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Résumé

Concentration inequalities are obtained on Poisson space, for random func-
tionals with finite or infinite variance. In particular, dimension free tail estimates
and exponential integrability results are given for the Euclidean norm of vectors
of independent functionals. In the finite variance case these results are applied
to infinitely divisible random variables such as quadratic Wiener functionals,
including Lévy’s stochastic area and the square norm of Brownian paths. In
the infinite variance case, various tail estimates such as stable ones are also
presented.
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1 Introduction and notation

Let QX denote the set of Radon measures

N
QX = {M:Zeti D (t)iEN C X, b £t Vi, NENU{oo}},

i=1
where X is a o-compact metric space with distance dx, and ¢; denotes the Dirac
measure at t € X. Let v be a diffuse Radon measure on X, and let P be the Poisson

measure with intensity v on QX. Let the linear, closable, finite difference operator
D:L*(QY,P)— L*(Q* x X, P®V)
be defined via
D,F(w)=F(wU{z}) — F(w), dP x v(dw,dx)-a.e.,
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where as a convention we identify w € QX with its support, cf. e.g. [20], [22], [23].
In [1], [27], [8], Poisson tail estimates are obtained under the hypothesis

DF <K, P®uv-a.e.,, and ||DF||L°°(QX,L2(X,U)) < a< oo,

for some K > 0. While (modified) logarithmic Sobolev inequalities and the Herbst
method are used in [1] and [27], the methods of [8] rely on covariance representations
([4], [6])- Recently the results of [6] have further led in [7] to estimates for Lipschitz
functions of stable random vectors. Even more recently, dimension free concentration
is obtained in [9] for the Euclidean norm as well as for various classes of functions of
independent infinitely divisible vectors having finite exponential moments.

In the present paper we first obtain new deviation inequalities on Poisson
space via the covariance method. Then, by replacing the bounds on DF and on
|DF|| oo, 2(x,v)) by growth conditions, deviation results for Poisson functionals
with infinite variance are given.

Let us briefly describe the content of the paper. In Section 2 we deal with Lévy
measures with finite variance, using the covariance representation method involving
the Ornstein-Uhlenbeck semi-group. This leads to general deviation results for Poisson
functionals having finite exponential moments. In Section 3 we obtain dimension free
deviation estimates and exponential integrability properties for random vectors of such
Poisson functionals. Since an infinitely divisible random vector can be represented as a
vector of Poisson stochastic integrals, these results are then applied to derive deviation
inequalities for Lipschitz functions of infinitely divisible vectors. In Section 4, we study
the particular case of quadratic Wiener functionals, including the square norm of
Brownian path, the sample variance of Brownian motion and Lévy’s stochastic area.
For such i.i.d. vectors, this also gives dimension free inequalities in Euclidean norm,
and large deviation estimates in fP-norm, p € [1, 00|, recovering tail estimates of [2]
for non-decoupled Gaussian chaos of degree 2. In Section 5 we adapt the method of [7]
to prove other tail estimates under weaker hypothesis on the gradient. For example,
if v is the Lévy measure of an a-stable vector, the bounds on D can be replaced by
the growth conditions

sup |D,F|<C'R and ”DF“%OO(QX,L?(BX(O,R))) <CR”®, R>R, (1.1)
2€Bx (0,R)

where Bx(0,R) = {x € X : dx(0,z) < R} is the ball of radius R in X. Here, 0

denotes a fixed arbitrary center in X, whose choice has no influence on the growth
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conditions (1.1). This leads to an estimate of stable type for the deviation of F' from
one of its medians.
Let us now introduce some notation which will be used throughout the paper.

The multiple Poisson stochastic integral I,,(f,) is defined as

L(f) () = /A Fal -y ) (@(dg) — v(dyn)) - - (w(dym) — v(dya)),

for every square-integrable symmetric function f,, € L?(X,v)°", where
Ap={(x1,...,2,) € X" : x; # x5, Vi #j}
Recall the isometry formula

ElL(fo)In(gm)] = n!l{n:m} (fns gm>L2(X,u)°n,

see [21], and recall also that every square-integrable random variable F € L?(QX, P)
admits the Wiener-Poisson decomposition

o0

The operator D defined above is such that
D, I,(fn)(w) =nl, 1(fu(*,2))(w), P(dw)® v(dr)-a.e., n€N,

and in particular,
D, 1i(f)(w) = f(z), v(dz)-ae.

We denote by Dom(D) the domain of D, i.e. the space of functionals F' € L*(Q*, P)
such that DF € L?(2X x X, P ® v). Recall also that the Ornstein-Uhlenbeck semi-

group (P;)ser, is defined via
BiL(fa) = e ™,(fn), fo€L*(X,v)™", neN,

In the sequel we also use the integral representation of the Ornstein-Uhlenbeck semi-

group (P,)er, in terms of a probability kernel p;(w, d@, dw), cf. e.g. [26] :
PF(w) = / PG U)py(w, do, di). (1.2)
QX x0X
When X =R", |- |, denotes the fP-norm on R", p > 1. Assuming that
[ 1n Bty <o,
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any n-dimensional infinitely divisible (ID) random vector F' = (F,..., F,) without
Gaussian component and with Lévy measure v can be represented as the vector of

single Poisson stochastic integrals

r=( /{ ) =) + /{ L wed)+ b o

n

for some b € R". Indeed, the characteristic function of F' is given by

or(u) = E[ei<F’“)] = exp (z’(b, u) +/ (e“y’“) —1— iy, u>1{|y251})y(dy)) ,

n

u € R
2 Deviation results from the Ornstein-Uhlenbeck
semi-group

As in [8], we need the following covariance identity on Poisson space, which is

obtained from the Ornstein-Uhlenbeck semi-group.
Lemma 1 Let F,G € Dom(D), then
Cov(F,G)=E [/ 6_8/ DyFPsDyGV(dy)ds} . (2.1)
0 X

Proof. By orthogonality of multiple integrals of different orders and continuity of P;,
s € Ry, on L?(QX, P), it suffices to prove the identity for F' = I,,(f,) and G = I,(gx) :

B I(on)] = 2 gn) e =t [ fugn ™
= [ ) ) vy
= 1 [ Bl (e ) om0 ()
~ 25| [ DD 00 vla)]
= B[[Tem [ DD
- E [ /0 e /X DyIn(fn)PsDyIn(gn)y(dy)ds}.
O

Using the covariance identity (2.1) and the representation (1.2) we first state a general

deviation result which slightly improves the one presented in [8]. In particular it will

5



be applied, in Section 3, to obtain deviation inequalities on product spaces for vectors
of random functionals. In this proposition and the following ones, the supremum on

QX can be taken as an essential supremum with respect to P.

Proposition 1 Let F € Dom(D) be such that e € Dom(D), 0 < s < 1y, for some
to > 0. Then

t
P(F — E[F] > z) <exp (013130/0 h(s)ds — tx) , x>0,
where
h(s)=  sup / (D@ _ 1) DR u(dy)|, se04).  (2.2)
(ww")EQX XX |J X

If moreover h is nondecreasing and finite on [0,1o) then
P(F - E[F]| > z) <exp (—/ h_l(s)ds) , 0 <z <h(ty), (2.3)
0
where h™! is the left-continuous inverse of h :

h~(z) = inf{t >0 : h(t) >z}, 0 <z <h(ty).

Proof. We start by deriving the following inequality for a centered random variable
F:
E[Fef™] < h(s)Ele’™], 0< s <ty. (2.4)

This follows from (2.1). Indeed, using the integral representation (1.2) of the Ornstein-
Uhlenbeck semi-group (), for P,DyF(w), we have

E[Fet*] = E [ / / Dy P, D, Fu(dy)dv }
= /Q . / / (esDvF) _ 1)esF () /Q o D, F (& Ud)p,(w, da, dis)v(dy)dv P (dw)

< [ [erer / /X (e+F) —1)D, F(& U 2)v(dy)

/X (e*DvF @) _ 1)DyF(w')1/(dy)‘ E [eSF

o0
< sup
(wow)eQX x QX

e”dv}
0

= sup
(w,w)eNX x QX

[ 0D, ra| B [

which yields (2.4). In the general case, we let L(s) = E [e** ~PIF]] and obtain :

L'(s)
L(s)

< h(s), 0<s<t,

Py (w, d@, dw)dv P (dw)



which using Chebychev’s inequality gives :
t
P(F — E[F] > z) <exp <—t:13 -I-/ h(s)ds) . (2.5)
0

Using the relation £ (fot h(s) ds — tx) = h(t) — z, we can then optimize as follows :

h=*(x)

¢
. . _ . 1
012130/0 h(s) ds — tz h(s) ds — zh™ ()

sdh™'(s) — zh™(z)

h
b
= —/0 h1(s) ds, (2.6)

hence PO Bl > 1) < o (_ /Oz hl(s)ds) , 0<z <h(ty).
U

In the sequel we derive several corollaries from Proposition 1 and discuss possible
choices for the function h, in particular for vectors of random functionals. Note that

since
) < [ 1D, Pl " = 1], vldy),
X

Proposition 1 recovers Proposition 3.3 in [8], which is obtained via a covariance iden-
tity relying on the Clark formula. In the next proposition and following [9], we obtain

a better result by applying Proposition 1 with more careful bounds.

Proposition 2 Let F' : QX — R and let K : X — R, be a non-negative function
such that

DyF(w) < K(y), y € X,wenr. (2.7)
Then ,
P(F — E[F] > z) <exp (Igl(l)l/ h(s) ds—tm), x>0,
0
where
etk _ 1
h(t) = sup |D,F(w)|*v(dy), t> 0. (2.8)

weQX J X K(y)

If moreover h is finite on [0,1,) then

P(F - E[F] > z) <exp (— /0$ h_l(s)ds) , 0 <z <h(ty). (2.9)



IfK(y) =0, y € X, we have :

2
P(F — E[F] > z) < exp <—2‘”~2> , >0,
[0

with
&° = sup / |D,F(w)|*v(dy).
X

weNX
Proof. Since when K is R, -valued the condition D, F,(w) < K(y), w € Q¥, y € X,
is satisfied we may apply Proposition 1 to F;,, = max(—n, min(F,n)), n > 1, and get
et Dy Fulw) _ 1
i WDyFn(w)DyFn(w') v(dy)

etk _ 1

h(t) = sup

(ww")eNX xQX

< sup

| Dy Fn ()] [ Dy Fo ()] v(dy)
(ww)eNX xQX J X K(y) Y Y

IN

; [ e DR + DR v
= sup — n(w n(w v(dy
2 (ww")eNX xQX J X K(y Y Y
etKy) _q
sup | —————|Dy F(w)|* v(dy)
weax Jx  K(y) !
etKW) _ 1
(

IN

< sup ———|D,F(w)|? v(dy),
sup [ D) P )

which allows to conclude. O
Note that if K : X — R in (2.7) is not necessarily positive and F,e** € Dom(D),

0 < s < tg, for some tg > 0, then applying Proposition 1 and the above argument
directly to F' yields :

P(F - E[F] > z) gexp<min /Oth,(s) ds—tx), x>0,

0<t<tg

and (2.9) also holds provided h is finite on [0, ).

Part of the next corollary recovers a result of [27] (see also [8]). This result is used in

Corollary 3 below as well as in the infinite variance case in Section 5.

Corollary 1 Let F € L*(QX, P) be such that DF < K, P ®uv-a.e., for some K € R,
and || DF|| peo(ox 12(x,0)) < & We have for K >0 :

2

K\ - ®- %z
P(F — E[F] > 1) < */K (1 + = ) YL a0, (2.10)
a
and for K =0 :
2
P(F —E[F] >z) <exp (—2~2>, x > 0. (2.11)
a



Proof. If K > 0, let us first assume that F'is a bounded random variable. The function
h in (2.8) is such that
tK 1 tK 1

K ?

e

h(t) < IDF Lo p2xy) < &

Applying (2.5) with &?(e!™ — 1)/ K gives
&2
P(F — E[F] > z) <exp (—t:r + ﬁ(e“{ —tK — 1)) :

Optimizing in ¢ with ¢t = K~!log(1 + Kz /a?) (or using directly (2.3) with the inverse
K='log (1 + Kt/a?)) we have

~2
P(F—E[F]>x) <exp (% — <% + %) log (1-1—2—[2{)) ;

which yields (2.12), (2.11) and (2.10), depending on the value of K. For unbounded F,

apply the above to F,, = max(—n, min(F, n)) with |DF,| < |DF|, n > 1. Then (2.10)

follows since, as n goes to infinity, F;, converges to F in L?(QX), DF, converges to

DF in L?(Q*, L*(X,v)), and DF, < K, n > 1. The same argument applies if K = 0.

O

In case K < 0 and e € Dom(D) for all ¢ > 0, Proposition 2 yields in a similar way :

a2

x
xK)‘f‘F &’

, 0<z<——. (2.12)

P(F — E[F] > z) < /K (1 + 7

a2
If F' is an infinitely divisible random variable in R"”, without Gaussian component
and with Lévy measure v, the representation (1.3) shows that for any Lipschitz(c)

function f : R* — R,

D f(F)(w)] = [f(Flwu{z})) - f(F(w))]
< |Flwu{z}) = F(w)ll
= c|z], (2.13)

where || - || is any norm in R". Hence when X = R" and v has bounded support,

Corollary 1 also recovers Corollary 1 of [6] with
K=inf{r >0 : v({z e X : |z| >r}) =0},

and 62 = [}, [yllv(dy), i.e.
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On a product X = {1,...,n} x Y, where Y is a | - |[y-normed linear space, we have
the identification

QX ~ QY x... x QY w=(wWi,...,w,) € QX
and

Dy F(w Zl{Z 3 (F(wi, ..oy wict, w; U{y}, wig1, ..o wn) — F(wi, ..., wn)),

i=1,...,n,y € Y. Proposition 1 can be directly applied with dv(i,y) = dv;(y),
1=1,...,n,y €Y, and

= | [ 16 Pl = Dusta)| (2.14)
i=1 7Y 0
orifv=v =---=u,, with
=5 [ Iulr(e = 1utay),
Y
where
~ " | Dy F D F
e sp 3 DinF @I 4 g sup Penf@I
wy#0 S 7 yly iw,y#£0 yly
In fact, a stronger result can be obtained as a corollary of Proposition 2.
Corollary 2 Let X = {1,...,n} XY, where Y is a | - |y-normed linear space and

dv(i,y) =dvi(y), i=1,...,n,y €Y. Let F: Q¥ - Roandlet 3;>0,i=1,...,n
be such that

Dy F(w) < Bilyly, i=1,...,n, yeY,we 0x.

Then ,
P(F — E[F] > z) <exp <IP>1(I)1/ h(s) ds—t:r;), x>0,
0
where " el
etri Yy _ 1
h(t) = sup / —— (D F(W)*vi(dy), t>0. (2.15)
( weQXi_Zl v Bilyly U
If moreover h is finite on [0,1,) then
P(F - E[F]| > z) <exp (—/ hl(s)ds) , 0 <z <h(ty).
0
If 3; =0,1=1,...,n, t.e. for decreasing functionals, we have :
72
P(F — E[F] > z) <exp <_2d2> , x>0,
with
= sup Z/ D) F(w))?vi(dy).
weNX
Proof. Apply Proposition 2 with K (i,y) = Bilyly, 1 <i<n,y €Y. d

10



As a consequence of (2.15), and if v :== 14 = --- =1, one can take :

~2
ht) =% [ ol —otdn), ¢ (0t .16
Y
with )
"Dy F Dy, F
= sup D) 2(w)\’ and f= sup D F'(w)|
wenX, y#£0 -4 ‘y‘Y 1,w,y#0 y‘Y
Taking
B0 =35 [ ol = uds), te fo,ul, (2.17)
i=1 Y

allows to recover the bound implied by (2.14) in this case.

For example, if n = 1 and

Fi(w) = [ wi)(@(ds) = ()., Ful) = [ an(u)(w(dy) = v(dy)
Y Y
are m (not necessarily independent) single Poisson stochastic integrals and F =
g(Fy, ..., Fy), we have

ﬁ< sup |g($1+U,1(y),,$m+um(y))_g($1,,$m)|
N $1,...,zm,y;£0 |y|Y

The following statement is obtained from Corollary 1 on a product space, in the same

way as Corollary 2 is obtained from Proposition 2.

Corollary 3 Let X = {1,...,n} xY withdv(i,y) = dv;(y),i=1,...,n,y €Y. Let
F be such that D; ) F(w) < K, PQu;-a.e., i =1,...,n, for some K € R and

Z ”D(Z,)F”%?(Y,Vl) < a’,
i=1 Lo (X, P)
We have for K > 0 :
P(F— E[F] > z) < e¥/K (1 + §> , x>0, (2.18)
and for K =0 :
22
P(F —E[F]>z) <exp (—2~2>, z > 0. (2.19)
a
Moreover if K < 0 and e € Dom(D) for all t > 0, then
z &2
K\ * i %
P(F—E[F]>z) < YK (1+3:~2> ) 0<x<—%. (2.20)
&
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3 Application to random vectors

We start by applying Corollary 2 and Corollary 3 to random vectors (Fy, ..., F,)
on the product space QX ~ QY x ... x QY where X = {1,...,n} x Y and YV is a

| - [y-normed linear space. Corollary 2 yields

PFisee F) = BlglFive B 20) < e (= [(1(s)as).

0 <z < h(ty), where g : R* — R, provided the function

2etBilyly _ 1

00 = |3 [ (PengtFi@oosFa) 57 = i

,  te0,t],
L= (QX,P)

is finite on [0, ty), with f; as in Corollary 2. Several particular cases are now presented.

Random vectors with independent components

If F,..., F, are n independent random variables defined on QX = QY x-..xQY

with F; = Fj(w;),i=1,...,n, and g : R* — R, an ¢!-Lipschitz(c) function, we have

[Diiy)g(F1, - - -, Fr) (w)]

lg(Fi(w1), .., Fi(wi U{y}), .-, Fulwn)) — g(Fi(wi), - - - Fo(wn))]
< o Fi(wi U{y}) — Fi(wi)]

< | DyFi(w)l.

Now we can take in Corollary 2 :

n ectBilyly _
ht) < ¢ sup 3 /Y O L Dy F(w)uldy), € [0,t]

wenX ;1 Cﬁi‘y‘Y
with
D. Fi(w
Bi= sup M
yeyY, w;eQY ‘y‘Y
Moreover when v = vy = - -+ = 1, we can take in (2.16) :
n
D,F;(w)|? D. F.
&% = ¢ sup 1Dy F(w)” Zgw” ., and B=c sup 1Dy Fi(w)] Aw)‘.
w,y#0 i=1 |y|Y 7,w,Yy7#0 |"J|Y
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Independent vectors of Poisson stochastic integrals

Assume that Y is a normed linear space and that [, 1 A |y[3u(dy) < oo,
i=1,...,n.If G =g(Fy,...,F,) where g : R* — R and F},..., F, are independent

Poisson stochastic integrals of the form (1.3) :

Fi(wi) = /{lyygl}y(wz-(dy)—m(dy))+ | wetdn 1<i<n,

{lyly>1}
we have
Diyg(Fr, ..., F) =g9(Fy, ..., Fit+y,....,F,) —g(F1,..., F,). (3.1)
From Corollary 2 we have, denoting by (e1, ..., e,) the canonical basis on R" :
W) = sup n etbilyly _q

weX 7 JY Bilyly

(9(Fi(wr), . Fywi) + ¢, Fu(wi) = g(Fa (i), -, Fi(wi), - -, Falwn))*vi(dy)

etbilyly _ 1
< sup ———(9(z + ye:) — g(2))*vi(dy), (3:2)

zeR" 7 Jy Bilyly

which recovers Theorem 1 of [9] and (3) therein as a particular case. We may also

take

n 2
) +ye;) —
aQ = sup |g($ yez) g(fl;) | ’ and ﬁ = sup

z,y#0 i=1 ‘y‘%/ 1,z,y7#0 |Z/|Y

I

in (2.16). If g : R* — R is ¢*-Lipschitz(c), then 8 = ¢, and so (2.17) gives :

) =Y [ (e ~ Du(dy), ¢ [0.1) (34)
i=1 7Y
For g(x) = sup(z1,...,z,), with Y =R g =1 and
' [0, y <sup(Fy,...,F,) — F,
D(Z,y)g(Fl’“.,Fn) N { E+y_sup(Fl7"'7Fn)7 y> Sup(Fla"':Fn) _Ea (3 5)
i=1,...,n,y € R Hence (2.15) leads to
nooeetl _q
h(t) = sup /
wEQX; R |y|
(9(Fy(w1), - -5 Fi(wi) + 45 o Fulwi)) = g(Fi(w1), - -, Fi(wi), - - -, Fulwa))vi(dy)
LS etlyl — 1
= Sup Z/ (E+y_sup(Fla7Fn))2]/z(dy)7
weQX =7 Jsup(Fy,....Fn)—F; Y|
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Z / Dvi(dy). (3.6)

Note that in (3.3) the constants & and 3 can be computed in terms of the Lipschitz
constant of g with respect to the ¢'-norm. This however does not lead to dimension
free estimates. Next, we show, using (3.2), that dimension free estimates can be ob-
tained when ¢ is the Euclidean norm on R". The other results of [9] can similarly be

generalized to the present framework.

Dimension free inequalities for random vectors

Dimension free inequalities for £2-Lipschitz functions of independent infinitely
divisible random vectors with finite exponential moments have been obtained in Co-
rollary 4 of [9]. In the next proposition we extend this result to Poisson random

functionals.

Proposition 3 Let f : R* — R be £2-Lipschitz(c), and let F = (Fy,...,F,) be a
vector of independent random functionals. Let

ey D
T T )
yeyY, weNX |y|Y

and assume that
Mo = 8 max / [yl (€5 — 1)ui(dy) (3.7)
max 5} / [y (50— 1)i(dy)

B - E[F]
is finite in t € [0,1). Then

P f(Fl,,Fn)zE[f(Fl,,Fn)]‘i‘C

2 ZVarFi +cx | <exp <—/ h_l(s)ds> ,
i=1 0
0<z<h(ty).

Proof. Define ¢ : R* — R by

¢(x) =/ Ellz — G[3],

where |z|5 is the Euclidean norm of z € R* and G is an independent copy of F. As

in the proof of Corollary 4 in [9], we have

8u’E|[(x; — Gi)?] 2u*
eR” R
Elz—GP7 S vaG, "0

|6z + uei) — d(2)* <
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Hence for ¢(F), Corollary 2 applies with

n etBilyly _ 1

hys(t) = sup _
) weX 1 Jy Bilyly

Dyiy)¢(F (w)))*vi(dy)

n etfilyly _ 1
< sup /7
weQX; y Bilyly
(B(Fy, ., Fi+ DyFy, .. Fo)(w) = ¢(Fs -, Fr) (w)?vi(dy)
[ efilily — 1 Ec[( iw) = Gi)’] | 2[DyFi(w)|*
<  sup /7<8DFZ~ 2 + )Vidy
DBy W el W Gl e e R
etBiluly _ 1
< 8 sup max ——————|D, Fi(w)|*v;(dy)
weQXZZl’“"n Y 5Z|y|y
: > [, )ty
sup — i\W)| vilay
Zk 1 VarGy, wenX v Bilyly Y
< 8 max 6 [l tﬂl‘y'y—l)ui(dw

7 =T

b Z3/ 3 (el — 1)y, (dy), t € 10,
Zkleaer;ﬁ v Jvi(dy) [0, %]

Finally, Corollary 2 with the bounds

and |f(z) — E[f(F)]| < co(x), yields (3.8). O

The function A in (3.7) is bounded independently of the dimension n if (Fy,..., F},)

are i.i.d., since

n min (E[F)* < (BUFE])? < n max Bl|R[)

For the Euclidean norm of independent infinitely divisible random vectors with finite
exponential moments, better results have been obtained in Corollary 3 of [9]. In the

next proposition we extend this result to Poisson random functionals.

Proposition 4 Let F = (Fy,..., F,) be a vector of independent random functionals,
and let
D,F;
Bi = sup M, 1=1,...,n,
yeyY, wenX yly

and assume that
h(t) = 8.11113X Bi |y|Y(€tﬂ”y|Y - 1)Vz'(d2/)
i=1,...,n v

15



TR s W )
is finite in t € [0,1). Then
P(|(Fy,...,F,)|2 > 2E[|(Fy,..., F,)|2] + z) < exp (— /x h_l(s)d3> , (3.9)
0

0<z<h(ty).
Proof. Let f(z) = (|z|s — E[|F|2])T, x € R*. From [9] we have the inequality

el |2l
28 " EIFL)?

Hence for f(F), repeating the bounds in the proof of Proposition 3 we get

|f(z +uei) — f(@)]” < 8lu

r€eR", wekR

h(t) < 8 _max B \y\y( tBilyly — 1)y;(dy)

=1,..4n

T 2 3 3 et5i|y|y — 1D J.
+(E[|F|2])2 ;ﬁz /Y‘y‘Y( Dvi(dy), t € [0,

Finally, using lalz — E[|Fl2] < (ol — E[|FL.))* and E[(|F|> — E[|Fla))*] < E[|F:]
gives (3.9) for g(F) = |F|s. O
Similarly to Proposition 3, the deviation result of (3.9) is dimension free if (£, ..., F},)
are i.i.d.

Next, we obtain a dimension free deviation for the Euclidean norm of a vector of n

i.i.d. random functionals with bounded support. The non-identically distributed case

is done similarly, while for single integrals it is in [9].

Corollary 4 Let v = vy = --- = v, have bounded support in By (0, R), let = ) =
<+ =By, and let F = (Fy,..., F,) be an i.i.d. vector. Then, for all x > 0,

) i
PUFL > 2+ 2B1FL) < owv (5~ (7 + g o (14757 ) ) o)

where .
R
d2=<852 2 >/y v(dy).

Proof. Apply Proposition 4 with

843 2nBiR 5 L, etPE 1
v < (% + g ) €0 [t < ah

and compute explicitly the right hand side of (3.9). O

16



The following result yields an exponential integrability property, independent of n for
the #2-norm of infinitely divisible random vector whose Lévy measures have bounded
supports. The non identically distributed case is similar. For independent infinitely

divisible random variables an analog result is obtained in [9)].

Corollary 5 Let F = (Fy,..., F,) be as in Corollary 4 then for all X\, with 0 < A\ <
B%R?/(ed%), we have :

E [exp <‘§—}§ log | %)] < 00, (3.11)

with log, x = max(logx,0), z > 0.

Proof. Let A\ < 82R?/(ed%). We have, using (3.10) :
1F 2 AlFa /°° F 2 AlF|3
E 1 = P 1 >t dt
[e"p (ﬁR %6+ BR o \"P\BR %+ BR ) Z

°° ||y AlF |,
_ vp 1 >u)d
/_ooe <ﬂR 8+ gp 2V W

* [Fla,  AlFs
< 1+/ e’P (—log— >y |dy
0 BR BR
o0 1+log2z | .
< 1+/ P(ﬂlog—)\‘F|2 zilog)\—x> 7g’3ReB_R1°gg_R dx
sr/x  \ PR BR — BR " pBR PR
2 *© T og AT )\.’E
< 1+—/ P(|F|y > z)eBR °8BR log —dx
BE Jyms (IFl2 = ) g 5R
< 1+ i/OO ¢ R 2 7R 8 5 1 AT
= T BR s °BR
v —2B(Fl) | & (v — 2B(|Fls])8R
X exp <— ( iR + 2R log (1 + a2 ) dx
2 /°° u wk2BFl], A(ut2B[|F 5)
< 14— eBRe™ PR &8~ BR
BR Jsr/r—2EF),
~2
u ag uBR Au + 2E[|F|3))
(- o+ )t

It then suffices to study the dominant term in the above integral :

= u u upR 2= log(1+3%)
exp| == — ——=log (14 — )eﬁR 8UTER) du
/ﬂR/,\ (BR BR 8 ( ag )

:/oo . (i_ilog 1+ uBR/a% )du
BR/A BR  BR "1+ Mu+2E[|F|)])/(BR))

Since

. 1+ uBR/&% B2R2
lim 1 —log 22t 5
wboo ST+ Nu+ 2B[[F))/(BR) " ° aa%, ~

17



for A < B2R?/(ed%), the convergence of the integral follows from

/00 exp(u “ logﬁ2R2>d <
— — —log — |} du < .
BR/A BR  BR )‘a%z
O

Since &% given in Corollary 4 does not depend on the dimension, the condition on A

in the above corollary is also dimension free.

Random vectors with non-independent components

First, we obtain the following from Corollary 3 :
Corollary 6 Let f : R* — R be ¢£*>-Lipschitz(c) and let F = (Fy,..., F,) such that

> i1 1Dy Fi(w)? < K2, P®vi(dw,dy)-a.e.,i=1,...,n, for some K >0 and

< &

L=(0X,P)

ij=1

Then

= , x>0. (3.12)

P(f(F) — Blf(F)] > 2) < ek (1 i —K)__

Proof. Note that since f is ¢2-Lipschitz(c) we have for G = f(F) :
(DiyGw))? = (F(RwU{@y)}), . Flwu{@y}),. .., Flwu{iy)})
—f(F(w), .-, Fi(w), ... Fu(w)))?

c? Z |[Fi(wU{(i,9)}) — Fiw)[”

IN

= C2 Z |D(Z-,y)Fj(w)|2.
j=1

So that |D(;,)G(w)| < ¢K and Y 1, HD(ZE')G(“’)”;(Y-V) < ®a?, P(dw)-a.s., and
Corollary 3 applies to G. O

From Corollary 6 we can derive an exponential integrability result for the Euclidean
norm of a vector of arbitrary functionalson X = {1,...,n}xY providedv; =--- =y,
has support in By (0, R). This completes the sharper result stated in Corollary 5 in
the case of independent components. However, in the infinitely divisible case, it is

slightly less sharp as Corollary 3 of [24].

18



Corollary 7 Let v = vy = --- = v, have bounded support in By (0, R), and let
F = (F,...,F,) be a vector of n (non-necessarily independent) random functionals.

Assume that

Z'D

<&2 <00, PQu(dw,dy)—ae., i=1,...,n,

Iyl2
and
Z [ D) F (w ||L2 (Vi) < &* < oo.
w=t L(X,P)
Then (3.11) holds for 0 < A < 62R?/&?
|F 2 N|F 3
E 1 . 3.13
[exp(aR 08, aR < ( )

Proof. First, note that |D ) F;| < é|y|ly < &R, since D 4 Fj is zero for |y|y > R, v
being supported on By (0, R). We can thus apply Corollary 6 and get

. AR\ R
P(f(F) — BIf(F)] > z) < e 1+ Z0L Yoeso, 3.14
&2
which is (3.12) with K = &R and ¢ = 1. Finally (3.13) follows from (3.14) as (3.11)

follows from (3.10) in Corollary 5. O

In the previous corollary, & is dimension dependent, unlike Corollary 5, so that the
exponential integrability is not dimension free in the dependent case. As an application
of Corollary 6 we obtain an upper large deviation bound in the dependent case, for

random functionals with bounded support.

Corollary 8 Let v := vy = --- = v, have bounded support in By (0, R) and let
F = (F,...,F,) be a vector of n (non-necessarily independent) random functionals.

Assume that

D
Z| ‘y‘Q <&2<00> P ®vi(dw,dy) —a.e., i=1,...,n.

and

Z | D) F (w ||L2 (Y1) < 0.

1,j=1

Lo (QX,P)
Then for any £2-Lipschitz(c) function f: R* — R, we have

log P(|f(F)| >
s PEPUE) 2 2) e
z—00 zlogx aR
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When restricted to single Poisson integrals, the previous result recovers the upper
estimate of Corollary 4 in [24] in which a deviation result is obtained for the norm of
infinitely divisible vector with Lévy measure having a bounded support. See also [12]

for related results in the framework of large deviations for Poisson stochastic integrals.

4 Quadratic Wiener functionals

The results of the previous section apply in particular to quadratic Wiener
functionals since they have infinitely divisible laws, cf. [17], and can be represented
as Poisson stochastic integrals with finite variance. Note that exact estimates for the
tail probabilities of (quadratic) Wiener functionals have been obtained in [11], see
also [5], [13], [18], [19]. Here we present dimension free results for norms of vectors of

independent quadratic functionals. In this section we take X = R.

Second order Wiener integrals

It is well-known (see e.g. [17]) that every centered quadratic Wiener functional
can be determined by a symmetric Hilbert-Schmidt operator A : L*(R;) — L*(R,)
with eigenvalues (a)ren and a complete orthonormal basis of eigenvectors (hy)gen in
L*(R,). In particular it can be expressed as a second order Wiener integral Jo(f2)

with respect to a standard Brownian motion (B;)er, , with

T fy) = %iak ((/Ooo hk(t)dBt)2 _ 1) ,

k=0

where the series converges in L?(Q2%), and f, has the decomposition
1 o0
fo= 3 Zakhk ® hg,
k=0

converging in L?(R%). Note that J(f>) is distinct from the double Poisson stochastic
integral I5(fy). The variance of Jo(fs) is

1 o
VarlJa(f2)] = I Fol2aqery = 7 D -
k=0

In the sequel we consider a vector (J(f3),- .., J2(f2)) of mutually independent second
order Wiener integrals of f3,..., f2 € LZ(Ri) with respect to possibly different Brow-

nian motions. Denote also by (a%)ren the eigenvalues associated to Ji(fi),i =1,...,n.
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For each 7 = 1,...,n, Ji(fi) is infinitely divisible, integrable, and centered with Lévy

measure

vi(dy) = 1iy>0) Z —e v "d?/+1{y<0} Z ‘ ‘e —v/%dy, (4.1)

k;ai, >0 k;ai, <0

cf. Theorem 2 of [17]. Hence from (1.3), J(f%) has the representation

T ) = [ vle(dy) = wlay), (42)
—0oQ
as a single Poisson stochastic integral. Denote by
G = I e ch - = o max(—a), o= max ma ok
the maxima of the spectral radii associated to J3 (f5), - .., J&(f}).

In the next proposition we apply Corollary 2 to obtain a deviation result for ¢'-
Lipschitz functions of quadratic Wiener functionals. Note that Corollary 4 of [9] (or
Proposition 3 applied to Poisson stochastic integrals) would yield dimension free de-

viation results when g is ¢?-Lipschitz, however with an additional range condition.

Proposition 5 Let (J3(f3), ..., J3¥(f)) be a vector of independent second order Wie-

ner integrals. For any ¢'-Lipschitz(c) function g :

P(g(J(f2),- -, J5(f3)) = Elg(Jo (f2), -, J3(f3))] > @) < exp (— /Ow h_l(S)dS) ,

x > 0, where h™! is the inverse of the function

ZZ it Z‘a el ),

zllcO

Moreover,

P(g(Jy(f2), -, 13 (f3) = Elg(L(f2), -, J3(£3))] = x)

23 12l e

xz =1 21 R

< exp|——+ log 1+ (4.3)
( ac CLC 221 1||f2||L2R2

1 log 3 x x?
< exp|—- (1——) min x> 0.
( c 2 ( 421 1 ||f2||L2(R2 ))

Proof. From Corollary 2 and (4.2), (4.1), (3.4), we have

DY [l = 1)
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¢ o 00 to —u/ai c _te —y/ai
= 52 Z/O (e —1e y/kdy+§ZZ/ (e — 1)e ¥/ %dy

i=1 k=0 i=1 k=0 vV~
a}, >0 a},<0
RS i ct(al)? +1 = i ct(a})?
2 Pl 1 —cta, 2 Pl 1+ ctaj,
a, >0 a;, <0
= Iy )
2 1 — ct|al,
=1 k=0

Then one can take

ct(a})? 2ct i »
ZZ 1- cta ~ (1 —cta) Z:ZI ||f2||L2(R3_)a t€[0,(ca)™),

and in this case,
t

cat +2¢y 1||f2||L2 R2) ,

from which (4.3) follows with explicit computations. O

hH(t) =

Alternatively, and since lim;_,o, h™(¢) = 1/(ca), we have for any ¢ > 0

P(g(Jy(f2), - I3 (£3)) — Elg(J(£2), - -, J3(£7))] = @)
< Ci(e,n,e) exp (—z((ca) ™ —¢€)), (4.4)

x > 0, for some constant C;(c,n,e) depending on ¢, n and e. It follows that there is

a constant Cy(c,n, \) such that

B[N0 TN < Cy(e,n, N) < oo, (4.5)
for all A < 1/(ac), and every £*-Lipschitz(c) function g : R* — R. In fact, (4.3) implies
that for all A < —1 — Z 3", ||f§||%2(Ri)’

E [exp (—i\g(ng(le), o S ()] + Aog(L + [g(Jy (f2), - -, Jz"(fz"))D)} < Cs(c,m, ),

for some C3(c,n, \) < co. For the supremum of J3 (f3), - - ., J&(f%), which is a Lipschitz
function with respect to the £*°-norm, hence with respect to the ¢*-norm, the previous

corollary can be strengthened by making use of (3.5).

Proposition 6 Let (J3(f3),...,J3(f)) be a vector of independent second order Wie-

ner integrals. Then,
PEp (). JE U~ Ep3 ) U 2 9) < exp (= [ s)as),
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x > 0, where h=! is the inverse of the function

ZZ te0,1/ay).

i=1 k=0
ak>0

Moreover,

P(sup(Jy(f2),-- - J5(f3)) — Elsup(J3(f2), - -, J3(f3))] > )
( x 221 1||f2||L2R2 ( a;x ))
< exp|——+ ‘1o og |1+ (4.6)

a4 (a-|-)2 221 1 ||f2||L2 R2

S €&Xp | — - min x .
2 a’+ 421 1||f2||L2R2

Proof. Follow the lines of the proof of Proposition 5 starting from (3.6) instead of
(3.4). O

Note that in dimension one and for second order Wiener integrals, (4.6) above implies

the upper deviation bound of [18] (Example 5.1), since

ay =2 sup  (fo, h®@h)o(g2)-
lIPll 2 ) =1

Counterparts of (4.4), (4.5) for sup(Ja(fs), ..., J*(f)) can be derived in the same

way. Our next result is a first lower bound.

Proposition 7 Let (J;(f)), ..., J2(f})) be a vector of (centered) mutually independent
quadratic Wiener functionals. For any b € (0,1), there ezists z, > 0 such that

1-b _
P([(J3(f3)s- s I3 (f3))oo > 2) > e > m,
with @ = maxen |at|, 1 <1 < n.
Proof. Let Fi,..., F, be nindependent random variables with respective distribution

I1D(my,0,11), ..., ID(my,,0,v,). We have for z > 0 :

P((F1,...,F)|w>2) > P@i€{l,...,n} : |F|>2)

= 1-P(|F| <z, 1<i<n)

= 1- HP(|E| < z).
i=1
Writing
Fi=F+F -
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with

Fi+(wz~)=/oooywi(dy), Fy (wi) =/0 ywi(dy), mz:/oo yv;(dy),

we have 7 7
P(Fy<z) = /OOPF+<x+mZ+y)dP(F =—y)
0

< [ Pl mit.00) = 0aP(ET = =y)
= /000 exp(—v;([x + m; +y,00)))dP(F; = —y).

Here,

([, 00)) L kzl;o " W e N+/g; e;iagr 4Y ~zoo a:_N_ﬁ_ e;;ai,
aj

where f(z) ~yo00 () means that lim, o f(2)/g9(z) = 1, and @', = maxy, 4i >0 lat |,

= #{k, a}, = a’,}. Hence for all &' € (0,1) there exists z; > 0 such that

P(F; < z) <exp (—aiN_ie

Similarly we have

—:c/a
( - —.f] / Z 9 YA ~v/a dy ~z 0 az NZ )
k,al, <0 | |
with L. = max; 4 o |aj,| and N. = #{k, aj = —a’}. Hence z;y can be chosen such
that .
) ) —z/at
P(F; > —x) < exp (—az_N’_ o (1- b')) : T > T,
thus '
—z/a*
P(|F;| < z) <exp (—a o (1- b')) : T > Ty
For x > max{z1y,..., 2,y }. It follows that

.e—w/ai
P(|(F1,...,Fy)|c > ) > 1—exp (—Zaz—(l - bl)) ;

and so for any b € (0, 1), there exists z, > 0 such that

1_b —z/a’
P(|(F1;aFn)|OO = ZCLZ / s T > Tp.
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Note that without the independence assumption on (J3(f3),..., J2(f})), a similar
argument leads to the estimate

e—w/a

2z

P(|(J2(f2), -, 5 (f3))leo > @) > a(1 = b)

for any b € (0,1) and z large enough. A version of Proposition 7 can also be stated
for sup(J5(f3),..., J2(f})). For n = 1, and for second order Wiener integrals, this

also implies the lower deviation bound obtained in Example 5.1 in [18].

Proposition 8 Let (J1(fy),---,J3(f%)) be a vector of independent quadratic Wiener
functionals. For any b € (0,1), there exists xy > 0 such that

1 b i
_x/“+, T > Tp,

P(sup(Jy(f2),---, T3 (f3)) = ) =

with ay = MaXyeygi 50 @), 1 <0 <.
Proof. We follow the lines of proof of Proposition 7. Let Fi, ..., F, be n independent

random variables with respective distribution ID(my,0,v1), ..., ID(my,0,v,). We

have for z > 0 :

P(sup(Fy,...,F,) > 2) > 1 - [ [ P(F; < ),

=1

which leads to

n ) fz/aﬂ_
P(sup(Fy,...,F,) >z) >1—exp (—Za162 (1—b’)> :
; x

for z sufficiently large. Hence, for any b € (0,1), there exists x;, > 0 such that

1—b

P(sup(Fi,..., F,) > _“/“+ T > Tp.
i=1
U
Without the independence assumption on (J3(fs),--., JR(f})) we get
1/ rl n( £n e—z/a+
P(sup(Jy (fy),---, J3(f3)) 2 2) = a (1 -b) (4.7)

2z '
for any b € (0,1) and z large enough. In the next corollary we derive an exact tail
estimate for the /,-norm of vectors of independent quadratic Wiener functionals, re-
covering, in the special case of second order integrals, the result obtained in [2] for

non-decoupled Gaussian chaos, see also [14, Cor. 3.9].
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Corollary 9 Let p € [1,00], and let (J3(f3),...,J2(f2)) be a vector of independent

quadratic Wiener functionals. Then

iy 08 PUESD), - B > 2) _ 1 (4.8)

T—+00 T a

Proof. For any b € (0,1), from Proposition 7 and Proposition 5, there exists z, > 0
such that

—m/a

(1-10) Za<P (T3 (2)s - T35 |0 = )

< (|(J2(f2)a" 3 (f3))lp = )
( x—M 2> 1||f2||L2(]R2 ( a(z — M) ))
< exp| — log | 1+

a o 2> S V[
2 > max(zy, M), with M = E[|(JA(fD), ..., T2 ()], O

Note that for n = 1 and for second order Wiener integrals, the above result coincides
with Theorem 2.2 of [5] (see also [13] and [19]), since a/2 is also the strong operator

norm of the linear map canonically associated to fs, i.e.

a=2 sup [(fo,h® h)ram2)l-

Ihllg g,y =1
A result of [5] states that
log P(su I (fh)] > 1
i 108 Plsubier, [Jm(fr)l 2 2) _ : , (4.9)
z—+00 x 2SUpyeg, ||fm||L2(RT)

provided (J,,(f))ter, is a process of m-th order integrals with a.s. continuous sample
paths (see also Remark 4.3 in [18]). It is clear that for n = 1, m = 2 and p = +o0,
(4.8) and (4.9) coincide. However, (4.9) does not imply (4.8), since as is well known the
process (Jp, (f},))ter, cannot be jointly measurable and have independent components.

For the supremum of J3(fs), ..., J3(f%) we similarly have :

Corollary 10 Let (J3(f3),--., 5 (f3)) be a vector of independent quadratic Wiener

functionals, then

log P(sup(J5(f3),- .., J3(f3)) > z) 1

lim =——.
T—+00 x a4
Proof. Apply Proposition 6 and Proposition 8. O
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A left deviation estimate for sup(J3(f2),---,J%(f2)) can be independently obtained

from

P(sup(J3(f2),---, J5(f2)) HP JE(fo) < @),

which can then be estimated from Proposition 8 or Proposition 9.17 of [11]. Coun-
terparts of (4.6) in Proposition 6, as well as Proposition 8, Corollary 10 and (4.7)
can also be stated for the left deviation of inf(J3(f2), ..., J3(f2)), replacing a’, by a’,
1=1,...,n,and a; by a_. Since

_=-=2 inf <f2,h® h>L2(R3-)’

IRll 2 ) =1

this will imply the one-dimensional left tails of [18] (Example 5.1). For an arbitrary

norm || - || on R", we have
]l = i) < |zl max fled]]
Hence,
o OEPUCGRD. o B 20) 1
Z—+00 xT a4 MaXxXi<i<n ||€Z||

Similarly, since ||z|| > ¢(n)|z|« for some ¢(n) > 0,

i 0 PUCSD, B 22) . 1
z—+00 x CLC(TL)

For the Euclidean norm, we also have the following dimension free deviation inequality
obtained from Proposition 4 for an i.i.d. vector. The independent but non identically

distributed case is similar with more notation.

Proposition 9 Let (J3(f2), ..., J2(f2)) be an i.i.d. vector of second order Wiener
integrals, and let b € (0,1). Then,

P(|(J3(f2), - I3 (fo))lo = 2E[|(J5 (fo), -, T3 (fo))lo] 2 @) < e C70ate g >0,

(4.10)
and
P, B D= 2B (o), D) 2 2) < OV, 0> Ty,
(4.11)
where
16||f2|| 2(R2) 2 1
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N 4||f2||%2(R1) <1 — b2)
(B[ LD\ 0 )
Proof. Applying Proposition 4 with 5 =1 gives

P(|(J3(f2), - -, 3 (f2)) |2 — 2E[|(J3(f2), - -- (f2) > 1) (4.12)
< exp ( - /0 h_l(s)ds> = O<r£1<1111/a exp —tr+ / x>0,
where
) = 43 [ e e / Je vt dy
a]Z:>00 0
oo 0 0 0
+4 (7% — 1)e ¥/ % dy + Yy —1)e ¥ dy
a]jczé]o/oo (EHJQ f2 ”2(1,2%)/00
= ta} 2 > 1
5 -
g 1 —t|a| (E[|J2(f2)‘])2;‘ak‘ (1 —tlax])?
< 16||f2||L2 ]R2 ta 8a||f2||%2(11{2+) 1
- a T—ta (E[[L(f2)]])? <(1 —ta) ) '
Letting \
16||f2||L2(R2 8||f2||L2(R2)
R s d B= — "+
@ o (B[R]
we have
/th(s)ds < —A(log(l —ta) 4+ ta) + B (* —ta — 1)
; = & 2(1 — ta)? 2
t B (ta)?
= —Alog(l — ta) — (A+ B)ta + Bﬁ - 5%.

Taking t = (1 — b)/a, the min in (4.12) is bounded by

min exp ( —tx + /Oth(s)ds) < exp ( (1- b) + Kb)

0<t<1/a

where

1-b . AV
Kb:/ h(s)ds:—Alogb—(A—i-B)(l—b)"‘Blbgb_B(12b2b) )
0

and (4.10) follows. Taking ¢t = (1 — b/2)/a in (4.12) yields

min exp ( —tx—i—/ot h(s)ds) < exp ( -1 —b/2)2 +Kb/2) < exp(— (1 —b)g),

0<t<l/a
x> 22K, ,, and (4.11) follows. O

Note that the growth of Kj is in 1/b% as b — 0.
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Square norm of Brownian paths on [0, 7]

An example of quadratic Wiener functional for which the coefficients (ax)ren

can be explicitly computed is given by the (compensated) integrated squared Brownian

motion . ,
T
o= [ (B -
0
on the interval [0, 7). In this case, from [10] or §3.1.1 of [17], we have a; = ﬁ,
k > 0, and the above results apply with a = 47%2 and
k=0
Letting (h%, ..., h%) be a vector of i.i.d. copies of b, Proposition 5 states in this case

that for any ¢'-Lipschitz(c) function g : R® — R :
P(g(b,...,b7) — Elg(by,...,b})] > z)
< o 7T2:U nwt oe (14 8z
xp | — el
- p 4cT2 3272 & nm? ’
log3\ . ([ 7%z a?
S exp <— (1 — T) min (m, W y T > 0,

and for alle > 0 :

P(g(by, .-, b7) = Elg(by, ..., b7)] > 2) < Ci(e,n, T, e) exp (—a(n®/(4cT?) — €))
x > 0. It follows that
E[eM90r] < Cy(c,n, T, ),

for all A < 72/(4¢T?) and some constant Cy(c,n, T, \) < oo. For any b € (0, 1) we also
get the lower bound

2

1 —zn2/(4T?
P85 oe > 2) > 01 — ) e )
for z sufficiently large, and from Corollary 9 :
log P(|(b%, - .., b%)[, > 2

T—+00 T - AT?2 ’

For the Euclidean norm and from Proposition 9, we again have dimension free devia-

tion inequalities : for any b € (0,1),

P - 5 — 2E( (B .., B)]a] = 2) < exp (—
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and

2 _ 2
PO 2B G- 0] 2 ) < oxp (-T2 00) o2 T

where
t v 1 T2 1—0?

Ko = ~gmlont =T (375 + (aae) 0 9+ e

Sample variance of Brownian motion on [0, 7]

A second example is given by the (compensated) sample variance of Brownian

nT:/OT (B(t)—%/OTB(s)d:;) dt—Tg

on the interval [0,T]. From [10], or §3.3.1 of [17], a) = %, k>1,a0=0,a= %

motion

and - ,
o, T
D= 6
k=1
Letting (v, ..., %) be a vector of i.i.d. copies of vy, we have from Proposition 5 that

for every ¢'-Lipschitz(c) function g : R* — R :

P(g(U%,...,U%) —E[g(U%,...,U%)] 2 .’L‘)
< m2x  nrt | 6x
s o\ o T8\t ) )
log3\ . (m2x 622
S eXp <— (1 — 2 > min (ﬁ’ W s T > 0,

and for alle >0 :

P(g(vF,...,0%) — Elg(v},...,00)] > 2) < Cyi(e,n, T, ¢) exp (—x(wQ/(cTQ) — 6)) ,

x > 0. It follows that
E[e’\lg(t’lT"""’%”] < Cy(e,n, T, N),

for all A < 7?/(¢T?) and some Cy(c,n, T, \) < co. For any b € (0,1) we also get the

lower bound )

n 4 —Iﬂ'z 2
P(I(0h, 08 ow > 2) > (1 = b)5 eI,

for z sufficiently large, and from Corollary 9 :

log P(|(0k,,03)], > @) 7
zl_l)IJlraoo . =72 p € [1,00].
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From Proposition 9, for any b € (0,1) :

m2(1—b)

P o)l = 2B (o} o8] > 0) < exp (-

x+Kb), z >0,
and

72 (1—b 277
PO )l = 2Bl (oh - 00 ) > 0) < exp (-}, 0> D,

where

2 7t T2 (27r4 1 T2 1—b6?
3

K, = ——logbh— — [ — +——| (1 —-0) +
” 8 T (EnuTn)Q) =0+ §E o ®
Lévy’s stochastic area

Let (B'(t), B(t))ser, , be a two-dimensional Brownian motion. Lévy’s stochas-

tic area Sy on [0,7] is

1

Sr=3 [ (B'0aB0) - B()aB' ),

cf. [15]. For St, the expression of the coefficients (ax)xen is intricate (see [17]), hence,
we can not directly specialize the results of Proposition 5, 9 and Corollary 9 in that
case. However, since the Lévy measure of St has the analytic expression

L (4.13)

2y sinh 2

v(dy) =

(cf. page 175 of [15], §3.2.1 of [17] or Example 15.15 of [25]), we can derive results

similar to the ones obtained for general second order Wiener-It6 integrals.

Proposition 10 Let g : R* — R be {'-Lipschitz(c), and let (Sk,...,S%) be an 1.i.d.

vector of Lévy’s stochastic areas on [0, T]. Then,

T \4n T
P((St--,S§) = Elg(Sk.-. 5P 2 0) < (1+ =) exp(—27).

Proof. Using the representation of St as the compensated Poisson stochastic integral

/_ " yw(dy) — v(dy)) (4.14)

oo

and (3.4) derived from Corollary 2, we have

) = e [ lalv(er = ()
= e [ e -y
2y sinh 7

—0oQ
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em™/T _ e—my/T

00 tcy 1
= 2nc / ¢ dy
0

© gty 1

s e /0 e

2 00
S 2nc tT/ e_%(%_ct)dy

T 0

dnc*tT
< T 0<t<n/(eD),
(% — ct)
using the inequality w 1

€ T < lewwez p o (4.15)

evr — 1] v

for 0 < u < v. Hence

z e s T T
Y ST PRE . [ RN SR
/0 (s)ds < T/O Anc®T + crms ° ch+ nios +4ncT

g

The above result can also be obtained from Theorem 1 in [6] in place of (3.4). Alter-
natively, we have lim; o h™'(t) = 7(cT’)~" since limy_,r(.1)-1 h(t) = +oo. Hence for

all € > 0, we also derive as in (4.4)
P(g(Sil“a D) S%) - E[g(s’ll”a RN S?“)] > ‘T) < Cl(ca n, T7 ‘5) exp (_CE(T‘—(CT’)_1 - ‘S)) )

x > 0, for some constant Cy(c,n, T, ) depending on T, ¢, n and ¢. This last inequality

is not dimension free. Nevertheless it yields
E [e)“g(s% """ Sw] < Cy(e,n, T, \) < o0, (4.16)
for all A < w/(cT), and every ¢'-Lipschitz(c) function g : R* — R.

Proposition 11 Let p > 1. For all b € (0,1) there exists xp > 0 such that

nTe—mc/T
P((SL, ..., 8™ > 2) > (1— )28 > 7).
(S SPlw 202 -0 a>a,
Proof. Given n i.i.d. random variables F,..., F, with distribution ID(m,0,v), we

have from the proof of Proposition 7 :
P(|(F1,..., Fo)leo 2 ) 2 1= (P(|F| < )",

while for v given in (4.13) we have the equivalence :

00 dy oo 6—7ry/Td Te—mv/T
Z/([.T,OO[) —/w m ~r—oo /w " Y ~Vrooo Tz

32



hence for all ¥’ € (0, 1) there exists z; such that

Teﬂrw/T
21L ) ’

P(F| <o) <exp (~(01-1)
Thus for x large enough,

—nz/T
P((S} - S5l 2 2) 2 1= exp (_(1 _ b)nTei> |

2rx

[l

The corollary below is a direct consequence of Proposition 10 and Proposition 11. It
recovers a univariate result of [3] and extends it to /P-norms of i.i.d. random vectors,
independently of their dimension. For non identical variables S}l, ..., Sp., replace T

by maxlSkSn Tk.

Corollary 11 Let p € [1,00]. Then,

i (8PS S =)
T—+00 4y T

Note that from the above results we have ¢ = T'/m and Y2, af = T?/4. Moreover as

a consequence of Proposition 4, we have :

Proposition 12 Let | - |5 denote the Fuclidean norm on R* and let b € (0,1). We

have
1 n 1 n (1—b)m

P((SL, ..., S™)o — 2E[|(SE, ..., S2)]s] > ) < exp ( — K,,), x>0,
(4.17)

and

PU(SH - 5)a —2B(I(Sh . Sp)bl = ) <exp (~ T0Ta) > D,
(4.18)

where

1672 (1—b)?

K, = —32logb—32(1 -0
o = T32ogh =R -0+ Gy

Proof. Since for F' given in (4.14), 8 = 1, from Proposition 4 and (2.6), we have

P((SL,...,8%)|s — 2E[|(SL, ..., SM)|] > 2) < exp(—tx—i—/o h(s)ds),

for all z > 0 and 0 < ¢t < 7/T. From (4.15) we have

00 : t 00
h(t) = 16/ /2 sinh 3 dy + / ylety/ y
0 sinh 7¥ (E[ISF)? Jo sinh ¥

T T

inh W
5 sinh 5
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16¢T [ x 4T ° x
1680 [ 04y + 7/ e WED/2gy
T Jo m(E[ISt)? Jo
327 (tT/r) 32773 (T /)
- o 1=(T/m)  w3(E[SE)? (1 - (T/m))*
hence

< exp (—tx—32((tT/7r)+log(1— (rm)) + -8 (T/r) )

m2(E[|Sp]])? (1 = (¢T/m))?
For all b € (0,1), (4.17) follows by taking t = (1 — b)w/T in (4.19), and (4.18) is a
consequence of (4.17) where b is replaced with b/2. O

5 The infinite variance case

In [7], deviation results have been derived for Lipschitz functions of stable
random vectors. In this section, we extend these results to general Poisson functionals
under arbitrary intensity measures. Deviations are now given with respect to a median
rather than to the mean (which may not exist). For A in B(X) (the Borel o-field of X),
let vgr(A) = ¥(ANBx (0, R)), where 0 denotes an arbitrary fixed point in X. The proofs
of the forthcoming results are inspired by that of Theorem 1 in [7] : configurations
are truncated and we will use the following notation on the configuration space. For

a fixed R > 0 and any w € QX let
wr=wNBx(0,R), wir=wNBx(0,R)*={zr€cw : dx(0,z2) > R}.
Given a stochastic functional F' on the configuration space, we also set
Fr(w) = F(wg) = F(wN Bx (0, R)),
and denote by v a non-negative and non-increasing function such that
Pw e Q* : wn Bx(0,R)* # 0}) < v(R),

for all R large enough. The next Lemma will be used in the sequel. It allows to control
m(Fg) —m(F) as in [7].

Lemma 2 Let F be a stochastic functional on the configuration space such that there
exists a non-negative and non-decreasing function B (resp. non-increasing function )

defined on Ry, such that for all R greater than a given Ry :
P(Fr — m(Fg) > B(R)) < 4(R). (5.1)
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Then we have
m(Fg) —m(F) < B(R), (5.2)

for all R such that

1
> i B N . .
R > max (RO, 0<%12f1/2 max (’y (0),% (2 5) )) (5.3)

Proof. The case m(F) > m(Fg) being trivial, we consider henceforth m(Fg) > m(F).
Let 0 < § < 1/2 and assume

R>~71(5).
We have
o<%—5 < %—V(R)
< P(F<m(F)) - P({we Q¥ : wy #0})
= Elrwauwg)<m)y = Lug20)]
< El{rwr)<m@)]

P(Fr <m(F))
P(Fr—m(Fg) < m(F) — m(Fg))
= P(—Fg—m(—Fg) > m(Fg) —m(F)),

where we used the fact that —m(Fpg) is a median of —F%. Consider the decreasing

function
HR(x):P(—FR—m(—FR)zx), .TER,
and let Ir(y) = sup{z > 0, Hr(z) > y} denote its inverse. We have
1
m(Fr) —m(F) < Ig(P(F <m(F)) — P({w € Q% : wi #0})) < IR<§ - 5). (5.4)
Assume further that
1
>35> =4).

k27 (2 5)

From (5.1) applied to —Fg, we have

Hr(B(R)) = P(~Fr—m(~Fg) > B(R)) < (R) < 5 — 4,

N =

that is finally I (3 —4) < B(R), and from (5.4) :

m(Fr) = m(F) < IR(% ~5) < A(B).
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The next result provides a general deviation property for stochastic functionals with

infinite variance on Poisson space.

Theorem 1 Let F' be a stochastic functional on the configuration space such that
there ezxists a non-negative and non-decreasing function B, defined on Ry, and a

constant C' > 0 such that for all R greater than a given Ry :
(1) supyepy (o,r) | Dy F(w)| < B(R), P(dw)-a.s
(it) | DF||Z(0x 1205y < CB*(R)Y(R).
Then
P(F —m(F)>x) < (1+Ce)yo 7' (z/4),

coos (1 (5ker))

Proof. Configurations are truncated to deal on the one hand with the functional

for all

restricted to the truncated configuration and on the other hand with the rest of the

configuration which is controlled using the function vy. We have

P(F-m(F)>z) = P(F—m(F) >z, wp,=0)+PF —m(F) >z, wh#0)
< P(Fp—m(F)>z)+P{we Q" : w§#0}). (5.5)

For the first term, in order to apply (2.10) in Corollary 1 (which provides a deviation

result from the mean rather than from a median), let

g(x)=(x —m(Fr)TAr, z€R

Then E[g(Fr)] < rP(Fr > m(Fg)) < r/2. Moreover if Fp > m(Fg)+r then g(Fg) >
g(m(Fgr) + 1) > r, hence

{Fr > m(Fr) +r} C {g(Fg) > r},
and
P(Fr—m(Fg) > 1) < P(g(Fr) > 1) < P(g(Fg) — Elg(Fr)] > 7/2).  (5.6)
On the other hand, g(Fj) satisfies

Dyg(Fr)(w) < [g(Fr(wU{y})) — 9(Fr(w))| < [Fr(w U{y}) — Fr(w)| = |DyF(wr)|,
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since g : R — R is Lipschitz(1). Thus
sup  Dyg(Fg) < B(R) and [[Dg(Fr)ll7e(@x r2wg) < CYR)B(R),
yeBx (0,R)

and from (5.6) and Corollary 1 we get

2Cy(R)B(R)

Y

—z/(28(R))
P(Fr —m(Fg) > z) < e/28(R) (1 + )

and taking z = 25(R) we have :

1
Cv(R)

P(Fr—m(Fg) > 2B8(R))<e (1 + )_1 < eCvy(R), (5.7)

and from Lemma 2 with S(R) = 28(R), 7(R) = Cey(R) and condition (5.1) given by
(5.7), we get :
m(Fr) —m(F) < 25(R),

i.e. using (5.7) :
P(Fr —m(F) > 45(R)) < P(Fg — m(Fg) > 26(R)) < Ce~(R),

i.e. for z > 48(R), we have

P(Fr—m(F) > 1) < Ceyof (%) , (5.8)

under condition (5.3) which can be rewritten in terms of = as

z > max <2ﬁ(7‘1(5)),25 (v‘l (cL (3 - 5)))) |

v o 8~ (z/2) < min (5, é (% - 5)) .

1.e

1
The optimal bound with ¢ € (0,1/2), being obtained for §y = 50100 € (0,1/2),
i.e. the condition on z becomes
1
> 2 . 5.9
The estimate (5.8), together with
X c —1 (T
Pwe @ : whp£0}) <A(R) <vop7 (3),
gives
(T
P(F—m(F) 2 7) < (Ce+1)70 87 (7).
using (5.5), under the condition (5.9). O
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Note that in the hypotheses of Theorem 1 it is sufficient to assume

sup D, F(wn)| < B(R), P(dw)-as.

yEBx (OaR)
and

||DFR||ioo(QX,L2(uR)) < CB*(R) v(R),

instead of (i) and (i¢). The next corollary presents a particular and more tractable

case of Theorem 1.
Corollary 12 Let F : QX — R, and let
y(R)=1- e vHyeX : dx(O,y)>R})’ R >0,
and assume that
sup [D,F| < C'R - and [ DF[on o

yeBx (0,R)<R

for all R > Ry > 0. Then
Ce x , 1
PE-=m(F)z2) < (H (0)2) (i) w2200 (2(1+60/(0f)2)> '

On R" equipped with the Euclidean norm | - |, consider an ¢2-Lipschitz(c) function

< CR*y(R),

VR))

f :R* — R and a n-dimensional infinitely divisible random vector F' = ([}, ..., F,)
without Gaussian component and with Lévy measure v. Let us apply Corollary 12 to

the random functional G = f(F'), where F' is given as in (1.3) by :

F= ( /{ ) () + /{ )+ bk) -

For the gradient, we have if y ¢ w :

DyG(w)| = |GlwU{y})— G(w)
= u(w(du) — v(du w(du b) — f(F
F(f, L, et =+ [ ot yeo) - )
S C‘y‘%

since f is ¢>-Lipschitz(c), and we obtain |D,G(w)| < ¢R, for |y < R. In this case,
for G = f(F) the conclusion of Corollary 12 reads

P(G —m(G) > z) < (1+ Ce) (1—exp (—I/({UER” : |u\2>4£c}))). (5.10)

When f(x) = |z|y is the Euclidean norm on R", Lemma 3 below also yields a lower

bound on P(|F — ml|y > x) which has the same order as the upper bound (5.10).
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Lemma 3 Let F' be an infinitely divisible random vector ID(b,0,v) in R™, with me-
dian m € R*. Then

P(|F —m| >2x) >~ (1 —exp(—v({u € R* : |jul| > 2z}))), x>0, (5.11)

.-lklr—‘

where || - || denotes any norm on R".

Proof. We start by assuming that F'is symmetric with median 0. Then, since F' can
be taken to be the value F'(1) at time 1 of a Lévy process (F'(t))o<i<1 starting from
F(0) = 0, we have from Lévy’s inequality :

P(|Fl| =z z) = P(

1
§P (max

1<ji<n

v

Hence

P(||F|| > z) > liminf_ P(max

n—o00 1<j<n

Y]

n—oo 1<j<n

r(2)-
r(2)

> 37 (max 199 - ) > )

s€[0,1]
1

> g—exp(—r{ueR" : [jul| > z})), (5.12)

%P (hm inf max

where (5.12) is a n-dimensional extension of Ex. 22.1 in [25], which relies on the fact
that if w on Ry x R™ has a jump of || - |[-norm greater than z, then max¢jo 17 || F'(s) —
F(s7)|| > . In the general case where F' is not necessarily symmetric we apply the

above to I' — (G, where G denotes an independent copy of F', and use the inequality

P(IF ~m|| > ) = SP(IF = m| > 2) + 3 P(IG ~m]| > ) > SP(|F - G| > 22).

l\DI»—t

g

We now present several examples of Lévy measures v for which the function v can be
explicitly computed, and where F' has infinite variance, i.e. [, ||y||*»(dy) = oo, but

where f(F) satisfies the above hypothesis for f an ¢?-Lipschitz(c) function.
1. Let R™ \ {0} be equipped with the measure given for B € B(R" \ {0}) by

v(B) :/Sn_la(df) /OOO 1B(rg)|1‘;§”dr, (5.13)
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where o is again a spherical finite measure. Since

/ y2(dy) = o(5™") < oo
{lyl2<1}

and

ol 2 1h = [

S

%]
o(dg)/ logr| oo
n—1 1

2
v is a Lévy measure. Moreover [ .., [y5v(dy) = oo, hence F has infinite

variance. As before :

r2
. *logr
= 1- —o(S™ ! d
exp( o )/R - r)
1+1logR
< 0(5"_1)7+;g . R>1.

Thus, choose v(R) = 20(S" )L On the other hand,

IDF ()i sy < / Plyl2 v(dy)
{lyl2<R}

1 R

= —02/ o(d€) / logr dr + 62/ a(d{f)/ logr dr
Sn—1 0 Sn—1 1

= o(S" ) (RlogR — R+ 2)

< R*y(R)/2.

. Let X =R", with the finite measure v given for B € B(R") by

00 6—1/(21'2)
v(B) = /S  olde) /O 1y(r) S —r. (5.14)

We have
1 o=1/(2r?)

2 n—1
ylsv(dy) = o(S
/{M}\ fuiay) = o(s™) [ =

so that v is a Lévy measure. The infinitely divisible random variable given by

dr < oo,

the Poisson stochastic integral in (1.3) is thus another example of a random

variable without finite variance since

/ lyl2w(dy) = oo.
{lyl2>1}

Once more :

Pt £0) = 1 d e Ve
Wo#0) = 1—exp |- /  olde) /{MZZR} ot
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< o(smY) / R
o r
R T2\/27

L [UR ot /2
o(S" du.
(5" ) / -

n—1
Choose y(R) = o (5" )

. Moreover,
IDF(E) R i 1oy < € / y[2 va(dy)
B(0,R)

[ ot [
= C o T T
Sn—1 0 r2/ 27

R -1/(2r?)
0 vV 2T

oo ,—u?/2 du
= o S"_l/ ¢ —
o [

dr

S 620_(5171—1)

< 2 Sn—l
< col ) ( V27 1R V2T
< *R’y(R).

R —1/(2R?) oo —u?/2
e e du

3. The above deviation results for f(F) with F' as in (1.3) a stable or an infinitely
divisible random variable, and with Lévy measure either given by (6.1) or (5.13)
or (5.14), continue to hold after minor changes for Holder continuous functions

of order 0 < h < 1. Indeed, for such a function f we have
IDyf(F)l2 < clyls < cR, |yl < R.

For instance in the case of the Lévy measure (5.13) we have

R
D5 s oy < [ ode) [ e vt

R
= 620(5”_1)/ r?=2| log r|dr
0

2 Snfl 1 R
= g9 ) 0(2 ) / r?"2logr dr + 62/ r?"2logr dr
0 1

R*»=llog R R2h=1 1 1
< 2 n—1 _ .
s cold )< 2h — 1 (2h—1)2+(2h—1)2+2h+1)

We can thus apply Theorem 1 to G = f(F') with (up to multiplicative constants)

the functions :
1
B(R)= B, and ~(R) = 5T
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A similar computation yields in the case of the Lévy measure (5.14) :

IDF iy < [ lalfun(ar)
{lz[2<R}

c? f 2h—2_—1/(2r2)
< o(d Ve ) dr
< o= ot |

R2h—1 —1/(2R?)
S CZO_(Snfl) €

(2h —1)V2r

Once more, Theorem 1 applies here, in the Holder continuous case, with up to

multiplicative constants,
e—1/(2R?)

B(R) = R", and 7(R)=R7\/2_7r.

Before turning to the case of stable intensity measures in the next section, we prove

the following lemma for a general intensity measure v, which is a generalization of

Lemma 2 in [7].

Lemma 4 Let F : QX — R and oo, a3, ay, K > 0, such that
(i) sup,ex | DyF(w)| < K < 00, P(dw)-a.s.
(’L’L) ||DF||koo(QX,Lk(U)) < o < o0, k= 2,3,4.

Assume moreover az < 204/K and K?ay/ay > 2. Let sq be the (unique) positive

solution of

Let zg = 3s¢(aa — aq/K?). Then for all x < zy,

2

P(F ~ E[F) > 2) < exp (—6(a2 —xa4/K2>) ’

while for x > x,

z r 3oy K3z
P(F — E\F| > < K, —— =4+ —1 14+ —
( Flz ) < 0exp<K <K+K4) 0g<+3064>>’

with

Zo To 3oy K3z, T3
Ky = _To L (To 20 (g _ .
0 eXp( K+<K+K4> Og( * 3a4) 6(cs — s/ K2

Proof. From Proposition 1 we have
P(F — E[F] > z) <exp (—/ h_l(s)ds) . 0<z<hl(ty)
0
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with h given in (2.2). Using the bounds |D,F| < K and

2 SK _ 1 _ o — 22
65“—1§5u+%u2+€ ! SKI§ SK/2u3,

0<u<K, s>0, (5.20)
we have

b) < s [ (SDF@ID,FW) + 5D, DR

w,w' €EQx

el —1—sK — s?K?%/2
+

Dy F(w)P|DyF ()] ) v(dy)

K3
82
< s s [ IDF@)ID P+ 5 sup [ 1DF@PID,FW) iy
ww €Nx J X wwE€Qx J X
K_1-sK - s*K?/2
+ 703 sup /\DyF(w)|3|DyF(w')|1/(dy). (5.21)
wwW E€Nx JX

1

Using the inequality zy < z?/p + y?/q for p™* + ¢~ = 1 and z,y > 0, we have for

p=q=2:
sup / D, F()||D,F() (dy)
w,w EQX
— sup / |D,F(w)|*v(dy) + = sup / |D,F(W)|*v(dy) < a,
wwEQX ww’EQX X
forg=3:
sup / \DyF(w>|2|DyF(w'>|v(dy>
ww’EQX
~ sup / |D,F(w)|*v(dy) + 5 sup / |D,F(W)|*v(dy) < as,
wwEQX ww’EQx X
and similarly for ¢ =
sup [ 1D F@)PID,F) vl
wwW E€Qx J X
1
< - sup / |DyF(w)|*v(dy) + = sup / | D, F (W) [*v(dy) < .
4w,w’€QX X 4w,w’€QX X
From (5.21) we get
2 K —1-sK - SK?
h(s) < sas+ 5 % + 703 2
2
- Oy S Oy Qs oK
= S(OfQ_ﬁ> +5 (ag—?) +F(6 —1) (522)

Since we assume a3 < 2ay/K, the second summand in the right-hand side of (5.22)
is bounded by the third one for all s > 0. We may now end the proof as in Lemma 2
of [7] :



Q «
s s o= 2) 30 1)
3s<a2—a—42), 0 <5< s,
SF(e —1), s> so,

where sg is the unique positive solution of (5.15) which is well defined since K?ag/ay > 2.

Hence, for 2o = 3sp (g — ay/K?),

t
for 0 <t <
. 3(ag — s/ K?) orEst=To
I log (1 + 3TMt) for t > xy,
which yields (5.16) and (5.17) from (5.19). O

Lemma 4 will be used in the proof of Theorem 2 below to obtain a deviation result
under a-stable Lévy measures for all value of a € (0,2). The following lemma applies
only for a > 1, but will yield a slightly better range condition in Theorem 3, and is

stated without boundedness assumption on 4th the order moment.
Lemma 5 Let F : QX — R and oo, a3, K > 0, such that Koy > 203 and
(Z) ||DF||2°°(QX,L2(1/)) S (87 < o0,
(“) ||DF||30°(QX’L3(V)) < a3z < oo,
(i) supyex | Dy F(w)| < K < 00, P(dw)-a.s.
Denote by sqg the unique solution of

ek —1

o'
= = Ka—z -1
Let also zq = 2s¢(ay — a3/K). Then
72
P(F - E[F] > z) <exp <—m) , 0 <z < x, (5.23)
and
P(F — E[F] > z) < Kyexp (% - (% + 2%) log (1 + l;;;”)) . >,
(5.24)
with

To 203 K?z, x3
K, = —x0/ K —+—1]1 1 - . 5.25
° exp( mo/ K+ (K " K3> Og( " 0, ) 4(ar — a3/ K) (5-25)
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Proof. As in the proof of Lemma 4, apply Proposition 1 with A given in (2.2) and
bounded by

K1 —sK
h(S) S s + %ag.
using
K_1_sK
65“—1§8u+ %U/z, ’U,E[O,K],

instead of (5.20). We get

sK
as\ eE —1 2s(ay — a3/ K), s < 8p
< Y <
h(s) 2max< ((1/2 + K> 2 (1’3) < { 2(e*K — 1)ay/K?, s> s

which allows to conclude as in the proof of Lemma 4. 0

6 The case of stable Lévy measures

Let 0 < a < 2, X = R” and the stable Lévy measure given by

W(B) = /5  olde) /0 Cipreredr, B € BRY), (6.1)

where ¢ is a finite positive measure on S™ !, the unit sphere of R", called the spherical

component of v. We have
S QX . LUR = @})
¥/ w)
{Iy\z>R}

w
dr

= 1—exp </ o df >
sn—1 {rels>Rry T

PloeQ” @ wp#0}) = P({
= 1—exp

n— 1
= 1—exp U (5 )
Sn 1
< TR (6.2)
Thus we can take ( 1)
o(S™
R) = R > 0.
V(R) = ——= >

in Theorem 1. Let f : R® — R be #?-Lipschitz(c). In case F is a stable random
variable represented by a single Poisson stochastic integral of the form (1.3), we have

from (2.13) :

DS oy < [ i)

{lyl2<R}
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= c2/ o(d&)/ rdr
sn-t {Ir€la>R}

< CQG(Sn_l)RQ—a
- 2—«
2¢?
< 2
< g BB,

hence Theorem 1 of [7] is recovered taking 5(r) = ¢r and C = 2/(2 — «) in Theorem

1, i.e.

2—« o

PUE (i) 20 < (1472 ) E (D)™ ey

for all z such that

-1 —1 1
T >2cy (2—a) > 2cy (2(1+2e/(2—a)))’

where I is a stable random variable with parameter «. The constant in front of z=¢
in (6.3) explodes as a goes to 0 or to 2. In fact, as noted in [7], the dependency in o'
of the constant is sharp as a goes to 0 (take for example a symmetric a-stable random
variable). This explosion does not occur however when « goes to 2, and the aim of
the next result is to provide a deviation bound with such a non-exploding constant,
for general random variables on Poisson space under a-stable intensity measures. The
proof relies on Lemma 4, and in the particular case of stable random variables, this

result also improves Theorem 2 of [7] by allowing « to be arbitrary.

Theorem 2 Let a € (0,2) and F : Q* — R such that
IDyF(w)| < clylx, Pdw) ® v(dy)-ac.

with ¢ > 0. Then we have

P(F = m(F) > z) < o(S"™) (562 + 1) (o) (6.4)
2 «o e
for all
> 4eo(S™ 1) Sl t0g—2 Viog (14 -2 1og 2 \/é\/(62) v
v=n 2 2o B9 _o) % 2_a B9 g4 a ¢ '
(6.5)

Proof. Using the notation of the proof of Theorem 1 we have

D,g(Fr)(w) < |DyF(wr)| < clylx, P(dw) ® v(dy) ace.,
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where g(z) = (x — m(Fg))* Ar. Thus

sup Dyg(Fr) <cR, P —a.s,

yEBX(OaR)
CQO.(Snfl) a
IDg(FR) i@ p2way < —5 =B
030.(57171) a
||Dg(FR)||i°°(QX,L3(UR)) < 3I— R,
and 45 (Sn1)
cto(S"™ o
IDg (Rt o3 iy < —f = R
We now apply Lemma 4 to vz and Fr with
2 Sn—l 3 Sn_l 4 Sn_l
K=cR ay=C 00" Dpoa (0" ) pea oS pra
2 —« 3—«a 4—a

Using (5.6), equation (5.15) reads

pseR _ 2scR
2—«

¢(scR) == —1=0.

Since for all € (0,2), ¢(log 72=) < 0 and ¢(2log 72=) > 0 we have

2 2
1 < <21
og2_a < s9cR < og2_
o 6c2o(S" ) RE@
so that for zq = 3s (012 — ?42) = @ —(a) (4)_ ) Sp, we have
3 2 6 2
n—1\ pl—a ] < o < n—1)pl-a 1 . (6.
co(S" )R 22 —a) 0gy—— <@ < co(S" )R 55085 (6.6)
For
12c%0(S™ Y R?e
r > 2xy= 2—a)d—a) S0,
we get from Lemma 4 :
P(Fr—m(Fgr) > 1) < P(9(Fr) — Fg)] > (6.7)
r T S" 1 (4—a)r
< K, —
= Roep (20R <2cR 1—a) Ra) ( o (Sm1) Rl—a))

with from (5.18) and (6.6) :

Ko

o (- (B Y1 ) =t

47



30(S"L) 4 2 8 2
< .
_exp( T <1+2_alog2_a)log<1+2_alog2_a)>

Hence under the condition

STHhR < 6.8
o R S AT T log .2 V1o (14 25 Tog .2 (6:8)
we get Ky < e and

1 2
log

2t < 12¢o(S™ )R
o = CU( ) 2 —« 2 —«

2 2
2—a log 2—a

(1 + 5log ﬁ) log (1 + 72-log ﬁ)

IN

4cR

< cR,

ie. r > 2xy with r = 2cR. Then from (6.7) and K; < e we get

P(Fr—m(Fg) 2 2¢R) < eXP<2—<1+M>Iog<1+M))

(4—a)Re 3o(S™ 1)
2 (4—a)R” -
< ¢ (1+ 3w
< 3eo (S
- (4-a)R>
< 362;# (6.9)
= 2620,/’}/(R), (610)

as long as (6.8) holds. In order to control P(Fgr — m(F) > z) from (6.9), we need
to control m(Fr) — m(F). For this we apply Lemma 2 with 3(R) = 2cR, 5(R) =
se’ay(R),

3 4 2 8 2 te
= (25(sm 1 (1 1 log ( 1 1
Ho (20(5 )(+2—a0g2—a> Og( +2—a0g2—a)>

and (6.10). This yields, with z = 4¢R :

m(Fr) —m(F) < z/2,

and

x

R > max (Ro,fy_l(é),*y_l (3;2 (% — 5))) , (6.11)

P(FR —m(F) > ac) < P(FR —m(Fg) > :5/2) < 2620(5”1) <g) ,

provided




for any given § € (0,1/2). When x = 4cR, this estimate together with

P(lw € 0¥ wy#0) <(R) = 78T

gives, using (5.5) :
P(F—m(F)>xz) = P{F—-m(F) >z, wp=0)+PF —m(F) >z, wh #0)
< o(S™h (é + g&) (4%) e (6.12)

as long as (6.8) and (6.11) hold. Now, conditions (6.8) and (6.11) can be rewritten in

terms of = as

3 4 2 8 2 La
> “o(S™H (1 1 1 1 1
x_4c(2o(S )(+2_a0g2_a) 0g<+2_aog2_a))

o (1572) . (252"

When e.g. 6 = 1/4, the range of (6.12) can be written

3 4 2 8 2 4 La
> 4 n=lyl/a (2 9 1 log [ 1 1 V =V (662 .
T 2 deo (S ((2( +2—a0g2—a) og( +2—a0g2—a)) o (6¢%)

O

and

Using Lemma 5 instead of Lemma 4, we can state a similar deviation result

under a slight better range condition on z, in case «a € [1,2).

Theorem 3 Assume that o > 1 and let F : QX — R such that
ID,F(w)| < clylx, P(dw) @ v(dy)-ae.

with ¢ > 0. Then we have

P(F — m(F) > 1) < o(S") (1 + %) (‘fja, (6.13)
for all
z > 4eo(S™H)Ye (((1 + 5 E ~log i a) log (1 +3 f ~log i a)) vV (462)>1/a.
(6.14)
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Proof. We sketch the modifications of the proof, following the argument of Theorem

2 and applying Lemma 5 instead of Lemma 4 to vz and Fg, with

2 n—1 3 n—1
K=cR ay="00"Dpra 4 05" Dpsa
2—« 33—«
Under the condition
1
a(S" HR * < (6.15)
2(1 + ﬁ log ﬁ) log (1 + ﬁ log ﬁ)
and since
20[3 1 ] 1 < 40!3 1 ] 1
o 0
2R?22 — o o =M= 2R?2 — « & o
we have K < e and also zy < cR. Using (5.6) with r = 2cR > 2z, we get applying
Lemma 5 :
Qs 2¢*R3
P(Fr—m(Fg) > 2cR) < exp (2 - (1 + 2C3R3) log (1 + o
263 R3 -1
< € (1 + h )
a3
< e’as
- 23R3
620'(Sn_1)
< S 6.16
- 2R ( )
2o
= TV(R)a (6.17)

as long as (6.15) holds. Finally, applying Lemma 2 with S(R) = 2cR, 7(R)
e?ary(R)/2 and condition (5.1) given by (6.17), with z = 4cR, derive m(Fr) —m(F) <
x/2, and

e2o(S"1) [4e\®
P(FR—m(F) > x) < P(FR—m(FR) > l‘/Q) < — (;) )

provided moreover for any, 0 < § < 1/2,

Rz (0 (2 (1)) -

With z = 4c¢R, this estimate together with (6.2) gives, using « > 1 and (5.5) :

P(F—m(F)>z) = P(F—-m(F)>z, wp,=0)+ P(F —m(F) >z, wi#0)

e?\ [z \~
< n—1 _ o .
< o8 )<1+2)(4C) , (6.19)
as long as (6.15) and (6.18) hold. Now, conditions (6.15) and (6.18) can be rewritten
in terms of z as (6.14) with e.g. 6 = 1/4. O
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Finally, we extend a recent result of [16] to Poisson functionals under stable

intensity measures.
Theorem 4 Let F : QX — R such that for some ¢ > 0,
|D,F(w)| < clylx, P(dw)®v(dy)-a.e.

1) Let € > 0, then if a is sufficiently close to 2,

P(F — m(F) > ) < (¢ + ve) exp (— 5 (ﬁ):ao(‘)sfil)) , (6.20)

provided
20(S™ 1) (4c)™

2—«

o(S™ 1) (4c)* log (%)
22-a) 3-a

log(4(1+ Ve)) <z < (6.21)

2) Let b> 3, e >0, and x = 4bco(S" 1) 51-log 72=. For « close enough to 2 we have

P(F—m(F) > z) < 19705 (1 (@) exp <<2 +2)(40)%0(S" g (2 - a)))

T o T
(6.22)

1 1 1 1
where g(x) = (; log E) log (; log 5)

Proof. We follow [16] as in the proofs of Theorem 1 and Proposition 3 above. First,

using the same notation as before, we have :
P(Fr—m(Fg) >r) < P(9(Fr) — E[g(Fgr)] > 7/2) (6.23)
r/2
< exp (—/ hgl(s)ds> , 0<az<hg(ty), (6.24)
0
with

hr(s) < (ag — %) s+ % (esK _ 1)

CQU(SH—I)RZ—a co.(Sn—l)Rl—a

— scR __ 1
T R A v
since again
2 Sn—l 3 Sn—l
ay = MRQ—CY’ a3 = MR?)—OA K = cR,
2 -« 33—«

where (6.23) above comes as in (5.6) in the proof of Theorem 1 and (6.24) comes from

the proofs of Lemma 5 and Proposition 1. Following [16], for 4, s, R satisfying

escR_1< 5
csR — 2—-«

(6.25)
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we have
CQU(Sn—l)RZ—a

h <1446
) <1 +) G G- a
" 3= 0)2 - a)’
Y 3—a)2-a)y
hy' (t)dt > 6.26
/0 r (t)dt = 2(1 + 6)c2o(Sn—1)R2~= (6.26)
for all y such that
B-a)2-a)y _
(1+6)cEa(S1)R2—> — 7
A n—1
where s satisfies (6.25). Taking for some A > 0, R* = @ _005351(3 —)a) and y = R,

since scR = A/(1+ 0), (6.25) can be rewritten as

A
e+ —1 Y
146 <
(1+9) A T 2-«
which is satisfied whenever
(1+90) P
A~ 2—a
Choosing 0 (2~ a) hich is positive for 0 < a < A < —log(2 — «) when «
oosing § = w v — —a)w
80T A A2 —a) P &
is close enough to 2, we derive from (6.26) for a < A < —log(2 — «)
cR A 2 —
exp (—/ hl_zl(t)dt) < e Texp (6(270[)> . (6.27)
0
But since

et(2 — )

lim sup e 2 exp ( 5

A
) e@—a) — \/E,
a=27 g A<—log(2—a)

for any € € (0,1) and « close to 2, from (6.24) with r = 2¢R,

P(Fr —m(Fgr) > 2cR) < exp (— /OCR th(t)dt> < (\/§+ g) =)

5 2-a)
< (Verg)ew (‘WR ) (6.28)
for
ac(S"1) o a(S" 1) logﬁ
2—a)(3—a) <R < 2(2—04)(3—04)' (6.29)

Next, control m(F) — m(Fg) using Lemma 2 with 5(R) = 2¢R,

~ _ (2 - Oé) e
F(R) = (14 v/e) exp ( 20(5%1)1%
and condition (5.1) given by (6.28) (with ¢ < 2). This yields
m(Fg) —m(F) < 2¢R, (6.30)
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provided (5.3), rewritten as

o(S™h) _20(5’”_1) log 1/2—-96
a7 2—« 14++e)’

and (6.29) above still hold. Equations (6.28) and (6.30) yield

R* > max ( (6.31)

P(Fp—m(F) > 4cR)) < P(Fr—m(Fg) > 2cR)

(Ve+3)exp (—%m) (6.32)

IN

provided (6.29) and (6.31) hold. Next, when (6.29) holds, (6.2) gives for « close enough
to 2 :

P £ 0) < Of;; ) < %exp (—%) . (6.33)

Finally, (5.5) together with (6.32) and (6.33) yields with x = 4cR,

P(F— BlFe] 2 1) < (Ve 2)exp (oo 02 )

as long as
" o(S" 1) (4c)®
(2—a)(3—-0q)

< 2% < (40)*0 (8™ 1) 21;)2g(_1/a()2(3—_042)’ (6.34)

and

(6.35)

2@ > (40)* max (a(sn—l) _20(S"Y), 1/2- 5) |

ad 2—a 21+ Ve
for any 0 < § < 1/2. Taking 6 = 1/4, conditions (6.34) and (6.35) can be rewritten as

o(S"71) (40)* log(1/(2 — o))
2(2 — ) 3—« ’

20(S™1)(4c)®
9 _

log(4(1 + V@) < ° <
which yields (6.22).

We now deal with the second part of Theorem 4, still following [16]. Take for
bo(S")log(1/(2 — o))

some b > 0, R* = 5 and let A > 0. For « close to 2 and
-«
scR > log(1/(2 — a)) + loglog(1/(2 — a)) + A we have

escR -1 1
scR — (2—a)(e4+¢)’

hence

hig' (u) > % log (1 + (e 4+1 —(%3562;"1)}%1“> (6.36)

whenever

(Lt e +e)ea(S" e log(1/(2 — @)

v 2—a)(3—a)R*!
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For A > 0 small enough and b > 2, we have cR > u;, and integrating (6.36) over

[u1, cR], we obtain

/R > ( (14 i ) tos1 00 =1) = ( (G + o) st 00 - )
(6.37)

. (3—a)R>!

th 6 =

b (1+e4+¢e)eo(S1)
(6.23), (6.24), (6.37), we derive

. For a close to 2 and A,e > 0 small enough, using

P(FR— m(FR) Z QCR)

< exp <— /0 “ hgl(t)dt> < exp (— /u jR hg! (t)dt>

L 2+8)a(s"Y e ((2 +&)co(S") (51 log(1/(2 — @))) log (52 log(1/(2 — oz))))

- Re Re
n—1 n—1 _
< (2+¢)o(S™ ) exp (24+¢)o(S" 1)g(2 — ) ‘ (6.38)
Ra Ra
with g(z) = (Llogi)log(ilogl) and & some (new) positive constant. It is easy

now to control m(F) — m(Fy) using once more Lemma 2 with 3(R) = 2¢cR, 7(z) =
ato (8" 1)z~ and condition (5.1) given by (6.38). This yields

m(Fg) —m(F) < 2cR (6.39)
as long as
oS 3o(S™1) 30(S"1g(2 - )
@ > _— < — 0. .
R* > o and Ja eXP o <1/2-90 (6.40)

Then with z = 4¢R, (6.38), (6.39) yield
) < (2+€)o(S") exp ((2 +e)o($" g2 - a))

P(Fr—m(F) >
(Fr—m(F) 2 o) < =2 o

as long as (6.40) holds. Together with (5.5) and (6.2), this gives

n—1 1 2 n—1 2 .
P(F_m(F)Zx)SM —+(24¢)exp (2+e)o(5" )92~ o)
Ra 8] Ra
for + = 4cR, that is (6.22) as long as (6.40) holds. This latter condition can be

rewritten for 6 € (0,1/2) and b > 3 :

N B 1 3 =
2—a 82— o = M\ Gon \b(1/2—0)

b
which is obviously true for « close enough to 2 since «, b are bounded below and =
is bounded above. g
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