

Prépublications du Département de Mathématiques

Université de La Rochelle
Avenue Michel Crépeau
17042 La Rochelle Cedex 1
<http://www.univ-lr.fr/lab0/lmca>

Critical Exponents of Fujita Type for Certain Evolution Equations and Systems with Spatio-Temporal Fractional Derivatives

Mokhtar Kirane, Yamina Laskri et Nasser-eddine Tatar

Avril 2005

Classification 35B33, 35K57.

Mots clés: Fractional derivatives; Fujita's exponent; nonlinear evolution equations ; nonlinear reaction-diffusion systems; porous media.

2005/03

Critical Exponents of Fujita Type for Certain Evolution Equations and Systems with Spatio-Temporal Fractional Derivatives

M. Kirane

*Laboratoire de Mathématiques, Pôle Sciences et Technologie, Université de La Rochelle,
Avenue M. Crépeau, 17042 La Rochelle Cedex, France*

E-mail: mkirane@univ-lr.fr

Y. Laskri

*Faculté des Sciences, Département de Mathématiques, Université de Annaba, B. P. 12,
23000 Annaba, Algeria*

E-mail: ylaskri@yahoo.fr

N.-e. Tatar

*King Fahd University of Petroleum and Minerals, Department of Mathematical Sciences,
P.O. Box 1446, Dhahran, 31261, Saudi Arabia*

E-mail: tatarn@kfupm.edu.sa

Abstract: This paper is concerned with establishing necessary or sufficient conditions for the existence of solutions to evolution equations with fractional derivatives in space and time. The Fujita exponent is determined. Then, these results are extended to systems of reaction-diffusion equations. Our results are new and shed lights on important practical questions.

Key words: Fractional derivatives; Fujita's exponent; nonlinear evolution equations ; nonlinear reaction-diffusion systems; porous media.

1 INTRODUCTION

In this article, we are concerned with finding sufficient conditions and necessary conditions for the solvability of evolution equations and systems with temporal and spatial fractional derivatives. In the first part, attention is paid to the evolution problem **(STFE)**:

$$\begin{cases} \mathbf{D}_{0|t}^\alpha u + (-\Delta)^{\beta/2}(u) = h(x, t)|u|^{1+\tilde{p}} & \text{for } (x, t) \in \mathbb{R}^N \times \mathbb{R}^+ =: Q \\ u(x, 0) = u_0(x) \geq 0 & \text{for } x \in \mathbb{R}^N \end{cases}$$

where $\mathbf{D}_{0|t}^\alpha$ denotes the time-derivative of arbitrary order $\alpha \in (0, 1)$ in the sense of Caputo [23], $(-\Delta)^{\beta/2}$, $\beta \in [1, 2]$, is the $(\beta/2)$ -fractional power of the Laplacian $-\Delta_x$ in the x variable; it is defined by:

$$(-\Delta)^{\beta/2}v(x, t) = \mathcal{F}^{-1}(|\xi|^\beta \mathcal{F}(v)(\xi))(x, t),$$

where \mathcal{F} denotes the Fourier transform and \mathcal{F}^{-1} its inverse; the function $h(x, t)$ will be specified later. The exponent \tilde{p} is strictly positive.

In first equation in **(STFE)**, $(-\Delta)^{\beta/2}$ is a multidimensional fractal (anomalous) diffusion related to the Lévy flights. The time fractional derivative $D_{0|t}^\alpha$ accounts also for dispersive anomalous diffusion, characterized by the mean square displacement $\langle x^2 \rangle \propto t^\alpha$, $0 < \alpha < 1$. Dispersive anomalous diffusion can be derived from CTRW models [19], based on the assumption of random jump lengths and random waiting times between successive particle jumps. Important physical applications of CTRW models include diffusion of carriers in amorphous photo-conductors, diffusion in turbulent flow, a percolation model in porous media ($\alpha = 1/2$) [21], fractal media [26], various biological phenomena [5] and finance [28]. The contribution [4] is related to fluid dynamics.

In the case $\alpha = 1, \beta = 2$, the first equation in **(STFE)** reduces to the usual heat equation which is well documented.

In fact, in his pioneering article [8], Fujita considered the Cauchy problem **(FE)**

$$\begin{cases} u_t = \Delta u + |u|^{1+\tilde{p}}, & \text{in } Q \\ u(x, 0) = a(x) \geq 0, & \text{in } \mathbb{R}^N \end{cases} \quad (1)$$

where $0 < \tilde{p}$. If $p_c := \frac{2}{N}$ (c for critical), he proved that:

(i) if $0 < \tilde{p} < p_c$ and $a(x_0) > 0$ for some x_0 , then any solution to **(FE)** blows-up in a finite time.

(ii) if $p > p_c$, then there exist solutions on Q as well as solutions which exist on $\mathbb{R}^N \times (0, T)$ for some finite T but not on Q . (For this p , not all solutions are global; indeed, if $(1/2) \int_{\mathbb{R}^N} |\nabla u_0|^2 dx - (1/(p+1)) \int_{\mathbb{R}^N} u_0^p dx < 0$, the solution cannot be

global [16].)

The critical case $p = p_c$ was decided later by Hayakawa [11] for $N = 1, 2$, and by Kobayashi, Sirao and Tanaka [14] for $N \geq 3$.

Later on Nagasawa and Sirao [20], Sujitani [31], and Guedda and Kirane [9] considered the problem:

$$\begin{cases} u_t + (-\Delta)^{\beta/2}(u) = c(x, t)|u|^{1+\tilde{p}}, & \text{in } Q \\ u(x, 0) = u_0(x) \geq 0, & \text{in } \mathbb{R}^N. \end{cases}$$

Nagasawa and Sirao have taken $c(x, t) = c(x)$, Sujitani $c(x, t) = 1$, while Guedda and Kirane [9] studied the case $c(x, t) = c(t)$. The method of proof in [20] is probabilistic while in [31] and [9], the approach is analytic.

In a more recent article, Guedda and Kirane [10] extended the previous results to the equation:

$$u_t + (-\Delta)^{\beta/2}(u) = h(x, t)|u|^{1+p}, \quad \text{in } Q,$$

where $h(x, t) = O(t^\sigma|x|^\rho)$ for large $|x|$.

Finally, Kirane and Qafsaoui [13] treated the more general equation:

$$u_t + (-\Delta)^{\beta/2}(u^m) + a(x, t) \cdot \nabla u^q = f(x, t)|u|^{1+p}, \quad \text{in } Q,$$

which covers in particular the equation considered by Qi [32]

$$u_t - \Delta(u^m) = |x|^\sigma t^s |u|^{1+\tilde{p}}, \quad \text{in } Q.$$

The, here above, cited articles follow either Fujita's article or the duality argument with a nonlinear capacity estimate. In a special situation, this has been used by Baras and Pierre [2]. A more versatile variant has been introduced by Mitidieri and Pohozaev [18], Pohozaev and Tesei [24], and then used by Guedda and Kirane [10], Laptev [17] and Kuiper [15] (to cite but a few).

To ensure that the problem **(STFE)** is well posed, the fractional derivative has to be interpreted in the Caputo sense [23] (also cf. [29] for a justification of the choice of Caputo derivatives for a nonlinear ordinary differential equation with fractional derivatives).

Our theorems are reduced to the assertion on the nonexistence of solutions. If an existence result of solutions to the Cauchy problem holds, then the nonexistence of solutions means that every nonnegative solution blows-up in finite time.

To have an idea about ill-posed problems, one is referred to the important contributions [6], [22], [27] and [30].

We recall here some definitions of fractional derivatives.

The left-handed derivative and the right-handed derivative in the Riemann-Liouville sense for $\Psi \in L^1(0, T)$, $0 < \alpha < 1$ are defined as follows:

$$(D_{0|t}^\alpha \Psi)(t) = \frac{1}{\Gamma(1-\alpha)} \frac{d}{dt} \int_0^t \frac{\Psi(\sigma)}{(t-\sigma)^\alpha} d\sigma,$$

where the symbol Γ stands for the usual Euler gamma function, and

$$(D_{t|T}^\alpha \Psi)(t) = -\frac{1}{\Gamma(1-\alpha)} \frac{d}{dt} \int_t^T \frac{\Psi(\sigma)}{(\sigma-t)^\alpha} d\sigma,$$

respectively.

The Caputo derivative

$$(\mathbf{D}_{0|t}^\alpha \Psi)(t) = \frac{1}{\Gamma(1-\alpha)} \int_0^t \frac{\Psi'(\sigma)}{(t-\sigma)^\alpha} d\sigma,$$

requires $\Psi' \in L^1(0, T)$.

Clearly, we have

$$(D_{0|t}^\alpha g)(t) = \frac{1}{\Gamma(1-\alpha)} \left[\frac{g(0)}{t^\alpha} + \int_0^t \frac{g'(\sigma)}{(t-\sigma)^\alpha} d\sigma \right]$$

and

$$(D_{t|T}^\alpha f)(t) = \frac{1}{\Gamma(1-\alpha)} \left[\frac{f(T)}{(T-t)^\alpha} - \int_t^T \frac{f'(\sigma)}{(\sigma-t)^\alpha} d\sigma \right].$$

Therefore the Caputo derivative is related to the Riemann-Liouville derivative by

$$\mathbf{D}_{0|t}^\alpha \Psi(t) = D_{0|t}^\alpha [\Psi(t) - \Psi(0)].$$

We have the formula of integration by parts:

$$\int_0^T f(t) (D_{0|t}^\alpha g)(t) dt = \int_0^T (D_{t|T}^\alpha f)(t) g(t) dt.$$

Solutions to problem **(STFE)** are meant in the following sense.

Definition 1. Let $p = \tilde{p} + 1$. A function $u \in L^1_{loc}(Q_T)$ ($Q_T := \mathbb{R}^N \times (0, T)$) is a local weak solution to **(STFE)** defined on Q_T , if $uh^{1/p} \in L^p_{loc}(Q_T, dxdt)$ and is such that

$$\begin{aligned} & \int_{Q_T} u_0(x) D_{t|T}^\alpha \varphi(x, t) dxdt + \int_{Q_T} h |u|^p \varphi dxdt \\ &= \int_{Q_T} u (-\Delta)^{\beta/2} \varphi dxdt + \int_{Q_T} u D_{t|T}^\alpha \varphi dxdt \end{aligned} \tag{2}$$

for any test function $\varphi \in C_{x,t}^{2,1}(Q_T)$, such that $\varphi(x, T) = 0$.

The integrals in the definition are supposed to be convergent. If in the above definition, $T = +\infty$, the solution is called global.

Concerning the function $h(x, t)$ we require the condition **(H)**

$$h(x, t) \geq C_h |x|^\sigma t^\rho \quad \text{for } x \in \mathbb{R}^N, t > 0, C_h > 0.$$

The assumptions on σ and ρ will be determined through the convergence of certain integrals in the proof (see (3) below). It can be easily seen that no conditions will be imposed on σ and ρ in case $t \geq t_0 > 0$, $|x| < R$ and h^{1-p} is integrable in a ball of radius R in x and radius t_0 in t .

1.1 THE RESULTS

Now, we are in position to announce our first result.

Theorem 1. *Let $N \geq 1$ and $p > 1$. Assume that (H) is satisfied. If*

$$1 < p \leq p_c = 1 + \frac{\alpha(\beta + \sigma) + \beta\rho}{\alpha N + \beta(1 - \alpha)},$$

then problem (STFE) admits no global weak nonnegative solutions other than the trivial one.

Proof. The proof proceeds by contradiction. Suppose that u is a nontrivial nonnegative solution which exists globally in time. That is u exists in $(0, T^*)$ for any arbitrary $T^* > 0$. Let T and R be two positive real numbers such that $0 < TR^{\beta/\alpha} < T^*$.

For later use, let Φ be a smooth nonincreasing function such that

$$\Phi(z) = \begin{cases} 1 & \text{if } z \leq 1, \\ 0 & \text{if } z \geq 2, \end{cases}$$

and $0 \leq \Phi \leq 1$.

The test function φ is chosen so that

$$\int_{Q_T} |(-\Delta)^{\beta/2} \varphi|^{p'} (h\varphi)^{-p'/p} < \infty, \quad \int_{Q_T} |D_{t|T}^\alpha \varphi|^{p'} (h\varphi)^{-p'/p} < \infty. \quad (3)$$

To estimate the right hand side of (2) on $Q_{TR^{2/\theta}}$, we write

$$\int_{Q_{TR^{2/\theta}}} u (-\Delta)^{\beta/2} (\varphi) = \int_{Q_{TR^{2/\theta}}} u (h\varphi)^{\frac{1}{p}} (-\Delta)^{\beta/2} (\varphi) (h\varphi)^{-\frac{1}{p}}.$$

Using the ε -Young inequality

$$XY \leq \varepsilon X^p + C(\varepsilon) Y^{p'}, \quad p + p' = pp', \quad X \geq 0, Y \geq 0,$$

we have the estimate

$$\int_{Q_{TR^{2/\theta}}} u (-\Delta)^{\beta/2} \varphi \leq \varepsilon \int_{Q_{TR^{2/\theta}}} |u|^p h \varphi + C(\varepsilon) \int_{Q_{TR^{2/\theta}}} |(-\Delta)^{\beta/2} \varphi|^{p'} (h \varphi)^{-p'/p}.$$

Similarly,

$$\int_{Q_{TR^{2/\theta}}} u D_{t|TR^{2/\theta}}^\alpha \varphi \leq \varepsilon \int_{Q_{TR^{2/\theta}}} |u|^p h \varphi + C(\varepsilon) \int_{Q_{TR^{2/\theta}}} |D_{t|TR^{2/\theta}}^\alpha \varphi|^{p'} (h \varphi)^{-p'/p}.$$

Now, taking ε small enough, we obtain the estimate

$$\int_{Q_{TR^{2/\theta}}} h |u|^p \varphi \leq C(\varepsilon) \int_{Q_{TR^{2/\theta}}} \left\{ |(-\Delta)^{\beta/2} \varphi|^{p'} + |D_{t|TR^{2/\theta}}^\alpha \varphi|^{p'} \right\} (h \varphi)^{-p'/p}. \quad (4)$$

At this stage, we set

$$\varphi(x, t) := \Phi \left(\frac{|x|^2 + t^\theta}{R^2} \right),$$

where R and θ are positive real numbers.

Let us perform the change of variables

$$\tau = t/R^{\frac{2}{\theta}}, \quad y = x/R,$$

and set

$$\Omega := \{(y, \tau) \in \mathbb{R}^N \times \mathbb{R}^+, |y|^2 + \tau^\theta < 2\}, \quad \mu(y, \tau) := \tau^\theta + |y|^2.$$

Now, we choose θ such that the right hand sides of

$$\begin{aligned} & \int_{Q_{TR^{2/\theta}}} |(-\Delta)^{\beta/2} \varphi|^{p'} (h \varphi)^{-p'/p} \\ & \leq R^{-\beta p' + N + \frac{2}{\theta} - \frac{p'}{p}(\sigma + \frac{2\rho}{\theta})} \int_{\Omega} |(-\Delta)^{\beta/2} \Phi \circ \mu|^{p'} (C_h |y|^\sigma \tau^\rho \Phi \circ \mu)^{-p'/p} dy d\tau \end{aligned}$$

and

$$\begin{aligned} & \int_{Q_{TR^{2/\theta}}} |D_{t|TR^{2/\theta}}^\alpha \varphi|^{p'} (h \varphi)^{-p'/p} \\ & \leq R^{-\frac{2}{\theta} \alpha p' + N + \frac{2}{\theta} - \frac{p'}{p}(\sigma + \frac{2\rho}{\theta})} \int_{\Omega} |D_{\tau|T}^\alpha \Phi \circ \mu|^{p'} (C_h |y|^\sigma \tau^\rho \Phi \circ \mu)^{-p'/p} dy d\tau \end{aligned}$$

are of the same order in R .

In doing so, we find $\theta = \frac{2\alpha}{\beta}$.

We then have the estimate

$$\int_{Q_{TR^{\beta/\alpha}}} h |u|^p \varphi \leq CR^\gamma \quad (5)$$

where

$$\gamma = -\beta p' + N + \frac{\beta}{\alpha} - \left(\sigma + \frac{\rho\beta}{\alpha}\right) \frac{p'}{p},$$

and

$$C = C(\varepsilon) \int_{\Omega} \left(|(-\Delta)^{\beta/2} \Phi \circ \mu|^{p'} + |D_{\tau|T}^{\alpha} \Phi \circ \mu|^{p'} \right) (C_h |y|^{\sigma} \tau^{\rho} \Phi \circ \mu)^{-p'/p} dy d\tau.$$

Now, if we choose $\gamma < 0$ (that is $p < p_c$) and let $R \rightarrow \infty$ in (5), we obtain

$$\int_{\mathbb{R}^N \times \mathbb{R}^+} h|u|^p \leq 0. \quad (6)$$

this implies that $u = 0$ a.e., which is a contradiction.

In case $\gamma = 0$ (i.e. $p = p_c$), observe that (because of the convergence of the integral in (5)) if

$$\mathcal{C}_R = \{(x, t) \in \mathbb{R}^N \times \mathbb{R}^+ : R^2 < |x|^2 + t^{\theta} \leq 2R^2\},$$

then

$$\lim_{R \rightarrow \infty} \int_{\mathcal{C}_R} |u|^p h \varphi \, dx dt = 0. \quad (7)$$

If instead of using the ε -Young inequality, we rather use the Hölder inequality, then instead of estimate (4), we find

$$\int_{Q_{TR^{\beta/\alpha}}} h|u|^p \varphi \, dx dt \leq L \left(\int_{\mathcal{C}_R} |u|^p h \varphi \, dx dt \right)^{1/p} \quad (8)$$

where

$$L := \left\{ \left(\int_{\Omega_1} |D_{\tau|T}^{\alpha} \Phi \circ \mu|^{p'} (C_h |y|^{\sigma} \tau^{\rho} \Phi \circ \mu)^{-p'/p} dy d\tau \right)^{1/p'} \right. \\ \left. + \left(\int_{\Omega_1} |(-\Delta)^{\beta/2} \Phi \circ \mu|^{p'} (C_h |y|^{\sigma} \tau^{\rho} \Phi \circ \mu)^{-p'/p} dy d\tau \right)^{1/p'} \right\}$$

and

$$\Omega_1 = \{(y, \tau) \in \mathbb{R}^N \times \mathbb{R}^+ : 1 \leq |y|^2 + \tau^{\theta} \leq 2\}.$$

Using (8), we obtain via (7), after passing to the limit as $R \rightarrow \infty$

$$\int_{\mathbb{R}^N \times \mathbb{R}^+} |u|^p h \, dx dt = 0.$$

This leads to $u = 0$ a.e. and completes the proof.

Remark 1. *The requirement $\gamma \leq 0$, i.e.,*

$$p \leq 1 + \frac{\alpha(\beta + \sigma) + \beta\rho}{\alpha N + \beta(1 - \alpha)}$$

provides us with a critical exponent which coincides with the well known Fujita exponent in case $\sigma = \rho = 0$, $\alpha = 1$ and $\beta = 2$.

Remark 2. The analysis could be performed for more general highly nonlinear equations such as

$$D_{0|t}^\alpha(u - u_0) + (-\Delta)^{\beta/2}(|u|^{m-1}u) + a(x) \cdot \nabla(|u|^{q-1}u) = h(x, t)|u|^p.$$

It works also for other more general problems.

2 Systems of Fractional Differential Equations

In this section, we show how the method of proof used for the case of one equation can be carried out for the system of reaction-diffusion equations **(FDS)**

$$\begin{cases} D_{0|t}^\alpha(u - u_0) + (-\Delta)^{\beta/2}u = |v|^p, & \text{in } Q \\ D_{0|t}^\delta(v - v_0) + (-\Delta)^{\gamma/2}v = |u|^q, & \text{in } Q \end{cases}$$

subject to the initial conditions

$$u(x, 0) = u_0(x) \geq 0, \quad v(x, 0) = v_0(x) \geq 0, \quad x \in \mathbb{R}^N,$$

where $0 < \alpha, \delta < 1 \leq \gamma, \beta \leq 2$.

For simplicity, in system **(FDS)** the reaction terms are taken equal to $|v|^p$ and $|u|^q$. Our analysis holds good for reaction terms of the form $f(t, x)|v|^p$ and $g(t, x)|u|^q$ where the functions f and g are assumed to satisfy the conditions

$$f(t, x) \geq C_1 t^{\omega_1} |x|^{d_1}, \quad g(t, x) \geq C_2 t^{\omega_2} |x|^{d_2},$$

for $t > 0, x \gg 1, \omega_1 \geq 0, \omega_2 \geq 0, d_1 \geq 0, d_2 \geq 0$.

For the system **(FDS)**, we have the

Theorem 2. Let $p > 1, q > 1$. Assume that

$$N \leq \max \left\{ \frac{\frac{\delta}{q} + \alpha - \left(1 - \frac{1}{pq}\right)}{\frac{\delta}{\gamma qp'} + \frac{\alpha}{\beta q'}}, \frac{\frac{\alpha}{p} + \delta - \left(1 - \frac{1}{pq}\right)}{\frac{\alpha}{\beta pq'} + \frac{\delta}{\gamma p'}} \right\}.$$

Then, the system **(FDS)** (with the initial data) does not admit nontrivial global weak nonnegative solutions.

Proof. Here again the proof proceeds by contradiction. For, let

$$\xi_j(x, t) = \Phi \left(\frac{t^2 + |x|^{2\theta_j}}{R^2} \right), \quad j = 1, 2$$

where $R > 0$, $\theta_1 = \beta/\alpha$ and $\theta_2 = \gamma/\delta$.

The weak formulation of solutions to system **(FDS)** reads

$$\int_{Q_{TR}} |v|^p \xi_1 + \int_{Q_{TR}} u_0(x) D_{t|TR}^\alpha \xi_1 = \int_{Q_{TR}} u D_{t|TR}^\alpha \xi_1 + \int_{Q_{TR}} u(-\Delta)^{\beta/2} \xi_1$$

and

$$\int_{Q_{TR}} |u|^q \xi_2 + \int_{Q_{TR}} v_0(x) D_{t|TR}^\delta \xi_2 = \int_{Q_{TR}} v D_{t|TR}^\delta \xi_2 + \int_{Q_{TR}} v(-\Delta)^{\gamma/2} \xi_2.$$

Using the Hölder inequality, we may write

$$\int_{Q_{TR}} u |D_{t|TR}^\alpha \xi_1| \leq \left(\int_{Q_{TR}} |u|^q \xi_2 \right)^{1/q} \cdot \left(\int_{Q_{TR}} |D_{t|TR}^\alpha \xi_1|^{q'} \xi_2^{-\frac{q'}{q}} \right)^{1/q'}$$

and

$$\int_{Q_{TR}} u |(-\Delta)^{\beta/2} \xi_1| \leq \left(\int_{Q_{TR}} |u|^q \xi_2 \right)^{1/q} \cdot \left(\int_{Q_{TR}} |(-\Delta)^{\beta/2} \xi_1|^{q'} \xi_2^{-q'/q} \right)^{1/q'};$$

consequently

$$\int_{Q_{TR}} |v|^p \xi_1 \leq \left(\int_{Q_{TR}} |u|^q \xi_2 \right)^{1/q} \cdot \mathcal{A} \quad (9)$$

with

$$\mathcal{A} = \left(\int_{Q_{TR}} |D_{t|TR}^\alpha \xi_1|^{q'} \xi_2^{-q'/q} \right)^{1/q'} + \left(\int_{Q_{TR}} |(-\Delta)^{\beta/2} \xi_1|^{q'} \xi_2^{-q'/q} \right)^{1/q'}.$$

Similarly, we obtain the estimate

$$\int_{Q_{TR}} |u|^q \xi_2 \leq \left(\int_{Q_{TR}} |v|^p \xi_1 \right)^{1/p} \cdot \mathcal{B} \quad (10)$$

with

$$\mathcal{B} := \left(\int_{Q_{TR}} |D_{t|TR}^\delta \xi_2|^{p'} \xi_1^{-p'/p} \right)^{1/p'} + \left(\int_{Q_{TR}} |(-\Delta)^{\gamma/2} \xi_2|^{p'} \xi_1^{-p'/p} \right)^{1/p'}.$$

Using inequalities (9) and (10), we may write

$$\left(\int_{Q_{TR}} |v|^p \xi_1 \right)^{1-\frac{1}{pq}} \leq \mathcal{B}^{1/q} \cdot \mathcal{A} \quad (11)$$

and

$$\left(\int_{Q_{TR}} |u|^q \xi_2 \right)^{1-\frac{1}{pq}} \leq \mathcal{B} \cdot \mathcal{A}^{1/p}. \quad (12)$$

Now, in \mathcal{A} , we use the variables (τ, y) defined by

$$t = R\tau \quad \text{and} \quad x = R^{\frac{\alpha}{\beta}}y,$$

while in \mathcal{B} , we use the variables (τ, y) defined by

$$t = R\tau \quad \text{and} \quad x = R^{\frac{\delta}{\gamma}}y.$$

We then have the estimate:

$$\left(\int_{Q_{TR}} |v|^p \xi_1 \right)^{1-\frac{1}{pq}} \leq C \{R^{-l_1}\}^{1/q} R^{-l_2} \quad (13)$$

where

$$\begin{aligned} l_1 &= \delta - \frac{1}{p'} \left(N \frac{\delta}{\gamma} + 1 \right), \\ l_2 &= \alpha - \frac{1}{q'} \left(N \frac{\alpha}{\beta} + 1 \right). \end{aligned}$$

That is,

$$\left(\int_{Q_{TR}} |v|^p \xi_1 \right)^{1-\frac{1}{pq}} \leq C R^{-(\frac{l_1}{q} + l_2)}. \quad (14)$$

Next, we argue as in the case of a single equation (see the argument below formula (5) till the end of the proof) in case $l_1/q + l_2 \geq 0$. Note that the requirement $l_1/q + l_2 \geq 0$ is equivalent to

$$N \leq \frac{\frac{\delta}{q} + \alpha - \left(1 - \frac{1}{pq} \right)}{\frac{\delta}{\gamma q p'} + \frac{\alpha}{\beta q'}}. \quad (15)$$

Using (12), we obtain, in a similar manner, the estimate

$$N \leq \frac{\frac{\alpha}{p} + \delta - \left(1 - \frac{1}{pq} \right)}{\frac{\alpha}{\beta p q'} + \frac{\delta}{\gamma p'}}. \quad (16)$$

Observe that either (15) or (16) is needed to obtain a contradiction, so it suffices to assume

$$1 \leq N \leq \max \left\{ \frac{\frac{\delta}{q} + \alpha - \left(1 - \frac{1}{pq} \right)}{\frac{\delta}{\gamma q p'} + \frac{\alpha}{\beta q'}}, \frac{\frac{\alpha}{p} + \delta - \left(1 - \frac{1}{pq} \right)}{\frac{\alpha}{\beta p q'} + \frac{\delta}{\gamma p'}} \right\}.$$

The case where f and g satisfy the above hypotheses may be proved easily along the lines above and the case of a single equation as in the proof of Theorem 1.

Remark 3. When $\alpha = \delta = 1, \beta = \gamma = 2$, we recover the case studied by Escobedo and Herrero [7], however we have to impose the constrain $p > 1, q > 1$ while Escobedo and Herrero require $pq > 1$.

Remark 4. It is clear that the more general system

$$\begin{cases} D_{0|t}^\alpha(u - u_0) + (-\Delta)^{\beta/2}(|u|^{m-1}u) = h(x, t)|v|^p + g(x, t)|u|^r, & \text{in } Q \\ D_{0|t}^\delta(v - v_0) + (-\Delta)^{\gamma/2}(|v|^{m-1}v) = k(x, t)|u|^q + l(x, t)|v|^s, & \text{in } Q \end{cases}$$

could be analyzed with the same method.

The analysis, here performed, can be used to study systems of convective equations as those, for example, considered by Ames and Straughan [1]. Here, we preferred less general situations to render the ideas as clear as possible.

3 Necessary conditions for local and global existence

This part is concerned with the establishment of necessary conditions for the existence of local (as well as global) solutions to Problems **(STFE)** and **(FDS)**. It turns out that these conditions depend on the behavior of the initial data and on the function $h(x, t)$ ($f(x, t)$ and $g(x, t)$ in case of **(FDS)**) for large x .

Previous results concerning the problem

$$\begin{cases} u_t = \Delta u + \tilde{h}(x)|u|^p, & \text{in } Q \\ u(x, 0) = u_0(x) \geq 0, & \text{in } \mathbb{R}^N \end{cases} \quad (17)$$

are due to Kalashnikov [12] and to Baras and Kersner [3]. In particular, it is showed in [3] that no local weak nonnegative solution to (17) exists if the initial data u_0 satisfies

$$\lim_{|x| \rightarrow \infty} u_0^{p-1} \tilde{h}(x) = +\infty,$$

and any possible local weak nonnegative solution blows-up at a finite time if

$$\lim_{|x| \rightarrow \infty} u_0^{p-1} \tilde{h}(x) |x|^2 = +\infty.$$

The method developed there is adapted below to the problem **(STFE)** with, for simplicity $h(x, t) \equiv h(x)$; it will be clear that it can be used for the reaction-diffusion system **(FDS)**.

We shall treat the case of a single equation.

Theorem 3. Let u be a local solution to Problem **(STFE)** where $T < +\infty$. Then we have the estimate

$$\liminf_{|x| \rightarrow \infty} \left[u_0(x) (h(x))^{p'/p} \right] \leq C T^{\alpha(1-p')}$$

for some positive constant C .

Proof. Let us consider the following test function

$$\varphi(x, t) = \Phi\left(\frac{x}{R}\right) \begin{cases} \left(1 - \frac{t}{T}\right)^l, & 0 < t \leq T \\ 0, & t > T \end{cases}$$

where $\Phi \in W^{1,\infty}(\mathbb{R}^N)$ is nonnegative with $\text{supp } \Phi \subset \{1 < |x| < 2\}$ (supp stands for support) and satisfy

$$((-\Delta)^{\beta/2} \Phi)_+ \leq k\Phi, \quad \text{for some constant } k > 0.$$

The exponent l is any positive real number if $p \geq 1/(1 - \alpha)$ and $l > \alpha p' - 1$ if $p < 1/(1 - \alpha)$. We have

$$D_{t|T}^\alpha \left(1 - \frac{t}{T}\right)^l = \Lambda T^{-\alpha} \left(1 - \frac{t}{T}\right)^{l-\alpha}$$

where $\Lambda := \Gamma(1 + l)/\Gamma(1 + l - \alpha)$.

Using the formulation (2) and a similar argument to the one which lead us to (4) but keeping the first term in the left hand side of (2), we obtain

$$\int_{Q_T} u_0 D_{t|T}^\alpha \varphi(x, t) \leq C \int_{Q_T} \left\{ (D_{t|T}^\alpha \varphi)_+^{p'} + ((-\Delta)^{\beta/2} \varphi)_+^{p'} \right\} (h \varphi)^{1-p'} \quad (18)$$

for some positive constant C . Taking into account the hypotheses on l and the fact that

$$D_{t|T}^\alpha \varphi(x, t) = \Lambda \Phi(x) T^{-\alpha} \left(1 - \frac{t}{T}\right)^{l-\alpha},$$

if we put $t = T\tau$ and $x = Ry$ in (18), we obtain

$$\begin{aligned} & T^{1-\alpha} \int_{\mathbb{R}^N} u_0(Ry) \Phi(y) \\ & \leq C T^{1-\alpha p'} \int_{\mathbb{R}^N} \Phi(y) h^{1-p'}(Ry) + C T R^{-\beta p'} \int_{\mathbb{R}^N} \Phi(y) h^{1-p'}(Ry). \end{aligned} \quad (19)$$

Using the estimate

$$\inf_{|y|>1} \left(u_0(Ry) h(Ry)^{p'-1} \right) \int_{\mathbb{R}^N} \Phi(y) h(Ry)^{1-p'} \leq \int_{\mathbb{R}^N} u_0(Ry) \Phi(y)$$

in inequality (19) and dividing by the term $\int_{\mathbb{R}^N} u_0(Ry) \Phi(y)$, we obtain

$$\inf_{|y|>1} \left(u_0(Ry) h(Ry)^{p'-1} \right) \leq C \left(T^{-\alpha(p'-1)} + T^\alpha R^{-\beta p'} \right) \quad (20)$$

Passing to the limit as $R \rightarrow +\infty$, we get

$$\liminf_{|x| \rightarrow \infty} \left(u_0(x) h(x)^{p'-1} \right) \leq C T^{-\alpha(p'-1)}. \quad (21)$$

Corollary 1. Assume that problem **(SFTE)** has a nontrivial global nonnegative weak solution. Then

$$\liminf_{|x| \rightarrow \infty} \left(u_0(x) h(x)^{p'-1} \right) = 0$$

Corollary 2. If $\liminf_{|x| \rightarrow \infty} \left(u_0(x) h(x)^{p'-1} \right) = +\infty$, then problem **(SFTE)** cannot have any local nontrivial nonnegative weak solution.

Corollary 3. If $A := \liminf_{|x| \rightarrow \infty} \left(u_0(x) h(x)^{p'-1} \right) > 0$, then $T^{\alpha(p'-1)} \leq C/A$ where C is the constant found in Theorem 3.

Theorem 4. Suppose that problem **(SFTE)** has a nontrivial global nonnegative weak solution. Then, there is a positive constant K such that

$$\liminf_{|x| \rightarrow \infty} \left(u_0(x) |x|^{\alpha(p'-1)} h(x)^{1-p'} \right) \leq K.$$

Proof. In the relation

$$\begin{aligned} & T^{1-\alpha} \int_{\mathbb{R}^N} u_0(Ry) \Phi(y) \\ & \leq C (T^{-\alpha(p'-1)} + T^\alpha R^{-\beta p'}) \int_{\mathbb{R}^N} \Phi(y) h^{1-p'}(Ry) \end{aligned}$$

found in the proof of Theorem 1, we multiply by the expression

$$h^{p'-1}(Ry) |Ry|^{\alpha(p'-1)} \cdot h^{1-p'}(Ry) |Ry|^{\alpha(1-p')}$$

inside the integral in the left hand side and by $|Ry|^{\alpha(p'-1)} \cdot h^{1-p'}(Ry)$ inside the integral in the right hand side. We obtain for Φ with $\text{supp} \Phi \subset \{x : R < |x| < 2R\}$,

$$\begin{aligned} & \inf_{|x| > R} \left(u_0(x) |x|^{\alpha(p'-1)} h(x)^{p'-1} \right) \int_{\mathbb{R}^N} \Phi(y) |Ry|^{\alpha(1-p')} h^{1-p'}(Ry) \\ & \leq C (T^{-\alpha(p'-1)} + T^\alpha R^{-\beta p'}) (2R)^{\alpha(p'-1)} \int_{\mathbb{R}^N} \Phi(y) |Ry|^{\alpha(1-p')} h^{1-p'}(Ry). \end{aligned}$$

Finally, dividing by

$$\int_{\mathbb{R}^N} \Phi(y) |Ry|^{\alpha(1-p')} h^{1-p'}(Ry)$$

and taking $T = R$, we end up with

$$\inf_{|x| > R} \left(u_0(x) |x|^{\alpha(p'-1)} h(x)^{p'-1} \right) \leq C \left(1 + R^{(\alpha-\beta)p'} \right).$$

The conclusion follows by passing to the limit and noticing that $\alpha < \beta$.

Combining the argument in the proof of Theorem 2 with those in the previous two theorems, we obtain similar results (necessary conditions for local existence and for global existence) as those in the previous two theorems and their corollaries for the case of system **(FDS)**. The details are omitted.

Acknowledgment: The third author would like to express his gratitude to King Fahd University of Petroleum and Minerals for its financial support.

References

- [1] K. A. Ames and B. Straughan, Boundedness and global nonexistence for a nonlinear convective parabolic system, *J. Math. Anal. Appl.* 190 (1995), 795–805.
- [2] P. Baras and M. Pierre, Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, *Ann. Inst. H. Poincaré, Anal. Non Linéaire*, 2 (1985), 185–212.
- [3] P. Baras and R. Kersner, Local and global solvability of a class of semilinear parabolic equations, *J. Diff. Eqs.*, 68 (1987), 238–252.
- [4] P. Biler, T. Funaki and W. A. Woyczyński, Fractal Burgers Equations, *J. Diff. Eqs.*, 148 (1998), 9–46.
- [5] W. D. Deering and B. J. West, Fractal physiology, *IEEE Engineering in Medicine and Biology*, June, (1992) 40-46.
- [6] K. Deng and H. A. Levine, The role of critical exponents in blow-up theorems: the sequel, *J. Math. Anal. Appl.* 243 (2000), 85–126.
- [7] M. Escobedo and M. A. Herrero, Boundedness and blow-up for a semilinear reaction-diffusion equation, *J. Diff. Eqs.* 89 (1991), 176-202.
- [8] H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$, *J. Fac. Sci. Univ. Tokyo Sect. I* 13 (1966), 109–124.
- [9] M. Guedda and M. Kirane, A note on nonexistence of global solutions to a nonlinear integral equation, *Bull. Belg. Math. Soc. Simon Stevin* 6 (1999), 91–497.
- [10] M. Guedda and M. Kirane, Criticality for some evolution equations, *Differ. Eqs.* 37 (2001), 540–550.
- [11] K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic differential equations, *Proc. Japan Acad.* 49 (1973), 503–505.
- [12] A. S. Kalashnikov, On a heat conduction equation for a medium with non-uniformly distributed non-linear heat source or absorbers, *Bull. Univ. Moscow Math. Mech.* 3 (1983), 20-24.
- [13] M. Kirane and M. Qafsaoui, Global nonexistence for the Cauchy problem of some nonlinear reaction-diffusion systems, *J. Math. Anal. Appl.* 268 (2002), 217–243.
- [14] K. Kobayashi, T. Sirao and H. Tanaka, On the growing up problem for semi-linear heat equations, *J. Math. Soc. Japan* 29 (1977), 407–424.
- [15] H. Kuiper, Life span of nonnegative solutions to certain quasilinear parabolic Cauchy problems, *Electronic J. of Differential Equations*, No 66 (2003), 1-11.

- [16] H. A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t = -Au + F(u)$, *Arch. Rational Mech. Anal.* 51 (1973), 371–386.
- [17] G. G. Laptev, Nonexistence results for higher-order evolution partial differential inequalities, *Proc. Amer. Math. Soc.* 131 (2003), 415–423 (electronic).
- [18] E. Mitidieri and S. I. Pokhozhaev, A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities, *Proc. Steklov Inst. Math.*, 234 (2001), 1–383.
- [19] E. W. Montroll and G. H. Weiss, Random walks, II, *J. Math. Phys.* 6 (1965), 167–181.
- [20] M. Nagasawa and T. Sirao, Probabilistic treatment of the blowing up of solutions for a nonlinear integral equation, *Trans. Amer. Math. Soc.* 139 (1969) 301–310.
- [21] R. R. Nigmatullin, A fractional integral and its physical interpretation, *Theoret. Math. Phys.* 90 (1992), 242–251.
- [22] L. E. Payne, "Improperly posed problems in partial differential equations", *Regional Conference Series in Applied Mathematics*, No. 22. Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1975.
- [23] I. Podlubny, " Fractional Differential Equations", *Math. in Sci. and Eng.*: Vol. 198 New-York-London: Acad. Press 1999.
- [24] S. I. Pokhozhaev and A. Tesei, A. Critical exponents for the absence of solutions for systems of quasilinear parabolic inequalities, *Differ. Eqs.* 37 (2001), 551–558
- [25] Y.-W. Qi, The critical exponents of parabolic equations and blow-up in R^n , *Proc. Roy. Soc. Edinburgh Sect. A* 128 (1998), 123–136.
- [26] H. E. Roman and M. Giona, Fractional diffusion equation on fractals: three-dimensional case and scattering function, *J. Phys. A* 25 (1992), 2107–2117.
- [27] A. A. Samarski, V. A. Galaktionov, S. P. Kurdyumov and A. P. Mikhailov, "Blowups in Problems for Quasilinear Parabolic Equations", *de Gruyter Expositions in Mathematics*, Vol. 19, *de Gruyter*, Berlin, 1995.
- [28] E. Scalas, R. Gorenflo and F. Mainardi, Fractional calculus and continuous-time finance, *Phys. A* 284 (2000), 376–384.
- [29] M. Seredynska and A. Hanyga, Nonlinear Hamiltonian equations with fractional damping, *J. Math. Phys.* 41 (2000), 2135–2156.
- [30] B. Straughan, "Explosive instabilities in mechanics", *Springer-Verlag*, Berlin, 1998.

- [31] S. Sugitani, On nonexistence of global solutions for some nonlinear integral equations, *Osaka J. Math.* 12 (1975), 45–51.
- [32] S. Q. Zhang , A blow-up result for a nonlinear wave equation with damping: the critical case, *C. R. Acad. Sci. Paris*, 333 (2001), 109–114.

99-1 Monique Jeanblanc et Nicolas Privault. A complete market model with Poisson and Brownian components. A paraître dans *Proceedings of the Seminar on Stochastic Analysis, Random Fields and Applications*, Ascona, 1999.

99-2 Laurence Cherfils et Alain Miranville. Generalized Cahn-Hilliard equations with a logarithmic free energy. A paraître dans *Revista de la Real Academia de Ciencias*.

99-3 Jean-Jacques Prat et Nicolas Privault. Explicit stochastic analysis of Brownian motion and point measures on Riemannian manifolds. *Journal of Functional Analysis* **167** (1999) 201-242.

99-4 Changgui Zhang. Sur la fonction q -Gamma de Jackson. A paraître dans *Aequationes Math.*

99-5 Nicolas Privault. A characterization of grand canonical Gibbs measures by duality. A paraître dans *Potential Analysis*.

99-6 Guy Wallet. La variété des équations surstables. A paraître dans *Bulletin de la Société Mathématique de France*.

99-7 Nicolas Privault et Jiang-Lun Wu. Poisson stochastic integration in Hilbert spaces. *Annales Mathématiques Blaise Pascal*, **6** (1999) 41-61.

99-8 Augustin Fruchard et Reinhard Schäfke. Sursabilité et résonance.

99-9 Nicolas Privault. Connections and curvature in the Riemannian geometry of configuration spaces. *C. R. Acad. Sci. Paris, Série I* **330** (2000) 899-904.

99-10 Fabienne Marotte et Changgui Zhang. Multisommabilité des séries entières solutions formelles d'une équation aux q -différences linéaire analytique. A paraître dans *Annales de l'Institut Fourier*, 2000.

99-11 Knut Aase, Bernt Øksendal, Nicolas Privault et Jan Ubøe. White noise generalizations of the Clark-Haussmann-Ocone theorem with application to mathematical finance. *Finance and Stochastics*, **4** (2000) 465-496.

00-01 Eric Benoît. Canards en un point pseudo-singulier noeud. A paraître dans *Bulletin de la Société Mathématique de France*.

00-02 Nicolas Privault. Hypothesis testing and Skorokhod stochastic integration. *Journal of Applied Probability*, **37** (2000) 560-574.

00-03 Changgui Zhang. La fonction théta de Jacobi et la sommabilité des séries entières q -Gevrey, I. *C. R. Acad. Sci. Paris, Série I* **331** (2000) 31-34.

00-04 Guy Wallet. Déformation topologique par changement d'échelle.

00-05 Nicolas Privault. Quantum stochastic calculus for the uniform measure and Boolean convolution. A paraître dans *Séminaire de Probabilités XXXV*.

00-06 Changgui Zhang. Sur les fonctions q -Bessel de Jackson.

00-07 Laure Coutin, David Nualart et Ciprian A. Tudor. Tanaka formula for the fractional Brownian motion. A paraître dans *Stochastic Processes and their Applications*.

00-08 Nicolas Privault. On logarithmic Sobolev inequalities for normal martingales. *Annales de la Faculté des Sciences de Toulouse* **9** (2000) 509-518.

01-01 Emanuelle Augeraud-Veron et Laurent Augier. Stabilizing endogenous fluctuations by fiscal policies; Global analysis on piecewise continuous dynamical systems. A paraître dans *Studies in Nonlinear Dynamics and Econometrics*

01-02 Delphine Boucher. About the polynomial solutions of homogeneous linear differential equations depending on parameters. A paraître dans *Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation: ISSAC 99, Sam Dooley Ed., ACM, New York 1999.*

01-03 Nicolas Privault. Quasi-invariance for Lévy processes under anticipating shifts.

01-04 Nicolas Privault. Distribution-valued iterated gradient and chaotic decompositions of Poisson jump times functionals.

01-05 Christian Houdré et Nicolas Privault. Deviation inequalities: an approach via covariance representations.

01-06 Abdallah El Hamidi. Remarques sur les sentinelles pour les systèmes distribués

02-01 Eric Benoît, Abdallah El Hamidi et Augustin Fruchard. On combined asymptotic expansions in singular perturbation.

02-02 Rachid Bebbouchi et Eric Benoît. Equations différentielles et familles bien nées de courbes planes.

02-03 Abdallah El Hamidi et Gennady G. Laptev. Nonexistence of solutions to systems of higher-order semilinear inequalities in cone-like domains.

02-04 Hassan Lakhel, Youssef Ouknine, et Ciprian A. Tudor. Besov regularity for the indefinite Skorohod integral with respect to the fractional Brownian motion: the singular case.

02-05 Nicolas Privault et Jean-Claude Zambrini. Markovian bridges and reversible diffusions with jumps.

02-06 Abdallah El Hamidi et Gennady G. Laptev. Existence and Nonexistence Results for Reaction-Diffusion Equations in Product of Cones.

02-07 Guy Wallet. Nonstandard generic points.

02-08 Gilles Bailly-Maitre. On the monodromy representation of polynomials.

02-09 Abdallah El Hamidi. Necessary conditions for local and global solvability of non-diagonal degenerate systems.

02-10 Abdallah El Hamidi et Amira Obeid. Systems of Semilinear higher order evolution inequalities on the Heisenberg group.

03-01 Abdallah El Hamidi et Gennady G. Laptev. Non existence de solutions d'inéquations semilinéaires dans des domaines coniques.

03-02 Eris Benoît et Marie-Joëlle Rochet. A continuous model of biomass size spectra governed by predation and the effects of fishing on them.

03-03 Catherine Stenger: On a conjecture of Wolfgang Wasow concerning the nature of turning points.

03-04 Christian Houdré et Nicolas Privault. Surface measures and related functional inequalities on configuration spaces.

03-05 Abdallah El Hamidi et Mokhtar Kirane. Nonexistence results of solutions to systems of semilinear differential inequalities on the Heisenberg group.

03-06 Uwe Franz, Nicolas Privault et René Schott. Non-Gaussian Malliavin calculus on real Lie algebras.

04-01 Abdallah El Hamidi. Multiple solutions to a nonlinear elliptic equation involving Paneitz type operators.

04-02 Mohamed Amara, Amira Obeid et Guy Vallet. Relaxed formulation and existence result of the degenerated elliptic small disturbance model.

04-03 Hippolyte d'Albis et Emmanuelle Augeraud-Veron. Competitive Growth in a Life-cycle Model: Existence and Dynamics

04-04 Sadjia Aït-Mokhtar: Third order differential equations with fixed critical points.

04-05 Mokhtar Kirane et Nasser-eddine Tatar. Asymptotic Behavior for a Reaction Diffusion System with Unbounded Coefficients.

04-06 Mokhtar Kirane, Eric Nabana et Stanislav I. Pohozaev. Nonexistence of Global Solutions to an Elliptic Equation with a Dynamical Boundary Condition.

04-07 Khaled M. Furati, Nasser-eddine Tatar and Mokhtar Kirane. Existence and asymptotic behavior for a convection Problem.

04-08 José Alfredo López-Mimbela et Nicolas Privault. Blow-up and stability of semilinear PDE's with gamma generator.

04-09 Abdallah El Hamidi. Multiple solutions with changing sign energy to a nonlinear elliptic equation.

04-10 Sadjia Aït-Mokhtar: A singularly perturbed Riccati equation.

04-11 Mohamed Amara, Amira Obeid et Guy Vallet. Weighted Sobolev spaces for a degenerated nonlinear elliptic equation.

04-12 Abdallah El Hamidi. Existence results to elliptic systems with nonstandard growth conditions.

04-13 Eric Edo et Jean-Philippe Furter: Some families of polynomial automorphisms.

04-14 Laurence Cherfils et Yavdat Il'yasov. On the stationary solutions of generalized reaction diffusion equations with p & q -Laplacian.

04-15 Jean-Christophe Breton et Youri Davydov. Local limit theorem for supremum of an empirical processes for i.i.d. random variables.

04-16 Jean-Christophe Breton, Christian Houdré et Nicolas Privault. Dimension free and infinite variance tail estimates on Poisson space.

04-17 Abdallah El Hamidi et Gennady G. Laptev. Existence and nonexistence results for higher-order semilinear evolution inequalities with critical potential.

05-01 Mokhtar Kirane et Nasser-eddine Tatar. Nonexistence of Solutions to a Hyperbolic Equation with a Time Fractional Damping.

05-02 Mokhtar Kirane et Yamina Laskri. Nonexistence of Global Solutions to a Hyperbolic Equation with a Time Fractional Damping.

05-03 Mokhtar Kirane, Yamina Laskri et Nasser-eddine Tatar. Critical Exponents of Fujita Type for Certain Evolution Equations and Systems with Spatio-Temporal Fractional Derivatives.