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ABSTRACT We consider the nonlinear hyperbolic equation

uy — Au+ Du = h(t, z) |ul’
posed in @ := (0,00) x RY, where D%u, 0 < o < 1 is a time fractional derivative,
with given initial position and velocity u(0,z) = uo(z) and u;(0,2) = uy(z). We
find the Fujita’s exponent which separates in terms of p, « and N, the case of global

existence from the one of nonexistence of global solutions. Then, we establish suffi-
cient conditions on u;(z) and h(z,t) assuring non-existence of local solutions.
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1 Introduction
In this paper, we consider the equation
uy — Au+ DSu = h(t, z) |ul’ (WE)
posed in @ := (0, +00) x RY, subject to the initial conditions
u(0,z) = up(x) and u(0,z) = ui(x) (1)

where A = 07 4 ...0%, is the Laplacian in the space variable z and D¢ for 0 < a < 1
is the time fractional derivative defined by

ey L d [ _f@
(D) ) = r(1—a>£/(t—a>ada‘




This fractional derivative is said to be left-handed. The right-handed fractional
derivative is defined by

. -1 d [ [
(D21) (1) = r(1—a)£/(a—t)ad"

t

(see [12] and [13] for more on fractional integrals and derivatives.)

In Equation (WE), the term D¢ represents an attenuation of fractional type (see
[14], [15], [16] [8]). Before we discuss our results in detail, let us briefly dwell on
some literature related to the equation (WE).

In the case of purely fractional derivative time modelling, Seredynska and Hanyga
[14] considered the nonlinear equation

D?*u+ D"y 4 F(u) = 0

where D' with 0 < 7 < 1 represents the (1 + n)-order fractional derivative in the
sense of Caputo [12], and + is the thermo-viscous coefficient. This equation serves as
a model for the anomalous attenuation. Our equation can be viewed as an infinite
dimensional version of the equation above.

In one of our previous papers, some conditions were obtained for the occurrence
of blowing-up of solutions to (WE), with A(¢,2) = 1, on a bounded domain. More
precisely, in [8], it is proved that the solution is unbounded and grows up exponen-
tially in the LP-norm for sufficiently large initial data. This paper has been followed
by two others by Tatar [15] and [16]. In [16], the set of initial data has been consider-
ably enlarged using a different argument based on a new Lyapunov type functional.
Then a blow up in finite time has been proved using an argument similar to the
one used in [8] but combined with a technique due to Georgiev and Todorova [4]
together with a suitably chosen functional.

Here, in the first part of the paper, we relax completely the conditions on the
data and prove a result of different flavor in the sense that a critical exponent is
found which separates the case of blow-up from the case of global existence; the
decisive point is then made according to the size of data in some functional space.
The method of proof we follow here has been already used in [7] (see also [6]) to not
only give a short proof of an important result in [17] but also to answer positively an
open question raised there concerning the equation (WE) with a linear damping of
the form w,; (rather than a time fractional damping). This method of proof appeared
first in the book of J. L. Lions [9] for the heat equation with polynomial nonlinearity
and then in the paper of Baras and Pierre [2] (see also [3]). It remained dormant till
the series of very interesting papers by Qi S. Zhang [18], [19] followed by a sizeable
number of articles by Mitidieri, Pohozaev, Kurta, Tesei, Laptev, Veron, Guedda and
Kirane collected in [10]. The method is rather simple and consists in a judicious
choice of the test function in the weak formulation of Equation (WE) accompanied
with a scaled variables argument.



The theorems we will present here are concerned with the non-existence of solu-
tions. In case of the existence of a local solution then our results would mean that
this solution must blow up in finite.

In the second part of the paper, we establish a sufficient condition on h(t,x)
and the initial data assuring non-existence of solutions for any time. Necessary
conditions are also established for the existence of global solutions. To this end,
we will adapt a method used in Baras and Kersner [1], originally established for
parabolic problems. In [1], the following problem (PE) has been considered

u — Au = h(z)uP, v € RN, t >0
{ u(0, ) = up(x) > 0.

It was shown that no local weak nonnegative solution to (PE) exists if the initial

data satisfies
lim u) 'h(z) = +oo,

|z|—o0

and any possible local weak nonnegative solution blows-up at a finite time if

lim w2 'h(z) |2]> = +oo.

|| —o0

Our plan for the rest of the paper is as follows: In the next section we prove a
first result on non-existence of solutions after some time 7. Section 3 contains the
statements and proofs of other results on non-existence of local and global solutions
for the same problem but with a space dependent potential.

2 Non-existence of global solutions

The function h(t,z) is assumed to be nonnegative and satisfying h(tR? zR) =
RPh(t, ) for some p positive and R large. Let us make clear first what we mean by
a solution to problem (WE). Qr here will denote the set Qr := (0,7) x R" and
LP (Qr,hdtdz) will denote the space of all functions v : RT x RY — R such that
[ v h(t, z) dtdz < oo for any compact K in R* x RY.

K

Definition 1. The function v € L} .(Q7) is a local weak solution of the problem

loc

(WE) subject to the initial data (1) on (0,T) (0 <T < +00) if u € LY (Qr,hdtdr)
and is such that

/ h(t,2) [ul o + / s ()00 () = / (wpn — ubp+ uD*p) @)
Q RN Q

holds for any ¢ € C2(Qr), ¢ > 0 and satisfying p =0, o1 =0 at t =T and p; =0
at t = 0. Here we have set p(0, ) =: po(z).



Remark 1. We have the formula (integration by parts) (See [[13], p.46])

b
/f (D%g)(a =/g )(D° f) ().

In our case we extend u by 0 fort < 0.

Our first result reads

Theorem 1. Assume that [gyui(x) >0, and 1 <p <1+ 23;‘:’;&. Then, problem

(WE)-(1) does not admit global non trivial solutions in time.

Proof. The proof is by contradiction. So, we assume that the solution is global. Let
o € C2(R), po > 0, o decreasing and such that

_Jrar yl =,
(PO(y)_{O Zf |y|22

We choose
o(t, ) = @y(8),

where £ = R74(1? + \x|4), R is a positive real number, ) is any real greater than p,
and such that

e [ ety [ el ()t < o0
suppAep Suppptt

suppD< o

with p+¢ = pq. Here and in the whole paper supp will stand for support. We clearly
have ¢;(0,z) = 0. This function ¢ will be taken as a test function in (2). First, let

us write
/U@tt = /U(hSO)l/p(h@)_l/p%t
Q Q

As ¢ is of compact support, using Holder’s inequality, we obtain

1/p 1/q
Jueas ([ wrne) ([ wororiear) 3
o sSuppp SUppPte

We can appeal to the e—Young inequality to get

Jueese [ wrmesc [ oy oria (1)
Suppp SUpppte

for some ¢ > 0. Likewise, we have the estimates

1/p 1/q
Juse< ([ rne) ([ oreriapr) %)
2 suppp suppAp



and

Jusese [ urnerc [ merriagr, ()
suppy suppAep
Q
The same is true for the third term in the right hand side of (2)

1/p 1/q
/uDEso < (/ \UIphs&) / (he) =7 | D p|* (7)
4 suppp suppD® ¢

Jupre<e [ urmec, (o)~ | D", ®)
suppyp suppD® ¢
Q

Summing up, (4), (6) and (8), with ¢ small enough, we infer that

and

Jurne+ [wo@ <c [ ey (el + 26+ D7) @
suppy
Q RN

for some positive constant C. From now on the constant C' will denote a generic
positive constant. At this stage, we introduce the scaled variables

t=71R* z=yR
and set Q := {(r,y) € RT x RY;7%2 + |y|* < 2}. Therefore, writing ¢(t,z) =
o(TR? yR) =: x(1,y), we have

/(hgp)_q/p |S0tt“1 — R2+N—4q—qp/p/ poalp |er\qX_q/p,
Q Q

/ (;w)—q/p‘A(prI — R2+N—4q—qp/p/ h—q/zo‘AX‘qX—q/zo7
suppAp Q

and
/ (;w)—q/p }chp‘q = R2+N—2aq—qp/p/ ha/p ‘Dfx}q .
suppD® ¢ Q

So, we have
/ lul” hp + /ul(m)cpo(x) <C {R2+N_4q_‘”’/p + R2+N_20‘q_q”/p} ) (10)

Observe that we have chosen , in such a way to have |y,.|? and |Ax|? at the same
magnitude in R. Now we impose the condition

200+ p
l<p<l+—-—=:p,.
b= +2+N—20z p

In the estimate (10), we have to distinguish two cases:
Either p < p, :



In this case, passing to the limit as R — oo in (10) we obtain

}%EI;O{/|u|ph<p+/u1(x)g00(x)} :/h|uv’+/u1(x> <0,

This contradicts the requirement [ u;(z) > 0.
Or D =Da:
In this case, we obtain from (10)

/h‘u|p90+/U1<P0§C

and therefore

/h lul’ o < C.
Letting R — oo, we obtain
/ hlul? < C.
So
I%im |ul” hgp =0, (11)
Cr

where Cp := {(t,z) : R* <t* + lz|* < 2R} .
Using (2) and the estimates (3), (5) and (7), we may write

1/p

/\u\phs0+/ul ) o (T /|UIphso {(/(hso}‘q/p\%th)l/q
+( [ W"\Aso\q) ( / <hso>—q/"\Diso}q)l/q}.

Passing to the limit as R — oo in (12) and taking into account (11), we obtain

}%EI;O{/|u\p h<p+/u1(m)cpo(x)} 0.

This is again in contradiction with [ u; > 0. The proof is complete. O O

(12)

Remark 2. Observe that in the limiting case when o — 1, the critical exponent is
Pewd = 1+ 22 This is in agreement with the one found in [17] and [7].

Remark 3. Notice that the previous argument works perfectly as well for the case
1 < a < 2. In this case we use the definitions (see [14, p.87])

(DS f) (t) = ﬁ (C;i)no/t%da, n=l[a]+1

and

(D2 f) (1) = % (%) /%d@ n=1la]+1.



3 Necessary conditions for local and global solu-
tions

In this section we assume that inf,cg+ h(t,z) > 0.

Remark 4. >From the formula (see [[13], p. 36])

(D2f) (1) =

T /
S B Y LG
MNl—a) | (T—1t)> (0 —t) ’

t
(for absolutely continuous functions) it is clear that if f(T) = 0, then the right-
handed fractional derivative reduces to

(D) (t):m__l n / : ] _(Ut))ada.

t

This is to be compared with the fractional derivative in the sense of Caputo.

(5274, 2207 1C2 M (6g — | — o+ 1)]* with C77 the

1 T(2¢+1)(n—a+1)
G Taratntd)

Our first results in this section are the following

Let v = q(g = 1), L = rsy
usual binomial coefficients and M; = Zlnzo

Theorem 2. Let u be a local solution to (WE)-(1) where T' < 400 and p > 1. Then,
there exist constants v and L such that

1 /4 q/p ,yq
lim inf WP )y < = (= LT
im in uy () (t,z) < v Tt T

Proof. By the definition of a weak solution, for any ¢ € C5°(Qr), ¢ > 0 such that
suppy C {xERN:m >R0>0},

we have

[ ui@nto) + [ nit.o)lul o

RN Qr (13)
< / (Jul |u] + [u] |Ag] + u] | D] -
Qr

Using the e—Young inequality
ab < ead? + C.b?

(with C. = 1/q(pe)¥?) we can estimate all three terms in the right hand side of
(13). Indeed, writing |u| [py| = |u| (9h)"P(ph) ™1/ |oy|, we find for € > 0

Jratleul < [ 1P hg -+ . [ leul” (o), (14
Qr Qr Qr

8



where ¢ is always the conjugate exponent of p. Likewise, we obtain for the other
two terms

/ il |Ag] < € / ul? b + . / INEARTE (15)
QT QT Qr

and

Julpze| <e [ no+c. [ D2l onyo. (16
Qr Qr Qr
Taking ¢ = 1/4, we deduce from (14)-(16) and (13) that

= /ul(x)wo(x) < 01/4/ <|80tt‘q + |A90‘q + ‘DgSO}q) (Sph)_Q/pa (17)
RN Qr

a/p
with C )y = % (%) . At this stage, we make the choice

oo )5

where ® € C°(Q7), ® > 0, supp® C {r € RV : 1 < |z| < 2} and |AD| < k. It is
clear that the requirements previously set for ¢ are satisfied (¢(T,z) = (T, z) =
¢¢(0,2) = 0). Next, we estimate the three terms in the right hand side of (17). Let
us make the change of variables ¢ = 77" and put v = ¢(¢ — 1). Using this and the
assumptions on ¢, we find,

[leatt oy o < qora [ -, (18)
Qr Q1
and
/ Ag|? (ph)/" < KIR-2T / pi-ig. (19)
Qr Q1

For the third term, it is easy to see that

. . 2\ 200-9) 2\ 2]
/}Dﬁgp‘ (@h)~9/P = /h 4 (1 — ﬁ) o | D (1 — ﬁ) (20)
Qr Qr
Now we compute the right-handed fractional derivative
T 02\ 2 T
2\ d (1 - ﬁ) d [ (T%— o)™
I'l—a)D* (1 - — ——— | "7 Jo=_T M d
(1-a) -( T2) it ] (o—te dt/ ot

t t

Using the Euler’s change of variable




we see that

Therefore
T 1
(T2_02)2q / 2 -y % 4g—a+t1, —
= | ——F—do= 1— 2t——= T — t)lotly=od
| S5 = [ o= g | @y
t 0
or
ot 1%
[: 4q OH-]./y |:(1+y)+T—t:| dy
0
By the binomial formula we may write
1
_NCH 2g-1 420,291 )2t )2
I—ZZZOQq Crit= (T - y @ y)*(1 + y)'dy
0

where

29(2¢ —1)(2¢—2)...2¢g — 1+ 1)
il ‘

2q __
ct =

Using the formula

['(u +v)
0
we obtain ,
q
where
n=0 " 2(] —a+n-+ 2)
Hence

pr(1-4%)"
= =i o jj S22 ORI (T — )20t [(2g — DT — (4g — a + 1)1].

Substituting this expression in (20) we obtain that

11—«
/ }Da(p‘ (oh) —q/p _ F(jl - qa) /hl—q (1 B 7_2)211(1—q) P

Q1
‘Z?q022q ZC2qMT2q - 1(1 )2q—a+l [(2(] _ l) _ (4q —a+ 1)7]‘q'

10



It is not difficult to see that, as [ + 2 — a > 0, we have the estimation

[ 1Dzl oty < pr-en [ 1)
Qr Q1
with L = gt [3002) 227G M, (69 — | — ar+ 1))

Now observing that
int () [0 < [u@ae = [uwew
x>
RN RN RN

and gathering the relations (17)-(19) and (21), we infer that
inf Rt Rt 1d
i o) |

R~ (22)
< [T 4 KIRT2T + LT 29 Cy 4 / h'=1.
Q1

Taking the sup with respect to ¢t of both sides of (22) and making use of the as-

sumption inf,cg+ h(t, x) > 0, we can divide by [ (infcg+ 2)' 9@ > 0 (recall that
RN

1 — g < 0). Then, letting R — 400, we obtain

|z|—o00 — \T?1

q
liminf (u(2)h?Y) < ( S LTl‘aq) Chya. (23)

U U
We can immediately deduce the following results

Corollary 1. Let p > 1. Assume that

lim inf uy ()P P~V (t, 2) = 400,

jal o0
then problem (WE)-(1) has no weak local solution for any T > 0.

Corollary 2. Suppose that 1 < p < 1/(1 —«) and uy(xz) > 0. If (WE)-(1) admits a
global weak solution, then

qg—1
l‘li‘n_}gof [ul(a:) (tgfl{f+ h(t,x)) ] =0.

Proof. Suppose that (WE)-(1) has a global weak solution and that

P := liminf lul(x) < inf h(t,x))q_ll > 0.

|z|—o0 teRt

11



Then from (23), it appears that

‘4T 0= /g 1/(24-1)
TSmaX{(7 2 01/4) ,(7 2 01/4) -

This is a contradiction. O

The next theorem gives another necessary condition for existence of a global weak
solution. At the same time it provides (in case u,(z) > 0) a sufficient condition for
blow up in finite time of any possible local solution.

Theorem 3. Suppose that 1 < p < 1/(1 — «) and u is a global weak solution to
(WE)-(1). Then, there exists a positive constant K such that

lim inf <u1(a:)hq_1 \x\Q(qa_l)/a> <K.

|z|—o0
Proof. As p <1/(1 — «), we have ag — 1 > 0 and then for 7" > 1 we may write

T4 L
YTV 4 I R74T 4 L7704 < LTaj_l + KR,

>From (22) we see that

q
inf (uy(2)he ) / Bi-1p < (7 b +qu—2qT) Cia / WG, (24)
Q1

|z|>R Taa=
RN

Minimizing the left hand side expression in (24) with respect to 7', we obtain

inf (u1(z)h?") /hl_q(I)

|z|>R
RN

<K'+ (v + L)/ Ky) 01/4K11/aqR_2(0‘q_1)/a / 710
Q1

where K := (g — 1)(7? + L)/k? Now, using the assumptions on ® (namely,
R < |z| < 2R), we see that

infl) (ul(w)hq‘l Ix\2(“"‘1)/a) [ Rl |g|2eaD/e g
RN

25
< (kq + (ryq + L)/K1> 01/42—2(aq—1)/aK11/aq j‘ Bl-a |x‘—2(aq—1)/o¢ . ( )
Q1
To conclude it suffices to take the sup with respect to ¢ of both sides of (25) and
divide by [ [inf,er+ h(t, z)]" ™ ‘x‘—2(aq—1)/cx Y o
RN
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