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Abstract

A compactness result is revised in order to prove the pointwise convergence of the gradients
of a sequence of solutions to a general quasilinear inequality (anisotropic or not, degenerate
or not) and for an arbitrary open set. Combining this result with the well-known Brézis-Lieb
lemma, we derive simple proofs of Palais-Smale properties in many optimization problems
especially on unbounded domains.

1 Introduction.

In his recent works [3, 4], the first author observed that the pointwise convergence obtained by the
second author for measure data problems [12, 13, 14, 15|, combined with the well-known Brézis-Lieb
lemma [2], can be helpful for proving the strong convergence of the gradient in the variational prob-
lems with critical exponents even on arbitrary domains. Notice that the concentration-compactness
principle due to Lions [11] and the concentration-compactness principle at infinity by Bianchi et
al. [1] are widely used to overcome the difficulty due to the lack of compactness. In the case of
bounded domains and compact manifolds, the Struwe decomposition is also very useful to recover
compactness in nonlinear elliptic problems with critical exponent [17, 6].

For the reader’s convenience and to have a self-contained paper, we rephrase, in a more
general framework, compactness results established in [12, 13, 15] and reproduce the proofs given
therein (for instance), since they are stated for bounded sets with usual Leray-Lions operators,
and for T-sets.

As examples of applications of our result, we recover in particular recent results in [7] on
quasilinear elliptic equations involving critical sobolev exponents. There is a large literature on
critical exponents see for instance [19, 20, 8, 7] and references therein. Two others examples are



given, but our principal result can be applied to a large class of quasilinear elliptic problems where
there holds a lack of compactness.

As a corollary of our result, we can state

Lemma 1 Let a be a Caratheodory function from RN x IR x RY into IRY satisfying the usual
Leray-Lions growth and monotonicity conditions. Let (u,) be a bounded sequence of W,"?(RN) =

{v e Ll (RY), |Vv| € LfOC(JRN)}, with 1 < p < 400, (f,) be a bounded sequence of Li (IRY)

loc
and (gn) be a sequence of VVl;Cl’p, (IRN) tending strongly to zero.
Assume that (u,) satisfies:

(Hl) / a(x,un(a:), vun(m)) : V(p dx = / fn‘PdJH— < Gn,P >,
RN RN

Yo € Wclgf’np(BN) = {v € WHP(IRN), with compact support},  bounded.
Then

1. there exists a function u such that u,(z) — u(x) a.e. in RV,
2. u€ Wil (RY),
3. there exists a subsequence, still denoted (u,,), such that

Vun(z) — Vu(z) ae. in RY.

This lemma 1 generalizes in particular some results of Boccardo-Murat [18]. Thus, we give an
alternate proof for critical exponents equations instead of the concentration-compactness principle
of P.L. Lions [11] and the concentration-compactness at infinity of Bianchi and al. [1] for such
problems.

The above lemma will be used to show that suitable Palais-Smale sequences are in fact
relatively compact. Let us recall the following

Définition 1 (Palais Smale sequence)
Let X be a real Banach space and I : X — IR a functional mapping which is Gdteauz differentiable.
We say that o sequence (up)n>0 is a Palais-Smale sequence if:

(a) there is a real number ¢ such that lim I(u,)=c.

n—-+4oo

(b) lirf I'(u,) = 0 strongly in the dual X'.
Remark 1 In our application X will be a reflexive Banach space, the conditions (a) and (b) will
(often) imply the boundedness of (uy,), from which we will have statement 1. and 2. (with additional
compactness). The hypothesis (H1) will often follow from (b).



2 Notations and compactness result.

Let Q be an arbitrary open set of IR, we shall denote by w CC Q any relatively compact open
subset w of Q (that is w C 2, where @ is the closure of w).
Let 1 <p; <400, 2=1,...,N, we set

p=min{p;, 1<i< N},

N
LI:ZC(Q) HL;I%C(Q) ?_ (plv"'apN);

=1

VVl](;cp {’U € U Lloc AVAIRS ‘lLl;gc(Q)}

N
We remark that U LY (Q) =L}

loc

().

For given ¢ € (1, —Eoo) we denote by ¢’ L its conjugate exponent. We shall use the following

globally real Lipschitz functions:

oif lo]<e
Fore >0, 0 € R, S.(0) =
esign(o) otherwise,

and o* := Sy (o) for k > 1
We shall consider a nonlinear map @ : Q x IR x RN — RN satisfying:

(L1) a(z,-,-) is a continuous map for almost every x and for all (0,¢) € IR x RN, a(-,0,¢) is
measurable (such a property is called Caratheodory property),

(L2) @ maps bounded sets of Wlf)’c (Q) into bounded sets of H Lp :

loc
i=1

and for almost all z € , for all (0,¢) in R x RN, a(z,0,£)-¢ >0,

for almost every = € €2 and for all v € Wé? (), the mapping u — a(x, u, Vv) is continuous
N

from W7 (w)-weak into H LPi (w)-strong, for all w CC €,
i=1

(L3) for almost every z € Q, for all (0,&) € Rx RN, i=1,2

)

[a(z,0,6) —a(z,0,8)][& — &] >0, for & # &.

(L4) if for some x € €, there is a sequence (0, &1,,) € Rx RN, & € IRYN such that { (2,00, &10) —

a(z, o0, 52)} (€1 — &2] and o, are bounded as n — +oc then |{1,| remains in a bounded set
of IR as n — +oo.

We start with this result concerning the convergence almost everywhere of the gradients:



Theorem 1

Let (uy,) be a bounded sequence of VV&)?(Q) Then

(i) There is a subsequence still denoted (u,,) and a function u € Wlf)’?(Q) such that u,(x) — u(z)

a.e. in ) as n — +oo.

(13) If furthermore, we assume (L1)-(L4) and that Vo € C°(Q), Vk > ko > 0:

limsup/ﬂa(x,un(x), Vg (x)) - V(0S:(un — uk)) <o(1)

n—-+4oo

as € — 0 then there exists a subsequence still denoted (u,,) such that

Vun(x) — Vu(x) a.e. in

Remark 2

2.1. The function o(1) in (ii) might depend on k and .

2.2. Asin [15], one can give a more general framework using T-sets instead of Wﬁ)Cp(Q) but in
view of our applications to variational problems derived from Euler equations, this framework

seems not be appropriate.
2.3. The proof of (ii) is the same as in [18, 14, 15], for convenience we reproduce it here.

2.4. The assumption (L2) is satisfied if p1 = ... = pn = p and for all w CC Q, there is a constant
cw > 0 and a function ag € LP (w) such that for almost every x € w, for all (0,€) € IR x RN :

[aw, 0, )| < o[ o + g + ao(a)]
and (L4) is true if a(x,0,8) - € =L |€)F — 2, L >0.
2.5. Bounded sets in Wlf)?(Q) will be bounded in

N N
WLT () = {v € U LPi{(w), Vv e H LP (w)}, for every w CC S
i=1 j=1
2.6. If py = ... = pn, we adopt the usual notation for Sobolev spaces: W1P(w) and we use 2.4.

Proof.

(i) Let (w;);>0 be asequence of bounded relatively compact subsets of {2 such that @; C w;41 and
“+oo

U w; = Q. Since (un)n>0 is bounded in Wl’?(wj), by the usual embeddings, we deduce that
=0
there is a subsequence u,,(;) and a function u in WL?(W]‘) such that wu, ;) (r) ——— u(x).

n—-+o0o
We conclude with the usual diagonal Cantor process.



(1) Let o € C°(2), 0< ¢ <1, ¢ =1 o0n w; and supp (¢) C wjt1, and set

A, u)(2) = [@(@, un(@), Vun(2)) = (e, un(2), Vu(@)) |V (un — u)(@).
Then one has:
(73.1) A(un,u)(xz) =0 a.e. on Q (due to (L3)),
(13.2) sup / A(tp,u)dz is finite (since (u,,) is in a bounded set of V[/lif () and the growth
condition (L2)).

Let us show that lim/ OA (U, u)%dx = 0. On one hand, we have
n Ja

/ OA (U, u)%d;v = A(un,u)%@d;ﬂ + [ Aup, u)%wd;v. (1)
Q {Jul>k} {Jul<k}

By the Holder inequality and noticing that

meas{a: € wjyr : |ul > k} < ===

one deduces that

1 c1(j)
Atun,u)r pdr < —=. (2)
{lul >k} kp=t

(cm(j) are different constants depending on j and ¢ but independent of n, ¢ and k).
While for the second integral, we have

A, u)%gpdx = AU, u)%@dac + AU, u)%god;v. (3)
{lul<k} {lul<k}n{un —ul<e} {lul<EIN{un—ul>c}
Moreover, the second term in the right hand side of the last inequality satisfies
1 -5
A(un,u)?odr < cz(j)meas{x € wjtr : |lup —ul(z) > 5}
{lul<k}n{un —ul>e}
and since (u,) converges to u in measure, we deduce that, for n sufficiently large,

meas{x € wjtr : |lup —ul(z) > 5} < e. It follows that

lim sup A(un,u)%gpdx < 02(]’)51_%. (4)

n—+oo J{ju|<k}N{|un—ul>e}

Setting A7, ; = wj+1 N {|u| < k}N{|u, — u| < e}, we obtain from the Holder inequality:

Sl

Aunu)? pde < ea() (13 4() = I2,4(2) )", (5)

with
L&) = / a(x, un, Vuy) - V(u, — u)pde,

n,k

I7?L7k(8) = / a($7un; VU) . VSE(U’I’L — U)g@d(E
{lul<k}



N

Since a(x,up, Vu) — a(z,u, Vu) strongly in HL”; (wjt1) (by the last statement of

=1
N

(L2)) and VS (uy, —u) — 0in H LPi(wj;y1)-weak, we deduce that

i=1

lim I, (e) =0,

n—-+4oo

while for the term I, , (), we get:
I%7k(8) < / a(x, up, Vuy,) - V(@Sg(un - uk))
Q
— / a(x, up, Vuy,) - VoSe (u, — uk)dac.
Q

Since

/ a(x, up, Vuy,) - VoSe (u, — uk)dx < c(y)e,
Q
the assumption (i¢) implies then

limsupl, ,(e) < ca(j)e + o(1) as e — 0.

n—-+oo

Combining relations (5), (6) and (9), it follows:

lim sup A(un,u)%gadx <o(l)ase — 0.

n—-+4oo Afz,k
From relation (1), (2), (3), (4), and (10), we deduce:

1 1
limsup [ A(up,uw)?@dr <o(l) (ase —0)+ 0 | —
n—+oo J) kp—l

Letting first ¢ — 0 and then k to infinity, we then obtain:

lim AU, u)%cpdx =0.

n—-+o0o Q

From which we deduce that for a subsequence (u;, )n>0,
A(uj,,u)(z) — 0 a.e. on wj,
i.e. there is a subset A; of w; such that meas(A;) =0 and

Auj,,u)(z) =0 Vzew;\Aj.

(10)

Then, due to the hypothesis (L4), the sequence (|Vu,,|) is bounded in R. We claim

that
Veew; \Aj, Vuj,(z) — Vu(z).

Suppose that the last clame is false [10, 9], then there are z € w; \ A, 2*(z) # Vu(z)

and a subsequence (|Vuj |) verifying

Vuj (x) — 2"(z).



Since a is Caratheodory, the continuity implies that

{ﬁ(x,u(x), z*(a:)) — Zi(a:, u(x), Vu(:c))] . (z*(x) — Vu(x)) =0
z*(x) # Vu(z),

which is in contradiction with the hypothesis (L3). The proof is achieved by the diago-
nal process of Cantor. &

Proof of Lemma 1 (Corollary of theorem 1)

Here, we have p1 = ... = py = p. Since (u,) belongs to a bounded set of Wli’cp(RN ), statement
(7) of Theorem 1 implies that there is a function u and a subsequence still denoted by (u,) such
that

Up(2) —— u(zx) a.e. in RY,
n—-+o0o

and
uwe WEP(RN).

loc

Then for all o € C°(IRY), ¢S:(u, — u*) is an element of WP (IRYN) and

comp

JupS=(n —ub)de| < elol |l ) < (@e, (12)
BN

(for every ¢ such that supp (¢) C w, @ is a compact of IR"), and
}< 9n, SDSE(UTL - uk) >| < |gn|W71,p’(w) |Q055(un - uk)}wl,p(RN) .

Using the fact that ‘gpSE (up
0, it holds:

is bounded independently of €, n, k and that |, [y —1.0 () ——

n—oo

k
= ")y ()

n

lim sup/ Az, un, V) - V(pSe(u, — u¥))dz < O(e).
RN

Finally, Theorem 1 ends the proof. &

Remark 3 Many extensions of the Theorem 1 can be made (for instance on manifolds or on mea-
sure spaces). Here, we choose the above framework for the applications we made here. Nevertheless,
one can use Theorem 1 for weighted spaces choosing correctly the open set 2 and the map a.
Some results in that direction have been already made by Marchi [16], and also by Fengquan Li,
Zhao Huiziu [5] using the method of [12, 13].

3 Some examples of applications.

3.1 Example 1.

We start by recovering a recent result of H. Ohya [7] using this alternate proof (without concentration-
compactness principles) to show that we simplify the author’s proof.



For this, we recall a part of the author’s framework.

N
Let1<p<N,p*:Np

and let © be an unbounded open set with smooth boundary if

o0 # 0, 6(x), a(z), K(x) be three non negative functions with the additional regularity that
N .

0 € C?(Q), a € L™(Q) for some r € {E, +oo} and K is such that e®—?)0@) K () = V(z), being

bounded.

The author defined the following sets and quantities

L?(6,Q) = {u € LP(Q);/ eP?@) |y|P dx < —|—oo},
Q
Wlr(6,Q) = {u e W, P() : / P (Jul? + |VulP) < +oo},
Q

A\ = inf {/ eP?@) |7y )P dx// P @ (z) |ul? da:} >0,
weWtr(0,20)\{0} | Jo Q

1 1 *
To(u) = —/ 2@ (| uf” — Aalz) |u|P)dx——*/eP9<w>K(a;) uf”" da,
P Jo P Ja

for u € WHP(0,9Q). The author showed, under some hypotheses on 6 and ), that W1P(6,Q) is
embedded continuously (resp. compactly) in L9(6, Q) provided that ¢ € [p, p*] (resp. ¢ € [p,p*)).
Moreover, in this situation the Poincaré inequality holds true, which implies that the semi-norm

( / e |Vul? d;v) " is in fact a norm on W? (0,9). We shall prove the following Palais Smale
Q
property:

Theorem 2
Under the above property, for every A < A1, any Palais-Smale sequence (upm)m of Iy on X =
WLP(0,Q) satisfying :

(a) Ip(um) — bo
i
(b) I (um) — 0 in (WLP(H,Q)) (dual of X)
contains a convergent subsequence in W1P(0,Q) provided that

N—p

1 _
0<b9<b;:NS%|V| v

oo

S = inf {/|Vu|pda:/</|u|p*dx)p}.
ueWy P(\{0} | /o Q

Remark 4 Theorem 2 corresponds to Theorem 4.1 in [7].

where

Proof of theorem 2
The sequence (u,,) is bounded in X as it was observed in [7]. On one hand one has

1 1 A
Tolt) = o < Ty(un).tm >= 37 [l = N/Qa(a:) (o |? P



and applying the Poincaré-Sobolev inequality, there is a positive constant ¢ such that

1 A

1
N (1 — /\—1> Numll% < To(um) — p= < I)(um), um >< c.

Thus, / @ K (2) [up|P dz and / P @ a(2) |ty |? dz are bounded independently of m. If we
Q Q
set
a(z,§) =@ z e, £ RY,

then @ satisfies conditions (L1)-(L4) (since 8 € C(£2)). With the definition of X, we may then apply
the first statement of Theorem 1 to conclude that there is an element v € X and subsequence still
denoted (u,,) such that

Um(z) — u(x) a.e. in Q.

Furthermore since S (um, — u*) € X and ||Sc(um — u®)|| < [Jumlx + ullx, we get for all ¢ €

C=(Q) :

/Qﬁ(x, V) V(@Ss(um — uk))dx

< e </ ePd(@) |um|pa(a:)dx> ’ (/ @pepe("”)a(a:)dx> ’
Q Q

1 L
+e ( / @) [y, [P K(x)dx) v ( / o eP?(@) K(m)dm)
Q Q

e Ty (um) L (llumlx + lullx )-

|

Thus,
lim sup/ Q(z, V) - V(oS (un — uF))dz < O(e).
Q

m——+o00o

Thus, from Theorem 1, passing if necessary to a subsequence, Vu,,(x) — Vu(z) a.e. in .
m—-1+00

>From Vitali’s theorem, we then deduce that w is a critical point of Iy, that is,

Vo € X, < Ij(u),¢ >=0.

At this stage, we apply the Brézis-Lieb lemma [2], that is from the equations,
< I(uy,u >=0, < Ij(tum), um >=o(1),

we then have

lim @) |V (4 — up)|P dz = lim @)y, — P (2)K (z)dz =: L.
m——+o0o Q m——+oo Q
(Note that from the integrability of ¢ and the boundedness of (u,,) in X, we deduce that lim a(z) [ty — ul? e

m——+o0o Q
0 (see Proposition 1 below).)

Since V(z) = eP~P)9®) K (1) is bounded, we deduce

(< |V, / e? @) gy, — P (z)dx + o(1).
Q

10



From the definition of S, one obtains ¢ < [V|_ S o
If £ = 0, the proof is done.

If £ £ 0 then £ > S |V| . Since, hmlg(um) = by, thus
/ |u|p K (x)e?’®) da + —é + o(1) (still using the Brézis-Lieb’s lemma).

Then by > E

1
N = by, which gives a contradiction. Thus necessarily ¢ = 0. &

In the next example, we give a classical existence result with a new proof based on our
approach.

3.2 Example 2

In this paragraph, we are concerned with the existence of (at least) one positive solution to the
elliptic problem
—Apu = Aa(z) |uf’ P u+|uf’ ?u in RV, (13)

where the function a satisfies the following conditions: a > 0 on RY, a # 0 and a € L%(]RN ).
The parameter A is assumed to be positive, 1 <p < N and N > 3

Consider the Euler-Lagrange functional associated to Problem (13) defined by
1 A 1 *
Ia(u) = —/ [Vu|’ dz — —/ a(z)|u|” dz — —*/ lul” dx
D JmrN P JRN P JRry

which is of class C1(DV?(IRY)). We recall that D*?(IR") is the completion of the space D(IR")
with respect to the norm

lell = ( [ 1vel7as)
RN

The space DVP(IRN) can also be seen as
DIP(RN) = {gp e L (RN) : |Vy| e LP(IRN)}.

By solutions of Problem (13) we understand critical points of the functional Jx. Remark that the
functional .J, is bounded neither above nor below on D'P(IRY). Then, to find possible critical
points of Jy, we limit the study to the corresponding Nehari manifold which contains all critical
points of Jx. We recall that the Nehari manifold associated to Jy, denoted by N, , is defined by

N, = {p e DP(RY)\ {0) - =0}

In the sequel, we will set [|ul|, , = (/ a(z) |ul? d;v) ’
: .

Lemma 2 For every A > 0, the functional Jy is bounded below on the Nehari manifold Ny, .

11



Proof. For every u € Ny, , it holds

= (3= )

and this ends the proof. &
As before, due to the integrability of a, the compact embedding D''P(IRY) c LY (IRY), the Vitali’s

loc

1
g: =—||lu

-
- e

theorem implies the following statement:

Lemma 3 The functional
DYY(RY) — R
u — / a(z) |ul? dx
RN

is weakly continuous.

We recall that the Nehari manifold can be characterized more explicitly by

d
Ny = {105 (.)€ (R\10D) x (DM (0) = (o) =0
For this reason, we introduce the modified functional
Ja(t,u) == Jy(tu), on IR x D'P(RN).

Since we are interested in positive solutions to Problem (13), we restrict ourselves in what follows
tot > 0.
A direct computation shows that for every u € DVP(IRY) \ {0}, there is a unique value A(u) of A

defined by Tl?
u
Au) = =

g,

such that for every A € (0, A\(u)), on has t(u, \)u € N, , where

Vull? — X |ul|lP e
. <|| [y ||a,p> | "

-

We introduce

A1 = inf Au
u€DLP(RN)\{0}

which is not other than the first eigenvalue to the nonlinear eigenvalue problem

—Apu = Aa(z) [ul’?u in RV,

>From Lemma (3), we get clearly that the characteristic value \; is positive. Now, for every
A € (0, A1) on has more precisely

Ny, = {t(u,Nu : uwe D"P(RY)\ {0}}.
For every A € (0, A1), we introduce

A) = inf = inf
a( ) uEHJ%/'JA J)\(U) uGDlvPI(rllRN)\{O}

Ix(t(u, N)w).

12



It is not difficult to see that the functional

DYP(RY)\{0} — R
u — Ia(t(u, Nu)

is 0—homogeneous. Then we get
a(X) = Héfs Ia(t(u, Au), (15)

where S is the unit sphere in D*?(IR"). In this particular case, we have in fact

o

1 1 Val? = Xul? T

a() := inf (_ _ > [Vull, ’ lull,p '
u€S \ p p* HU n

In what follows, we will write (PS). to denote a Palais-Smale sequence of Jy with the level

c€ R.

Lemma 4 Let A € (0, \1). There ezists a minimizing sequence of (15) denoted by (u,) C S such
that:
(1) 0 < liminf ¢(uy, A) < limsup t(up, A) < +o00.

n—oo

(ii) (t(un, Nuy,) is a bounded Palais-Smale sequence for J.

Proof. Let us denote Uy, := t(un, A)un, it holds obviously that (u,, A) = [[VU,||,.- On one hand,

one has
1 1 P p _
(3= ) (1900l = MITRE,) = ) + 0,0,

Then,
VU, = AMUnllg,, + Na(A) + 0n(1).

Applying the Holder and Young inequalities to [|U., [, ,, we conclude that |[VU, |, is bounded.

On the other hand, for every u € S, one gets

P p*
J)\(tu)>t_(1 )\>_t—

p B )‘_1 p*S% 7
where S is the best Sobolev constant in the embedding D'?(IRN) C LP" (IR"). Tt follows that
36(\) > 0 suchthat a()) >46(\) > 0, (16)
and consequently liminf [[VU,[|, > 0. This ends the claim (i).
For every u € D2(IRN)\{0} and A € (0, A1), we have 9,.Jx (t(u, \),u) = 0 and 8y Jx (t(u, ), u) <

0. The implicit function theorem implies that ¢(u, \) is C! with respect to u since J is. Let us
introduce the C' functional 7, defined on S by

Ta(u) = Ja(t(u, A),u) = J(t(u, ).

13



Then
a(A) = inf Jy(u).

uES
Using the Ekeland variational principle on the complete manifold (S, || ||) to the functional 7y,
there exists a minimizing sequence of (15) denoted by (u,) C S such that:
1

|u7>/\(un)(90n)| < EH‘PnHa for every ¢, € Ty, S,

where T, S is the tangent space to S at the point w,. Moreover, for every ¢,, € T, S, one has
j)((un)(wn) = atjk(t(um A)s un)t/(um A)(#n) + auj)\(t(unv A)s un)(n),
= 8ujA (t(un; /\)7 un)(@n),

since 0;.J AE(tn, A), un) = 0, where t'(uy,, \) denotes the derivative of ¢(., \) with respect to its first
variable at the point (uy, A).
Furthermore, let

7 DVW(RN)\{0} — RxS
u — (Il i) = (ma (), ma(w)).

Applying Hélder’s inequality, we get for every (u, ) € (DVP(IRN)\ {0}) x DVP(RN):

>From (i), there is a positive constant C' such that
t(un,A) = C, VneN.

Then for every ¢ € DP(IRY), there are . € IR and 2 € T, S such that |pL| < ||o|], |[©2]] <
&llell and
Jﬁ\(t(un, /\)un)((p) = atj)\(t(una )\)a un)(<p711) + 8”‘}; (t(u”’ /\)’ u")((pi)’
= 8uj)\(t(un7)\)aun)((p121)7
= Ta(ua)(#h).

Therefore,
1
T3t (tn, Nun)(p) - < ;H%%H

< el
= nCSD'

We easily conclude that
lim J4(U,) =0 in D~"2 (RN),

n—oo

which achieves the proof. &

Np
N-—p

As a consequence of Theorem 4 (see Example 3 with p=p; =1 =K, p. =p* =

)5

one has :
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Lemma 5 Let A € (0,\1) and (U,) C DYP(IRN) be a Palais-Smale sequence for J, such that
U, — U in D¥P(IRYN). Then, passing if necessary to a subsequence, we get

VU, — VU a.e. in R". (17)
Lemma 6 Let A € (0,\1) and (U,) C DVP(IRY) be a (PS). sequence for J. If
1~
0<c< NS P (18)

then Problem (13) has a nontrivial solution.

1
Proof. >From theorem 4, J, satisfies the Palais-Smale conditions if 0 < ¢ < NS v Thus, any
weak limit U of U, in DYP(IR"N) satisfies then J}(U) = 0, J\(U) = ¢ > 0. Consequently, U is
nontrivial critical point of J. &

Lemma 7 For every A € (0, 1) we have 0 < a(\) < %S%

Proof. Let

N-—p

(Nau) v

—1
\115(33) = - N

(= +1al77)

V|2 = ||W.|[B. = SN/P.

re RN, e>0.

—p

It is well known that

Moreover,

*

11\ (V8 — AP ) 1
IE(U NT,) = (= — — P @ < —8N/p,
A(HTe A1) <p p)( = N

P
o
Then, using (16) we obtain
1
\) < —SN/P,
0<ald) < NS

Theorem 3 For every A € (0, \1), Problem (13) admits at least one positive solution.

Proof. From the preceding lemmas, it is clear that Problem (13) possesses a solution u which is
nontrivial, since a(\) # 0. Since J is even in u, that u € DVP(IRY) implies that |u| € DVP(IRY)
and t(u, A) = t(Jul, ), we conclude that Problem (13) has a nontrivial nonnegative solution. The
maximum principle achieves the proof. &

3.3 Example 3.

Similar examples on weighted spaces can be made. Let p, p; be two nonnegative continuous
functions on IRY and assume that the closed set F' = {x € RY : p(x) = O}U{x € RN :pi(x) = 0}
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is of measure zero. We set Q = IRV \F.

For every 1 < p < 400, we define
Y :=D"P(RY,p) = {u € Ly .(Q): / |Vul? p(x)dz < +oo}.
RN

Let p. > p so that

_ L pe e
S = YI{l{fO} {/BN Vel p(x)dx/ </1RN [l o1 (ﬁ)dx) } -0
1

1 1
We set — = — — — and let
N, p Pe

LY (RN, o) ={f>0: T pr(x)d ,
ae Ly () ={£20: [ 1% iyt <+oc}

and the Euler-Lagrange functional defined on Y by

B = [ vl oyte == [ ateipede - — [ K@)l g,

where K is a positive function in L>(IR"V). As previously, we have
ny=int ([ 90 sta) /1 a2z ) >
RN
(see Proposition 1).

Theorem 4
Let X < A1, and (uy,) be a Palais-Smale sequence of I, satisfying

(a) Ip(“M) — b,

(b) I,(um) — 0in Y.
Then
1. (um) contains a weakly convergent subsequence to a function u € Y satisfying
I(u) =0.

2. This subsequence is strongly convergent in 'Y provided that

Ne—p

. 1 e
0<bp<bp:ESp” K| 7 .
We first need the following

Proposition 1

Under the above assumptions, if (Wm)m s weakly convergent to u in'Y then

lim a(z) |um — ul’ p1(z)dx = 0.
m RN
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Proof
Since |t |P® p1(x)dx is bounded uniformly with respect to m, then for every subset A of IRY
RN

/Aa(;v) [, — ul? p1(z)dx < c (/A a(;v)%pl(x)dx) “ < +00.

But Y C Wéf (Q) and then Y is compactly embedded in LY. _(Q).

loc
Thus using the Vitali’s theorem one has, for every bounded set w in IRY,

111}_1 a(z) [t — ul’ p1(z)dz = 0.

(Recall that Q = RN\ F and meas (F) = 0). Combining the two relations and the integrability of
a, we conclude
lim a(z) [t — ul’ p1(z)dz = 0.

m IRN

Notice that the previous proposition implies that A;, > 0.
The proof of Theorem 4 is similar to that of Theorem 2, we sketch it as the following:
Sketch of the proof of Theorem 4

Setting || ||5 :/ |Vum|? p(x)de, it follows that
BN
A 1 1
sl (1= 22 ) 7 < o) = o < L), >

Thus ||us,||y remains in a bounded set of IR which implies that
/ a(z) [um|? p1(z)dz and / |um [P K (z)p1(z)dz
RN RN

are in a bounded set of IR. Thus / |t |”° p1(x)dz is bounded . We deduce in particular
RN

that (u,,) remains in a bounded set of Wlicp(Q) (since for every w CC Q, p, = inf, p(z) > 0
and p1, = inf, p1(z) > 0). We may appeal the first statement (i) of Theorem 1: There exist
u € DYP(IRYN, p) and a subsequence still denoted by (), such that u,,(r) — u(z) a.e. in RY.
Moreover since Se(u, — uF) € Y, if we set a(z, &) = p(x) [€]P 2 €, for all z € Q and £ € RN, then
the conditions (L1)-(L4) are satisfied. Furthermore, Vo € C°(2), choosing w CC € such that
supp ¢ C w, sup p(z) and sup p;1(x) are finite, it holds then:

/Q (2, V(@) - V(S (tm — ub))dar < c(p)e + || I

yo (lumlly + [lully ).

Consequently, statement (i7) of Theorem 1 is also satisfied so, we conclude that (for a subsequence)
Vi, (z) — Vu(z) a.e. on IRY. From Vitali’s theorem, we deduce that

Vo € D'"P(IRN) < I')(u), ¢ >=0.

To conclude that ||um, — ully, — 0, we use the Brézis-Lieb lemma to get

/ Vg — Vul? pla)da = —/ |Vu|pp(a:)dx—|—/ IV ? p(z)dz + o(1),
RN RN RN
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Pe K(x)p1(z)dz

/ [t —u
RN

O .
RN
[Vl K@pa(w)ds + of)
RN
Since < I (u),u >=0, < I},(um), um >= o(1), the above equalities imply that

Pe K(z)p1(z)dz =: £y

lim ||Ju, —ull} = lim/ [t — u
m— 00 m BN

(noticing that lim/ a(z) [ty — ul” p1(z)de = 0 (see Proposition 1)).
RN

Since K € L>(IRY)
%

[ o=l K@ ite < K157 ([ 9 - 0P plojas )

Thus

Pc  Pc
P

o < K| S,7 07 .

If ¢y = 0 the proof is done.

Ne c—p
If 0o # 0 then £y > S,” |K|L 7 . Since
. 1 1 — Ncp—p _Ne—p «
lim () = by 20, > b0 > 35 7 KIS =,
which leads to a contradiction. O

Theorem 5 There exists \* € (0, \1,) such that the problem
—div (p(2)|Vul[P7*Vu) = p1(z) (Aa(z)|u[P?u + K (z)|u|P*">u) in RN (19)
has a nontrivial positive solution for every A € (A\*, \1,).

Sketch of the proof.
Let A € (0,\1,) and ® be a positive eigenfunction associated to the positive eigenvalue Ai,. It

follows that N/
C A\ e/

L@ N®) = — (1- 2
e m = (1-50)

where C is a positive constant depending on the data of Problem 19 and #(.,.) is defined in the
same manner as (14) with minor changes. It is clear that there exists \* € (0,\1,) such that
VA e (A M)
C )\ Nc/P 1 Ne _ Ne-p
—1-— —S," |K .
0< Nc< /\1p) < NCSP | |oo P

Following the different steps of the previous example with slight changes, we get the result. &
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