oV _Goo,cVVQ9 oW¥o )‘n||00,[0,1] + [ An — id“OO’[O’l]
S 2d0 (Gn,ch o \II, GOO,CW(% © \Il)

and derive for any ¢ € [0, 1]:

|GineCn 0 W(t) — Goo,chg o U(t)|
< |Greln 0 ¥ (t) — Goo, Wa 0 U(Mnt)| + |Goo,cWa 0 U(Ant) — Goo Wa 0 U(t)]
S 2dn + w\)\nt—t|(Goo,cW¢g o \Il)

where we note d,, for do(GncCn © ¥, Goo VY o ¥) and where w;(z) stands for the
module of (uniform) continuity of a function z € C(R). We obtain

||Gn,ch oWV — Goo,cwg o \I’“oo,[o,l] S 2dn + Waq,, (Goo,cwcg o \Il) (418)

Now since G [W§ o U is unifomly continuous, for all € > 0, there is & > 0 such that
0 < 0 < o implies ws(Goo VY 0 ¥) < €, s0 that

]P’{den (GOO,CW(g oV) > s} < P{d, > a/2}
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and wag, (Goo, W o ¥) converges to 0 in probability. We deduce finally from (4.16)
and (4.18)

||Gn,ch - Goo,cW.g”oo,R = ”Gn,ch oW — Goo,ch(g o \11“007[0,1] i> 0, n— o0
that is for all ¢ > 0,
P{||Gn.cn — Goo,Walloog > €} — 0, n — 00

from which point 3 is now derived.

The point 4 follows from the expression (4.8) of ¢, . ensuring the non-degeneracy
a.e. of the derivatives when w € Q(z).

Next, to see the convergence of the derivatives, we establish first the conver-
gence
argmax (G () — argmax (G, WVg), n — 00.

But, we have just derived IE”-nli_{go |GrcCn — Goo.cWalloo = 0. Since both
Goo Wa(t) = Wa(t) — c®'(1)
Gucalt) = 1= 37 [1) el + /) = 1)
i=1
are bimeasurable as functions of (w, ¢), Fubini Theorem yields

()‘ ® P) {”Gn,c(:n - Goo,ch.g”oo > 5} — 0, n — oo.

Lemma 3 Let X, and X be B-valued random wvariables, where B is a Polish space.
If X, 5 X in B and f : B —> R is continuous. Then f(X,) — f(X).

. From Lemmas 1 and 3, we derive
AQP
argmax Gy, .(, — argmax Goo,ch,
and since ®' is also continuous, we have also
! AQP =z, 0
@' (argmax Gy, () — @' (argmax Goo W),

that is ¢, . — Qpé,wg in measure A\ @ P.

Proposition 2 finally applies and yields a weakened version of (4.4), that is

_ _ Pa(z)
Mo, = Aoaeswell — 0, (4.19)

where Pq(,) stands for the restriction of P on (z).
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4.3 Conclusion for point (iv)

Gathering convergences (4.13), (4.19), we achieve deriving point (iv). First, by dom-
inated convergence, it is an easy matter to derive from (4.13)

E[||)‘90<:ol,<n - )\(P;O{Wg”lﬂ(z)] —0, n— oco.
Second, the weakened convergence (4.19) yields:
[H/\S% Cn /\<P;,1W0 |1 w):|
< E[H)\wﬁ,lgn Mg ! Wo||1{||,\¢n Lot 0||<s}1ﬂ(w)]
+ B[\t — Mome ||1{|W 37 g >y 19)]
<e+2P{w € Q(x) | ||)\g0;,cn — A@;,Wg” > e}

nln

So that from (4.19),
lim, B[ Mgy, — Aoy llaw)] <e,

then, letting & go to 0, we get lim,,_,,, F [”)“Png — )\gogolw()“lg(w)} = 0. Finally,
sSn Wa

lim, E [”)“Pn Cn )\Sagol,gn“lﬂ(z)}
<Hmn B[N, = Mg lllom] + TmnE[IAes ., — A ol low)]
=0,

Condition (iv) of Theorem A is finally fulfilled.

5 Point (v) of Theorem A

The purpose of this section is to derive the continuity of z € V := V(z) — )\[Oyg]gogol,z
P,.-almost everywhere. Once more, for z, — z, we intend to apply Proposition 1 to

oo,z (€) = SUD (zn(t) = c®'(1)) peo,e(c) = sup (2(t) — c¥'(1)).

To this way, first of all, we have to choose z, and z such that for almost all c,
#argmax (z — ¢®') = Ffargmax (z — ¢®') = 1 to compute as in Section 4.1.3, the
derivatives

gogwn (¢) = —®'(argmax (z, — c®')), (pf)o,z(c) = —&'(argmax (z — c®’)) (5.1)

and to be able to apply either Prop. 1 (or at least Prop. 2) to derive convergence
in variation of related image measures. Such a condition for z, can not be ensured.
Anyway, we can remove this condition replacing (v) by a weaker condition (v’):

“the application z € Xy — A/, is continuous where A is a measurable
subset of X satisfying P, (Xp) = Px(Xp) = 17.

Indeed, a carefull reading of the proof of Theorem A ([DLS, Th. 18.4]) shows
that (v) is used to derive condition (ii) in Theorem 18.3 necessary to apply the fol-
lowing result to the Py-continuous function z — Mg,
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Lemma 4 ([DLS, Th. 2.3]) Let h be a measurable mapping from a separable space
X to a Banach space (B, ||-||). We assume that h is bounded with respect to the norm
and continuous Py -almost everywhere. If P, = P, then

‘/thn—/thooH—)O, n — 0o,
X X

But the same holds true if for a measurable subset Xy C X', with P, (X)) = P (X)) =
1, the restriction hjx, is continuous: first, the restricted probabilities over Ay weakly
converge: P, x, = Pu|x,, since for a closed subset F' of X:

Tim, Py ap(F) = Tim, Py(F N Xp) = Tim,, P, (F)
< Po(F) = Poo(F N Xp) = Pagyy (F).

Then, lemma 4 applies to the restricted measures and yields

/ hd Py 5, — / hd Pz, 1 — +00.

But since

/ hdP,, x, = / hdP, = / hdP, and / hd Py x, = / hdPy, = / hdP,
Xo XO

the conclusion of Lemma 4 still holds in this setting. Finally, Theorem A holds also
with (v) replaced by (v’) and it is enough to satisfy (v’).

Take A} to be the subset of function in D(R) whose supremum is reached only
once. We have P, (Xp) = Py (Xp) = 1 and we derive (v’) applying Proposition 1:

e Since z, — z in D(R), the first point is easily satisfied.

e In order to obtain the convergence of the derivatives (5.1) in L!([0,4d]), it is
enough to prove for ¢ such that #argmax {z — ¢®'} = 1, that

argmax (z, — ¢®') — argmax (z — c¢®').

But since z can be taken continuous and z, converge to z in D, the convergence
holds also uniformly and the convergence of relative argmax follows from Lemma
1 since the asympotic argmax is unique.

® ¢l..(c) is given by (5.1) and is thus non zero since @' vanishes only at +oo
whereas argmax (z — c¢®') is necessarily finite when z € V(z).

Finally Proposition 1 applies and yields

var

A[O,J]Qogo{zn — /\[O,J}ngo{z

whenever z, — z in Aj.

Point (v’) is thus also satisfied.

Finally, Theorem A applies and proves Theorem 1.
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