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Nehari manifold and existence of positive solutions to a class of quasilinear

problems

C.0O. Alves* and A. El Hamidi

Abstract

In this paper, existence and multiplicity results to the following nonlinear elliptic equation
—Apu = Aul" 2+ [uff 2w, u>0in QCRY,

together with mixed Dirichlet-Neumann or Neumann boundary conditions, are established.
Here, Apu denotes the p-Laplacian operator, 1 < ¢ < p < N, p* = ]\Jrv_pp and ) is a positive
real parameter. The study is based on the extraction of Palais-Smale sequences in the Nehari

manifold.

1 Introduction

In this paper, we deal with the existence of multiple solutions to the boundary value problems

—Apu = Mu|??u + [ulP" "2u in Q,

u=0 on I, (1)
%:O on X,

—Apu = Mu|?2u+ [u|P" "2u in Q,

(2)
|Vu|p_2% = —a(z)|ulP"2u on 09,

with respect to the real parameter \. Here,  is a bounded domain in RY with smooth boundary

0Q =T UY, where I, ¥ are smooth (N-1)-dimensional submanifolds of 9 with positive measures

such that ' N X = 0, A, is the p-Laplacian, a% is the outer normal derivative, and p* = NN—_’;).

Throughout this paper, the function a is assumed to be in L*>°(09), a(s) > a¢ > 0 almost every-

where on a subset of 002 with positive measure.

*Research Supported by Millennium Institute for the Global Advancement of Brazilian Mathematics - IM-AGIMB



In a recent paper, K. J. Brown & Y. Zhang [6] have studied a subcritical semilinear elliptic
equation with a sign-changing weight function and a bifurcation real parameter in the case p = 2
and Dirichlet boundary conditions. Exploiting the relationship between the Nehari manifold and
fibering maps (i.e., maps of the form ¢ — Jy(tu) where Jy is the Euler function associated with
the equation), they gave an interesting explanation of a well known bifurcation result. In fact,
the nature of the Nehari manifold changes as the parameter A crosses the bifurcation value. In
Tarantello [16], using the same type of approach the critical case has been studied also assuming

p =2, ¢ =2 and Neumann boundary conditions.

In this work, we exploit similar facts to show the existence of multiple nontrivial positive
solutions to (1) and (2). The idea of our approach can be summarized as follows: Let I, (resp.
J)) the Euler functional associated to Problem (1) (resp. Problem (2)) defined on W7 () (resp.
on W1P(Q)), where

WP (Q) = {u e WH(Q); ulr =0}

is the closure of C¢(QUT) with respect to the norm of W (Q) (we refer the reader to the excellent
paper by Colorado & Peral [8] for a complete study in the case p = 2).

For each u € WA P(Q)\ {0} (resp. WP(€2)\ {0}) A > 0, we determine the real values of ¢ (in terms
of uw and \) such that tu belongs to the Nehari manifold:

Niy = {v e W@\ {0} : Bw)() = 0]

(resp. Ny, = {v e WHP(Q)\ {0} : J5(v)(v) =0}).

Then, the variable t is substituted by these special values to obtain new Euler functionals defined
on the Nehari manifold. On shows easily that these functionals are bounded below, which allows
to find possible critical points by minimization. Moreover, this approach allows the simultane-
ous construction of Palais-Smale sequences, in the Nehari manifold, giving directly existence and

multiplicity results [10].

Let us mention that in the case p = 2 and with a subcritical concave-convex nonlinearity,
this problem was studied recently by Colorado & Peral [8]. The authors showed that there is a
special value A of the parameter A such that Problem (1) admits at least two positive solutions
for A € (0,A), admits at least one positive solution for A = A and admits no positive solution for
A > A. In our opinion, an interesting question which is not treated in our paper, is to characterize
A as a bifurcation value via the dynamic of the Nehari manifold with respect to the parameter

A (see [6]). Some results involving the p-Laplacian operator, concave-convex nonlinearity and



Dirichlet boundary conditions can be found in the papers of Garcia Azorero & Peral Alonso [11]

and Ambrosetti, Garcia Azorero & Peral Alonso [4].

This paper is organized as follows: Section 2 is devoted to Problem (1) and Section 3 is

the subject of Problem (2).

2 The mixed Dirichlet-Neumann Problem (1)

It is well known that weak solutions of (1) correspond to critical points of the C' functional

I : WI}’p(Q) — R, given by

where
P(u) = / [Vu|Pdz, Q(u)= / |u|?dx and P*(u) = / |ul?" dz.
Q Q Q
Using the fact that I' has strictly positive measure, the Poincaré inequality is still available in the

space WFLP (©), hence it can endowed with the following norm

full = { [ [vulras} .

(see some commentaries in Kesavan’s book [12, page 125], for the case p=2).

In the sequel, || ||, || ||, and || ||,~ will denote the norms on W (), L4(2) and L ()

respectively. We introduce the modified functional I, defined on R x er P(Q) by Ix(t,u) := L\(tu),
(see [19, 9, 10]). For every u € WAP(Q), O In(.,u) (resp. dulr(.,u)) is the first (resp. second)

derivative of the real valued function: t — Iy (¢, u).

2.1 Preliminary results

Since the functional Iy is even in ¢ and that we are interested by the nontrivial solutions of (1),

we limit our study for ¢t > 0 and u € er’p(Q) \ {0}.

Lemma 1 For every u € WAP(Q) \ {0}, there is a unique \(u) > 0 such that the real valued
function t — 8tI~>\(t,u) has exactly two positive zeros (resp. one positive zero) if 0 < A < A(u)

(resp. A = A(u)). This function has no zero for A > A(u).

Proof. Let u be an arbitrary element of W~?(Q) \ {0} and let us write

O Ix(t,u) =t VHy(t,u), where Hy(t,u) = t"~9P(u) — AQ(u) — t* ~9P*(u).



Then
Oulx(t,u) = (¢ — Dt 2Hy(t,u) + t9 10, Hy(t, u),

holds true, with
O (tu) = 71 {(p = ) Plu) — (0" — gt PP*(u)}.

The real valued function H)y(.,u) is increasing on (0,¢(u)), decreasing on (t(u),+o00) and attains
its unique maximum for ¢t = ¢(u), where
1
p—q Pu) >‘°*”
t(u) = . 3
W= (47 @)

Thus, the function H,(.,u) has two positive zeros (resp. one positive zero) if Hy(¢(u),u) > 0 (resp.

if Hy(t(u),u) = 0) and has no zero if Hy(t(u),u) < 0. On the other hand, a direct computation

gives

Ha(t(u),u) = i, — (f__qq ;%) TP W) - 2QM).

Similarly, Hx(t(w),u) > 0 (resp. Hx(t(u),u) < 0)if X < A(u) (resp. A > A(u)) and H ) (t(u), u) =

0, where
A(u) = @PF*_—Z@a (4)
Q(u) P*#5 ()
with

It follows that if A €]0, A(u)[, the real valued function o1, A(., u) has two positive zeros, denoted by
t1(u, \) and ta(u, A), verifying 0 < £1(u, A) < t(u) < ta2(u, A).
Since, H(t1(u,\),u) = Hx(t2(u,N),u) = 0, O:Hx(t,u) > 0 for t < ¢(u) and O;Hy(t,u) < 0 for
t > t(u), it follows that

A (t1(u, \),u) > 0 and By I (ta(u, ), u) < 0.
This means that the real valued function I, A(,u), defined for ¢ > 0, achieves its unique local
minimum (resp. unique local maximum) at t = ¢1(u, \) (resp. t = ta(u, ). O

Notice that for every u € Wpl’p(Q) \ {0} and A € (0, A(u)), t1(u, \)u and t2(u, A)u belong
to the Nehari manifold [19] defined by

Ni, = {u e WrP(Q)\ {0} : I} (u)u = 0}.

Now, we introduce

AE = inf{)\(u) D e W)\ {o}}. (5)



If St (resp. Sr) denotes the best Sobolev constant of the embedding er’p (Q) C LYQ) (resp.
WhP() € LP" (1)), then
Xp > Osf/Pgpri-a/m) 5,

Since 9,1y (t1(u, \), u) = 0 (resp. OIx(ta(u, \),u) = 0) for every u € WAP(Q) \ {0}, it follows that
the functional u — I (1 (u, A), u) (resp. u — Ix(t2(u, ), u)) is bounded below on erp(Q)\{O}
Thus, for every A € (0, A}), we define

a1 (V) = inf {T\(tr (u, 0),w) = w e WEP(@)\ {0}, (6)

(V) = inf { Tu(ta(u, A),u) e WEP(Q)\ {0} }. (7)
Remark 2.1 For every real number v > 0, we have
T)\ <Pyta E) = IN)\(tﬂ ’U/)7
v

~ 1 ~

at-[)\ (A/ta E) = _at-[)\(tau)7
Y v

~ 1~

Ot Iy (’th E) = _Qattj)\(tau)v
Y Y

it follows that

tl(ua A) = ltl <E7)\> ’ (8)

Y Y

1 U
to(u, \) = —to [ 0. 9
en-2a(2) o

Therefore, a1 () and az(\) can be rewritten as follows
a1(\) = inf Lu(t1(u, N), u), (10)
aa(A) = inf I (t2(u, A), ), (11)
ue

where S is the unit sphere of W' (2).

Lemma 2 Let (u,) C S be a minimizing sequence of (10) (resp. of (11)) and U, := t1(un, N)un,
(vesp. Vi, := ta(un, N)uy,). Then

(i) limsup ||Uy]| < +oo  (resp. limsup ||V,|| < +o0),

n—-+o0o n—-+o0o

(i) lim+inf 1Unl| >0 (resp. lim+inf [|Voll > 0).



Proof.

(i) Let (un) C S be a minimizing sequence of (10). Since ;I (1 (tn, A), un) = 0, it follows that
NUIIP = AUn|[§ + 1Unll5-- (12)
Similarly, since ﬁttIN A(t1(un, N, un) > 0, it follows that

(P — DU = Mg — D||Unlg — (0" — 1)[|Un] |2 > 0. (13)

Combining (12) and (13), we get I (U,) < 0, for every n.

Suppose that there is a subsequence of (U,,), still denoted by (U,,) such that lirf [|Un|| =

+o0o. It is well known that there is some constant C), ; such that ||U,||q < Cpq||Un||p- for every

n, then ngrfoo [[Un|]p= = +oo. Using the fact that 0 < ¢ < p* we get ||Uy[|9 = o, (||Un||§*), and

consequently

[|Unl|P = ||Usx| 5 (1+0,(1)).

Thus,
IA(Un) = ||Un

« (1
which implies that I (U,) tends to +00 as n goes to +o0 and this is impossible. Hence, we conclude
that limsup ||Up,|| < 4o0.

n—-+4oo
The same arguments with a minimizing sequence (u,,) of (11) show that limsup ||V, || < +o0.
n—-+oo
(ii) Let (u,) C S be a minimizing sequence of (10) and suppose that there is a subsequence of (U,,),
still denoted by (U,,) such that lir+n [|Un]] = 0. It follows that lirf I(U,) =01i.e a1(A) =0,

which is impossible since Iy (t1(tn, A), u,) < 0 for every n.
Let (u,) C S be a minimizing sequence of (11). Since ;I (t2(tn,\),un) = 0 and
Audx(ta(tn, N), up) < 0 it follows that

IVallP = MlIVallg = [[Vallp- =0,
(p = DIVall? = Mg = DIIVallg = (0" = 1)[|Val

Combining the two last inequalities we obtain, for every n,

.
R}

(0= DIVall” < (0" = QlIVallb- < (0" = Q)Sc? /P VallP",

via the continuous embedding WA"(Q) C LP" (). Then (p — q) < (p* — q)Sr? /P||V,||P" 7. Now,
suppose that there is a subsequence of (V},), still denoted by (V},) such that lir}rl [|[Vn|] = 0. This
implies that p — ¢ < 0, which is impossible. O

Lemma 3 Let (u,) C S be a minimizing sequence of (10) (resp. of (11)). Then, (U,) :=
(t1(tn, Nuy) (resp. (Vi) := (t2(un, Nuy,)) are Palais-Smale sequences for the functional I .



Proof. We will show this lemma only for the sequence (U,,), the proof for (V,,) can be done in
the same way.

First, according to the previous lemma, it is clear that (U,,) is bounded in W (Q). On the other
hand, notice that for every u € W"(Q)\ {0} and A € (0, \%), we have B Ix(t1(u, A),u) = 0 and
AuI\(t1(u, \),u) # 0. The implicit function theorem implies that t;(u, \) is C! with respect to

since I is. Let us introduce the C'! functional 7T, defined on S by
Ta(u) = In(t1(u, A), u) = In(ty(u, Nu).

Then
a1(A) = infSIA(u) and lim Zx(un) = a1(N).
ue

n—-+4oo
Using the Ekeland variational principle on the complete manifold (S, || ||) to the functional T, we
conclude that

1
|I$\(un)(@n)| < ;H(PnHa for every o, € Ty, S,

where T, S is the tangent space to S at the point w,. Moreover, for every ¢, € T, S, one has

Iy (un)(pn) = atf)\(tl (tns A)s un )t (U, ) () + 3uf>\(t1(un, A)y tn)(#n),
= Oul(t1(un, ), un) (),
since 9,1 (t1 (tn, ), un) = 0, where #} (u,, \) denotes the derivative of (., \) with respect to its

first variable at the point (u,, A).

Furthermore, let
T Wpl’p(Q) \ {0} — (0,400) xS

u — (Il ) = (ma (), ma(w).
Applying Holder’s inequality, we get for every (u, ¢) € (Wplp(Q) \ {0}) x WpP(Q):

71 (u)(9)]
|| (u) (@)l

>From Lemma 2, there is a positive constant C' such that

o1,
9 llell

[ull*

<
<

t1(un, ) >C, VneN

Then for every € W ?(), there are o), € Rand ¢2 € Ty, Ssuch that |o}] < |||, [|©2]] < &|l¢ll
and
I (b1 (n, M) (9) = 0D (b1 (s X, un) (9h) + Ouda (t1 (un, A), ) (93),
- auf)\(tl(una)‘)aun)(wi%

4 (un) (27)-



Therefore,

1
I (tr (un, Nun) () < EH@%H

IN

2 el
anO'

We easily conclude that
lim [[Z4(U)]]. = 0,

n—oo

where ||||. denotes the norm in the dual space of Wp™”(Q2). O

Remark 2.2 Until now, the minimizing sequences we consider are not nonnegative. Notice that
for every u € WAP(Q)\ {0} and 0 < X < X}, one has I(t, [u]) = In(t,w), t1(Jul, \) = t1(u, \) and
ta(Jul, \) = ta(u, A). Thus, every minimizing sequence (u,) C S of (10) or (11) can be considered

as a sequence of nonnegative functions.

Hereafter, we will assume the sequences U,, and V,,, defined in Lemma 3, to be nonnegative.

Since we consider mixed Dirichlet-Neumann boundary conditions in Problem (1), we will

need the following estimate, due to Cherrier [7]:

Lemma 4 For each 7 > 0, there exists M, > 0 such that

S
57— 7/l < IVully + Myl Ve WP

At this stage, we will state a version of the Concentration Compactness Lemma due P. L. Lions
[13, 14], which follows using similar arguments explored in the case W, ”(Q) together with the

Cherrier’s inequality. In the WP (Q) case, we can refer the reader to [15] by Medeiros.

Lemma 5 Let {u,} be a weakly convergent sequence in Wpl’p (Q) with weak limit u, and such that:
i) [[Vun||h — 1 weakly-* in the sense of measure,

g* — v weakly-* in the sense of measure.

Then, for some finite index set I we have:

D) v =ull5e + Y e vida,, v >0,
2) p=> ||VU||§ + Zje[ /ﬁjéww s >0,
3)if x; € Q then SV;’_* ,,S i,

4)if

p_*

xz; € X then vy < py

[}
2\v|"1

Finally, using standard arguments and the previous lemma, we can prove the following lemma

which will allow the use of Brézis & Lieb Lemma [5].



Lemma 6 If {u,} C WpP(Q) is a Palais-Smale Sequence to Iy with u, — u in Wr*(Q), then

the set I* = {i; x; € Q} C I given in Lemma 5 is finite or empty and for some subsequence

Vun(z) — Vu(z) a.e. in Q.

Now, we establish that the Euler functional I, satisfies the Palais-Smale condition under some

condition on the level of Palais-Smale sequences.

Lemma 7 There exists a constant K depending only on p, q, N and 2 such that for every A > 0,

the functional I satisfies the Palais-Smale condition in the interval (—oo, ﬁS% — KAv = ).

Proof. Let {u,} C W/r?(2) be a Palais-Smale sequence for Iy. Using standard arguments it
follows that the sequence {u,,} is bounded. Thus, from the above lemmas there exists a subsequence
still denoted by {u,} and a function u € Wﬁ’p (Q) such that w,, — w. Using the same arguments

explored in Alves [3], there is a constant K depending only on p, ¢, N and Q such that
In(u) > —KA77.
Let v, = up, — u. Then by Brézis & Lieb [5], we have
[onll? = llunll” = [Jull” + on(1),

be 4 on(1),

/|un|qdaj—>/ |u|?dz.
Q Q

b =on(1)

R
e = llu

P=lun

[|vn,

and by Sobolev embedding

The above limits imply

[vn]l? — [lon

and

1 1
—|vn||P — _*”Un
p p

g: =c— I)(u) + on(1).

Since the sequence (vy, ), is bounded in Wpl’p (), there exist [ > 0 and a subsequence, still denote
by {v,}, verifying

[[on]|” — 1.

Hence,

.
p
p*—>l.

”Un

10



Using Cherrier’s inequality and passing to the limit n — oo, we obtain

[%—T}l% <1vr>0,
N
that is,

S;ZPL* <l

2N -

Now, we claim that [ = 0. Indeed in one hand, if [ > 0 the last inequality implies

sz

S
5

l>

On the other hand,
%l =c— I\(u),

and then
c> %S% — K/\pf—iq,

which contradicts the hypothesis. Therefore, I = 0 and we conclude that

Uy, — U in er’p(Q).

Lemma 8 Let 8 := pf’iq. There exist v € WAP(Q) and \j > 0 such that for X € (0,\3), we have

1 n
sup I\ (tv) < —8» — K\°.
p ) < o

In particular,

1
_~ §p _ B
ag()\)<2 S KM\,

where K is the constant found in Lemma 7.

Proof. Let us denote by {w.} the family of functions given by

p—N

N_p P P
we () = Cye »? (8 + |z| P*l)

which attains the best constant S of the Sobolev embedding

DY (RNY) — LP" (IRM).

Without loss of generality, we can consider that 0 € ¥. Moreover, the set 0f) satisfies the

following property (see more details in Adimurthi, Pacella and Yadava [1]):

11



There exist 6 > 0, an open neighborhood V of 0 and a diffeomorphism
¥ : Bs(0) — V which has a jacobian determinant equal to one at 0, with \I!(B;“) =VnNaQ,
where Bf = Bs(0)N{z € RN : a2y > 0}.

Let ¢ € C°(RY) such that ¢(x) = 1 in a neighborhood of the origin. We define u.(z) =
¢(x)we (x). Taking v. = W and using the same type of arguments developed in Medeiros [15],
we get the following estimates

(see Tarantello [16] and Wang [18] for the case p = 2)

ERNOR +0(5p)+o( p) if N> p?

IN

vats”g:
S N=p N-p . 2
—2%—061’ f(6)+0(sp) it N<p

where C' is a positive constant and lim._, f(¢e) = +o0. Let d2 > 0 be such that
L 6% Z KM >0, VA€ (0,6)
g _ )
2N ’ o2

Using the definition of I , we get

*

P P
Ix(tve) < —[|[Voe|b — —, Yt >0,
p p
which implies that there exists ¢y € (0, 1) satisfying

sup Iy(tve) < —SP — KM, Ve (0,8).

0<t<to

Analyzing the case N > p?, we have

L q
IA(tvs)g—Sp —CeF fo(e" T )+0(5Np )—%/v?, Vi 0.

Therefore,

q
supIA(tvE)g—Sp _ 0 o) 4 O ”)—%/Ug.

t>to

Hence,

supIA(tvs)<—SP—C'EP +o(ep)+o( ) K\, V)€ (0,5),

t>to
o ()T
2Kq

—Cev +o(5 p )+O(

where

We fix € > 0 such that

)<o,

12



2
this is possible since % - % > (p;l) > 0. If we set \5 = min{d3, d3}, we obtain

1
sup I (tv.) < —S» — KA°, ¥\ € (0,\3),
120 ON

and finally
1 N *
as(N) < NS~ KX, VA€ (0,)}).

The case N < p? follows with the same type of arguments. O

Theorem 1 Let 1 < q < p and A = min{\:, \3}. Then for A € (0,)), problem (1) has at least two

nonnegative solutions.

Proof. Using the above lemmas, there exist two sequences of positive functions {U,} and {V,,} in
WP(Q) such that
L(Un) = 01 (), [Ia(Un)llx = 0 as 0 — 00

and

L(Vy) = az(N), [[Ix(V,)|ls — 0 as n — +oo.

Notice that for every \ € (0, X), one has
A) < an(N) < oS — KN
Then, there exist two nonnegative functions Uy, V) € Wpl’p () verifying

U, — U, in Wﬁ’p(Q) as n — oo

and

V, — V) in Wﬁ’p(Q) as n — oo.

Finally, the solutions {Uy} and {V,} satisfy the inequalities
OuIx(1,Uy) >0 and 9u1\(1,V3) <0,

which imply that Uy # V. Finally, applying the Harnack’s inequality (see Trudinger [17]), we
conclude that {U,} and {V)\} are positive in 2. This achieves the proof. 0.

13



3 The Neumann Problem (2)

In this section, we will state similar results for the Neumann problem (2):
—Apu = AMul?2u+ |[uP” ~?u in Q,

|Vu|p_2% = —a(x)|ulP~2u on ON.

Let us recall that the function a is assumed to be in L>(99Q), a(s) > a¢ > 0 almost everywhere on
on a subset of 02 with positive measure.

The Euler functional Jy : W1?(Q) — R related to the above problem is given by

1 1 A 1 .
Jx<u>=—/|w|p+—/ a<x>|u|P——/|u|q——*/ "
P Ja P Joa qJa P Ja

As in the previous section, for solutions of (2) we understand critical points of the C'(W?(Q))

functional Jy. Hereafter, we will denote by || || the following norm

full = ([ 19ur+ [ atwlur)’

on W1P(Q). As in the previous section, P @ and P* stand for the following functionals

P(u) = [Jull?, Q(u) :/Q|u|qd;v and P*(u) :/Q|u|p*dx.

Now, we are able to state the following

Theorem 2 Let 1 < q < p, there exists X such that Problem (2) has at least two positive solutions
for A€ (0, ).

Proof. With slight changes in the proofs of the last section we obtain the result. d
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