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1 INTRODUCTION

In this article, we are concerned with finding sufficient conditions and necessary
conditions for the solvability of evolution equations and systems with temporal and
spatial fractional derivatives. In the first part, attention is paid to the evolution
problem (STFE):

Diju+ (=A)"2(u) = h(w, O)u]"*? for (z,t) € RN x R = Q
u(z,0) = up(r) >0 for z € RN

where Dgj, denotes the time-derivative of arbitrary order a € (0,1) in the sense of

Caputo 23], (—A)?/2, 3 € [1,2], is the (3/2)-fractional power of the Laplacian —A,
in the x variable; it is defined by:

(=2)720(x,t) = FHE)°F (0)(©)) (2, 1),

where F denotes the Fourier transform and F~! its inverse; the function h(z,t) will
be specified later. The exponent p is strictly positive.

In first equation in (STFE), (—A)?/2 is a multidimensional fractal (anomalous)
diffusion related to the Lévy flights. The time fractional derivative Dfj, accounts
also for dispersive anomalous diffusion, characterized by the mean square displace-
ment (v?) < t*,0 < a < 1 . Dispersive anomalous diffusion can be derived from
CTRW models [19], based on the assumption of random jump lengths and random
waiting times between successive particle jumps. Important physical applications of
CTRW models include diffusion of carriers in amorphous photo-conductors, diffu-
sion in turbulent flow, a percolation model in porous media (« = 1/2) [21], fractal
media [26], various biological phenomena [5] and finance [28]. The contribution [4]
is related to fluid dynamics.

In the case o = 1, 8 = 2, the first equation in (STFE) reduces to the usual heat
equation which is well documented.

In fact, in his pioneering article [8], Fujita considered the Cauchy problem (FE)
uy = Au + |u|'FP in Q 1)
u(z,0) = a(x) >0, in RY

where 0 < p. If p. := % (¢ for critical), he proved that:
(i) if 0 < p < p. and a(zg) > 0 for some zy, then any solution to (FE) blows-up
in a finite time.

() if p > p., then there exist solutions on @) as well as solutions which exist on
RN x (0,T) for some finite 7" but not on Q. (For this p, not all solutions are global;
indeed, if (1/2) [on |Vuol?dz — (1/(p 4+ 1)) [ ugdz < 0, the solution cannot be
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global [16].)

The critical case p = p. was decided later by Hayakawa [11] for N = 1,2, and by
Kobayashi, Sirao and Tanaka [14] for N > 3.

Later on Nagasawa and Sirao [20]|, Sujitani [31], and Guedda and Kirane [9]
considered the problem:

{ w A+ (=A)P(w) = c(a, ) |ul P, in Q
u(z,0) = up(z) > 0, in RV,

Nagasawa and Sirao have taken c(x,t) = c(x), Sujitani ¢(z,t) = 1, while Guedda

and Kirane [9] studied the case ¢(z,t) = ¢(t). The method of proof in |20] is proba-
bilistic while in [31] and [9], the approach is analytic.

In a more recent article, Guedda and Kirane [10| extended the previous results
to the equation:

uy 4 (=A% (u) = h(z, t)|u|?, in Q,
where h(x,t) = O(t?|x|) for large |z|.

Finally, Kirane and Qafsaoui [13] treated the more general equation:
w4+ (=N (™) + a(z,t) - Vul = f(z,t)|u|"*?, inQ,

which covers in particular the equation considered by Qi [32]

wy — A(u™) = |z|7t*|u[*P,  in Q.

The, here above, cited articles follow either Fujita’s article or the duality argu-
ment with a nonlinear capacity estimate. In a special situation, this has been used
by Baras and Pierre [2]. A more versatile variant has been introduced by Mitidieri
and Pohozaev [18], Pohozaev and Tesei [24], and then used by Guedda and Kirane
[10], Laptev [17] and Kuiper [15] (to cite but a few).

To ensure that the problem (STFE) is well posed, the fractional derivative has
to be interpreted in the Caputo sense [23] (also cf. [29] for a justification of the
choice of Caputo derivatives for a nonlinear ordinary differential equation with frac-
tional derivatives).

Our theorems are reduced to the assertion on the nonexistence of solutions. If
an existence result of solutions to the Cauchy problem holds, then the nonexistence

of solutions means that every nonnegative solution blows-up in finite time.

To have an idea about ill-posed problems, one is referred to the important con-
tributions [6], [22], [27] and [30].

We recall here some definitions of fractional derivatives.



The left-handed derivative and the right-handed derivative in the Riemann-
Liouville sense for ¥ € L'(0,T), 0 < a < 1 are defined as follows:

N B 1 d [t ¥(o)
(D590 = F—my G / T

where the symbol I' stands for the usual Euler gamma function, and

1 d [T ¥o)
Dir)0 = =5 | o e

respectively.

The Caputo derivative

D50 = 2 | e

t—o)

requires U’ € L'(0, 7).

Clearly, we have
1 9(0)  [* g(o)
(D0|tg)( )= Tl —a) [ 1o +/0 (i —o) da}

D=5 [Tt || o 4]

Therefore the Caputo derivative is related to the Riemann-Liouville derivative by

g|tqj(t> = &t[qj(t> - \I’(O)]

We have the formula of integration by parts:

/ F(t) (Do) (1) dt /T< o) (0) g(t) dt

Solutions to problem (STFE) are meant in the following sense.

and

Definition 1. Let p=p+ 1. A function u € L}, .(Qr) (Qr :=RY x (0,7)) is a
local weak solution to (STFE) defined on Qr, if uh!/? € L} (Qr, dzdt) and is such
that

/ uo(z) Do, t) dedt + / h |ulPo dxdt
T T (2)
= u (—A)P2p dxdt + / u Dijrep dzdl
Qr Qr

for any test function ¢ € C’i’tl(QT), such that ¢(x,T) = 0.



The integrals in the definition are supposed to be convergent.
If in the above definition, 7" = +o00, the solution is called global.

Concerning the function h(z,t) we require the condition (H)
h(z,t) > Cplz|7t? for x € RN, t >0, C), > 0.

The assumptions on o and p will be determined through the convergence of certain
integrals in the proof (see (3) below). It can be easily seen that no conditions will
be imposed on ¢ and p in case t > to > 0, |z| < R and h'"? is integrable in a ball
of radius R in = and radius t; in ¢.

1.1 THE RESULTS

Now, we are in position to announce our first result.

Theorem 1. Let N > 1 and p > 1. Assume that (H) is satisfied. If

a(f+a)+ fp

l<p<p.=1 )
p=r +ozN+ﬁ(1—oc)

then problem (STFE) admits no global weak nonnegative solutions other than the
trivial one.

Proof. The proof proceeds by contradiction. Suppose that u is a nontrivial
nonnegative solution which exists globally in time. That is u exists in (0,7*) for
any arbitrary 7" > 0. Let 7" and R be two positive real numbers such that 0 <
TRA/* < T

For later use, let ® be a smooth nonincreasing function such that

1if <1,
q)(z>:{o it z>2,

and 0 < & < 1.

The test function ¢ is chosen so that
| 18R o) <oo, [ Dyl o) P <o @)
T Qr
To estimate the right hand side of (2) on Qpp2/0, We write
1 1
[ aeaye = [ uhe) -8y ) (o)
Qrp2/0 QrRr2/6

Using the e-Young inequality

XY <eXP+CE)Y?, p+p =p, X>0Y >0,
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we have the estimate

/Q w (=AY < 5/

Qrp2/0
Similarly,

J

Now, taking ¢ small enough, we obtain the estimate

J

At this stage, we set

mvm»+c@y/ (— D)2 f? (hp) P17

TR2/0 QTRQ/G

|M%w+a@/‘ D2 ool (i) .

Qrr2/6

U Dy pesetp < 5/

TR2/0 Qrr2/6

lule <€) [

Qrp2/0

{\(—AW 20" + \D;TW@\P’} (hg) /7. (4)

TR2/0

where R and 6 are positive real numbers.
Let us perform the change of variables
r=1t/Rf, y=u/R,
and set
Q.= {(y, ) eRY xRT, |[y? + 7% < 2} oy, ) =10 4 |yl

Now, we choose 6 such that the right hand sides of

/‘ (=AY 27 (hp) /P
Qrpr2/0

< R_ﬁp/+N+%—%(a+%p) / \(—A)ﬁ/% o Iu|p/(0h ‘y‘UTPCI) o ,u)—p’/p dydt
Q

and

[ D5l (o)
Qrp2/0
< RS () / D2 o puf? (Ci ly|” 77 @ 0 o) /P dydr
Q
are of the same order in R.
In doing so, we find 6 = 2.

We then have the estimate

/ hlulPo < CRY (5)
Q

TRA/



where

g

(67

pf

y=—pp + N+ —(O'—FE

p/
) )
p
and

C =Cle) /Q (K—A)ﬁ% o ul’' + | D@ o mp') (Culy|7°® o p) P /Pdydr.

Now, if we choose v < 0 (that is p < p.) and let R — oo in (5), we obtain

/ Blul? < 0. (6)
RN xR+

this implies that © = 0 a.e., which is a contradiction.
In case v = 0 (i.e. p = p.), observe that (because of the convergence of the
integral in (5)) if

Cr={(z,t) e RY x R" : R* < |z]> + ¢’ <2R*},

then

lim |u|Phe dzdt = 0. (7)
R—o0 Cr

If instead of using the e-Young inequality, we rather use the Hélder inequality, then
instead of estimate (4), we find

1/p
/ hlu|P dxdt < L ( |ulPhep dxdt) (8)
Qrps/o Cr
where
) ) 1/p
Li= § ([ 10300 0 ol 7 0 ) dyr)
951
/ / l/p/
# ([ 1820 o ol o ayr)
951
and

= (1) <R xR 1 e <2

Using (8), we obtain via (7), after passing to the limit as R — oo

/ |u|Ph dxdt = 0.
RN xR+

This leads to u = 0 a.e. and completes the proof.

Remark 1. The requirement v < 0, i.e.,
a(B+a)+ Bp
aN +((1—a)

provides us with a critical exponent which coincides with the well known Fujita ez-
ponent in case 0 = p=0,a=1 and f = 2.

p<1+




Remark 2. The analysis could be performed for more general highly nonlinear equa-
tions such as

Dy (u — ug) + (=A)2 (Ju|" M) + a(z) - V (Ju]* u) = h(z, t)]ul.

It works also for other more general problems.

2 Systems of Fractional Differential Equations

In this section, we show how the method of proof used for the case of one equation
can be carried out for the system of reaction-diffusion equations (FDS)

Dgjy(u—uo) + (=A)Pu =P, inQ
Dg|t(“ —w) + (=A)v = ul!,  inQ
subject to the initial conditions
u(z,0) = ug(z) >0, v(z,0)=wvy(x) >0, z€RY,
where 0 < o, 0 <1 <~,06<2.

For simplicity, in system (FDS) the reaction terms are taken equal to |v|? and
|u|?. Our analysis holds good for reaction terms of the form f(¢, z)|v|? and g(¢, z)|u|?
where the functions f and g are assumed to satisfy the conditions

f(t,x) > Clt“’l\x|d1, g(t,z) > C’gt“2|x\d2,

for t > O,ZL’ > 1,W1 > O,CUQ > O,dl > O,dQ > 0.
For the system (FDS), we have the
Theorem 2. Let p > 1, ¢ > 1. Assume that

0 1 a 1
N E+0z—<1—ﬁ> 5+5—<1—p—q>

4 o ’ a 5
vqp’ + Bq’ Bpq’ + ¥p'

Then, the system (FDS) (with the initial data) does not admit nontrivial global
weak nonnegative solutions.

Proof. Here again the proof proceeds by contradiction. For, let

t2+ x29]- .
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where R > 0,60, = §/a and 0 = /0.

The weak formulation of solutions to system (FDS) reads

/TR [v[Pé&, +/TR uo(w) Dijrpé1 = /TRu Dirré +/TR u(—A)P2g

and

/ |u|?Es +/ vo(2) Dy e =/ VD s +/ v (=A%, .
TR TR Qrr TR

Using the Holder inequality, we may write

1/q L\ VY
/ u|foTRgsl|s(/ \u\q&) (/ \D?TR&\W)
TR TR QTR

!

14 Lo\ Ve
/ u|(=A)72 ] < (/ \u\q&) : (/ (= A)P2¢ |76, /q) :

consequently
1/q
[ owras ([ wre) A )

/

A S\
A= (/ | Dz?\lTRfl|q,€2_q /q) + (/ [(—A)P2¢, |76, /q) '

Similarly, we obtain the estimate

1/p
/ \u\%g(/ \v%) B (10)

/

— 1/p' _— 1/p
B ([ 10mare”) k([ 1cartere )
QTR TR

Using inequalities (9) and (10), we may write

1—L
</Q |v\”€1) < B A (11)

1—L
(/Q |u|q£z) <B- A (12)

10

and

with

with

and



Now, in A, we use the variables (7,y) defined by
t=Rr and =z = R%y,

while in 3, we use the variables (7, y) defined by
t=Rr and z= R%y.

We then have the estimate:

1—L
([ wre) "eoqmryi (13

where . i
l1:5——/( —+),
p Y
1 a
lhb=a——(N-—= .
’ CJ’( 3 )
That is,

1—L
(/ \U|p§1) < CR_(?I+Z2). (14)

Next, we argue as in the case of a single equation (see the argument below formula
(5) till the end of the proof) in case l;/q + o > 0. Note that the requirement
l1/q + 13 > 0 is equivalent to

) 1
5"‘0&-(1—%)

N < (15)
— [ o
Y T B
Using (12), we obtain, in a similar manner, the estimate
L4 (1 — L)
N<? LA (16)
(e + _0
Bpg"  p'

Observe that either (15) or (16) is needed to obtain a contradiction, so it suffices to

assume
[ 1 a 1
ro-(1-8) 34-(1-2)
1 < N < max q pg) p g

[ o ) o )
7+ Bq’ Bpq’ + o'

The case where f and g satisfy the above hypotheses may be proved easily along
the lines above and the case of a single equation as in the proof of Theorem 1.

Remark 3. When o =0 = 1,08 = v = 2, we recover the case studied by Escobedo
and Herrero [7], however we have to impose the constrain p > 1,q > 1 while Es-
cobedo and Herrero require pq > 1.

11



Remark 4. It is clear that the more general system

Dy (u = uo) + (=A)°2 (lu]""u) = h(z,t)|v’ + g(a,t)]u]",  inQ

Dgj(v = vo) + (=AY (" tv) = k(z, )]ul” + Uz, t)]v]?, in Q
could be analyzed with the same method.

The analysis, here performed, can be used to study systems of convective equa-
tions as those, for example, considered by Ames and Straughan [1]. Here, we pre-
ferred less general situations to render the ideas as clear as possible.

3 Necessary conditions for local and global exis-
tence

This part is concerned with the establishment of necessary conditions for the ex-
istence of local (as well as global) solutions to Problems (STFE) and (FDS). It
turns out that these conditions depend on the behavior of the initial data and on
the function h(z,t) (f(z,t) and g(z,t) in case of (FDS)) for large x.

Previous results concerning the problem

{ up = Au+ h(z)|ul?, in Q (17)

u(x,0) = up(z) >0, in RY
are due to Kalashnikov [12] and to Baras and Kersner [3]. In particular, it is showed
in [3] that no local weak nonnegative solution to (17) exists if the initial data uo
satisfies B

lim uf'h(z) = +oo,

|z|—o0

and any possible local weak nonnegative solution blows-up at a finite time if

lim uf h(z)|z]? = +oc.

|z|—o0

The method developed there is adapted below to the problem (STFE) with, for sim-
plicity h(z,t) = h(x); it will be clear that it can be used for the reaction-diffusion
system (FDS).

We shall treat the case of a single equation.

Theorem 3. Let u be a local solution to Problem (SFTE) where T < +oo. Then
we have the estimate

lim inf [uo(x) (h($))p’/p < OTa(1_p/)

|z|—o0

for some positive constant C.

12



Proof. Let us consider the following test function

() =B o<t<T
@(x’t)_q)<3>{ 0. 15T

where @ € W' (R") is nonnegative with supp ® C {1 < |z| < 2} (supp stands for
support) and satisfy

((—A)ﬁ/2<1>)+ < k®, for some constant k > 0.

The exponent [ is any positive real number if p > 1/(1 — «) and | > ap’ — 1 if

p <1/(1 —«). We have
l l—«a
. t . t
tlT(l‘f) = AT (1_T)

where A =T (1+1)/T(1+1— ).
Using the formulation (2) and a similar argument to the one which lead us to
(4) but keeping the first term in the left hand side of (2), we obtain

| wbipetety <c [ {Die) + (=272 F h 7 19)

for some positive constant C. Taking into account the hypotheses on [ and the fact
that

l—a
t
Diirp(z,t) = A®(x) T <1 — T) ,

if we put t =TT and z = Ry in (18), we obtain

T /R o (Ry)®(y)

<CcTi-o / ®(y) R P (Ry)+ CT R / d(y) R (Ry).
RN R

N

(19)

Using the estimate

inf <u0(Ry)h(Ry)p/_l> /

ly[>1 RN

B(y) h(Ry)' 7 < / wo(Ry) ()

RN

in inequality (19) and dividing by the term [ uo(Ry) ®(y), we obtain

inf (uo(Ry)h(Ry)P’—l) <C (T—a@’—l) + T“R‘ﬁp'> (20)

ly|>1

Passing to the limit as R — 400, we get

lim inf (uo(x) h(x)p/_1> < oTew=Y, (21)

|z|—o0

13



Corollary 1. Assume that problem (SFTE) has a nontrivial global nonnegative
weak solution. Then

lim inf <u0(x) h(x)p/_l) =0

|z|—o0

Corollary 2. If l‘m‘q inf (uo(x) h(x)p,_1> = 400, then problem (SFTE) cannot have

any local nontrivial nonnegative weak solution.

Corollary 3. If A := liminf (uo(x) h(x)pl_1> > 0, then T*®'=) < C/A where C is

|z|—o0

the constant found in Theorem 3.

Theorem 4. Suppose that problem (SFTE) has a nontrivial global nonnegative
weak solution. Then, there is a positive constant K such that

l|1r|n inf <u0(m) || P ) h(x)l_pl> <K.

Proof. In the relation

T /]R o (Ry)®(y)

< C(T-0'-) 4 o R / B(y) ' (Ry)

RN

found in the proof of Theorem 1, we multiply by the expression
1 (Ry) [Ry|* ™Y B (Ry) [Ry|"C )

inside the integral in the left hand side and by |Ry|*" ™" .A1~P'(Ry) inside the
integral in the right hand side. We obtain for ® with supp® C {z : R < |z| < 2R},

inflops e (uo(e) 2] h(a) ) / D(y) [Ry[" ) W (Ry)

RN
< C(T7@=D + T R-%)(2R)*#" / (y) [Ry|*" ") W' (Ry),
RN
Finally, dividing by
(y) [Ry|"" ™) 1 (Ry)
RN
and taking 7' = R, we end up with

inf <u0(x) 2| *@ =D h(x)P’—l) <C (1 v R<a—ﬂ>P’) .

The conclusion follows by passing to the limit and noticing that o < f3.

Combining the argument in the proof of Theorem 2 with those in the previous
two theorems, we obtain similar results (necessary conditions for local existence and
for global existence) as those in the previous two theorems and their corollaries for
the case of system (FDS). The details are omitted.

Acknowledgment: The third author would like to express his gratitude to King
Fahd University of Petroleum and Minerals for its financial support.
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