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Abstract

This paper deals with existence and multiplicity results of nonlocal positive solutions to
the following system

“Apu = AP u (o Dufu ol

—Agw = plT e+ (B4 Dul T o] e,

together with Dirichlet or mixed boundary conditions, under some hypotheses on the param-
eters p, p1, «, § and q. More precisely, the system considered corresponds to a perturbed
eigenvalue equation combined with a second equation having concave and convex nonlineari-
ties. The study is based on the extraction of Palais-Smale sequences in the Nehari manifold.
The behaviour of the energy corresponding to these positive solutions, with respect to the real
parameters A\ and p, is established.

1 Introduction

In this work, we consider the system of quasilinear elliptic equations

—Apu AulPr=?u 4 (o + 1)uful o7,

—Agu w720 + (B + Dlul* o]~ 1o,
together with Dirichlet or mixed boundary conditions

u|r1 =0 and %'231 = 0,

’U|F2 =0 and %|22 = O,



where, € is a bounded domain in R, with smooth boundary 992 = T'; N 3;, where I'; are smooth
(N — 1)-dimensional submanifolds of Q2 with positive measures such that I'; N X; =0, ¢ € {1,2}.
A, is the p-Laplacian and % is the outer normal derivative. It is clear that when I'y = I'y = 01,

one deals with homogeneous Dirichlet boundary conditions.

Our aim here is to establish nonlocal existence and multiplicity results, with respect to the

real parameters A and p, for Problem (1). Along this work, the following assumptions will hold

1<pi<p<N, ¢g>1, a>1, g>1, (3)
1 1
atl pHl (4)
p q
1 1 1
o +ﬂ;>1andﬂ;<1, (5)
p q q
where
« Np «  Ng
D “N_p q “N_yg

are the critical exponents for the p-Laplacian and ¢-Laplacian respectively. These assumptions
mean that we are concerned with a subcritical and super-homogeneous system where the first
equation is concave-convez and the second equation is only a perturbation of an eigenvalue equation.

Also, the following assumptions concerning the real parameters A and g will hold
A> 07 <,

where pi1 is the first eigenvalue of —A, in .
Problem (1), together with (2), is posed in the framework of the Sobolev space W =
erf’(ﬂ) X W;f(Q), where

WP (Q) = {ue WH(Q) : ulr, =0}, Wp'(Q) = {ue WH(Q) : ulr, =0},

are respectively the closure of C}(Q2NT'1,R) with respect to the norm of W?(Q) and C¢(2NT2, R)
with respect to the norm of W9(Q2). We can refer the reader to [9] for a complete description of
this space in the case p = 2. Notice that meas(I';) > 0, ¢ = 1, 2, imply that the Poincaré inequality

is still available in Wplip (Q) and eréq(Q), so W can be endowed with the norm
[|(w, o)l = [Vullp + [[Vollq

and (W, ]| .]|) is a reflexive and separable Banach space.

Semilinear and quasilinear scalar elliptic equations with concave and convex nonlinearities

are widely studied, we can refer the reader to the survey article [5]. For the nonlinear elliptic



systems, we refer to the survey article [13]. In [15], the authors studied the existence of positive
solutions to a perturbed eigenvalue problem involving the p-Laplacian operator. In [6], the authors
have generalized the results of [15] to a perturbed eigenvalue system involving p and ¢-Laplacian
operators. Recently, in [10] the first author has considered a semilinear elliptic equation with con-
cave and convex nolinearities, and showed nonlocal existence and multiplicity results with respect

to the parameter via the extraction of Palais-Smale sequences in the Nehari manifold.

In this paper, we extend this method to the system (1) where one equation contains concave
and convex nonlinearities and the other one is simply a perturbation of an eigenvalue equation.
We show that Problem (1) has at least two positive solutions when the pair of parameters (A, i)

belongs to a subset of R which will be specified below.

For solutions of (1) we understand critical points of the Euler-Lagrange functional I €
C1(W,R) given by

I(u,v) = %P@) - pilpl (u) + é@@) 4@ (v)) — R(u,v),

where P(u) = [|Vu|[b, P1(u) = [[ul[F}, Q(v) = [|Vv]|], Q1(v) = [[v]|¢ and R(u,v) = fQ Ju| o ||+ d.
Consider the "Nehari" manifold associated to Problem (1) given by
N ={(u,v) € (WP () \{0}) x W)\ {0}) / DiI(u,v)(u) = Dal(u,v)(v) = 0},
where D11 and D-I are the derivatives of I with respect to the first variable and the second variable
respectively.

An interesting and useful characterization of N, [15, 19, 24, 10, 7] is the following
N ={(su,tv) / (s,u,t,v) € Z* and ;1 (su, tv) = d;I(su,tv) = 0},

where Z* = (R \ {0}) x (WpP(Q)\ {0}) x (R\ {0}) x (Wy"(€) \ {0}) and I is considered as a
functional of four variables (s,u,t,v) in Z := R x Wllf’(ﬂ) x R x Wﬁ;q(ﬂ). For this reason, we

introduce the modified Euler-Lagrange functional I defined on Z by

I(s,u,t,v) = I(su,tv).

2 Preliminary results

In this work, we are interested by nontrivial positive solutions v # 0 and v # 0 to Problem

(1). Since the functional I is even in s and t, we limit our study for s > 0, ¢ > 0 and for

(u,v) € (Wp () \ {0}) x (W () \ {0}).



Lemma 1 For every (u,v) € (W;lp(Q) \ {0}) x (WI};I(Q) \ {0}) there exists a unique A\(u,v) >0

such that the real-valued function (s,t) € (0,+00)? — I(s,u,t,v) has ezxactly two critical points
(resp. one critical point) for 0 < A < A(u,v) (resp. A = A(u,v)). This functional has no critical
point for A > Au,v).

Proof. Let (u,v) be an arbitrary element in (erlp(Q) \ {0}) x (WI};Z(Q) \ {0}). Then

sP A 14 a+1,8+1
I(s,u,t,v) = ;P(u) - p—lsplpl(U) + E(Q(U) — pQ1(v)) — s R(u, v).

A direct computation gives 0,1(s,u,t,v) = 0 if and only if

R(u,v) TED_ ap

t=ts) = |0+ ) ey =00 §TED, (6)

and
s t(5).0) = 2 Plu) = 257 Pi(a) ~ - Afu,0)
b b) b) p pl 1 lr , ,
where q
o =D
Au,v) = (a + 1)(B + 1) R(u,v) _
(Q(v) — puQ: (v))T @D
and r = q(f‘(zi)‘f). It is easy to verify that » > p. Now consider the function s € (0,4+0c0) —

I(s,u,t(s),v) and let us write
01 (s, u,t(s),v) == sPTLEN (s, u,v).

where F ,,(s,u,v) := P(u)s?"P* —=AP;(u)— A(u,v)s"P*. The function s € (0, 400) — F) (s, u,v)
is increasing on (0,5,(u,v)), decreasing on (3,(u,v),+00) and attains its unique maximum for

s =35,(u,v), where

1
_ _[p=p1 P(u) 177

Sﬂ(uﬂv) - |:’I" - A(’LL,’U):| (7)
So, the function s € (0,400) +— F) ,(s,u,v) has two positive zeros (resp. one positive zero) if
Fy u(Gu(u,v),u,v) > 0 (resp. Fip(5.(u,v),u,v) = 0) and has no zero if F) ,(5,(u,v),u,v) < 0.

On the other hand, a direct computation leads to

FA;N(EN (u7 U)7 U, v) =

r—p {p—pl P(u)

e pe— A(u,v)] P(u) — APy (u).

Then, F ,(5,(u,v),u,v) >0 (resp. Fi ,(5.(u,v),u,v) <0)if A < A(u,v) (resp. A > A(u,v)) and
Fxuw),u(Bu(u,v),u,v) = 0, where
r—pq P—p1

N Pl C) R O I il Pﬂ} . ®)

Py (u)A(u, v)% rT—p1 [T D1




Therefore, if A € (0, A(u,v)), the function s € (0,+00) — 951(s,u,t(s),v) has two positive zeros
denoted by si(u,v, A, 1) and sa(u,v, A, p) verifying 0 < s1(u,v, A, 1) < 5,(u,v) < sa(u,v, A, p).
Since Fi ;i (s1(u, v, A, 1), u,v) = F) u(s2(u, v, A\, 1), u,v) =0, 0sFx (s, u,v) > 0for 0 < s < 35,(u,v)

and 0, F (s, u,v) < 0 for s >3, (u,v) it follows that

Do T (51 (11,0, A, 1), t(s1 (0, A, 1)), 0) > 0, )

Oss I (s2(u, v, A, p), u, t(sa(u,v, A\, 1)), v) < 0. (10)

This implies that the real-valued function s € (0,+o00) — I(s,u,t(s),v) achieves its unique local
minimum at s = s1(u, v, A\, u) and its unique local maximum at s = so(u, v, A, i), which ends the

proof. O

Hereafter, we will denote ¢;(u,v, A\, u) = t(s;(u,v, A\, 1)), ¢ = 1,2. At this stage, we

introduce the characteristic value

() = inf{ A(u, v), (u,v) € (WEP(2)\ {0}) x (W) \ {0}) }.

We claim that X(u) is great than a positive constant which depends only on u, p, p1, ¢, o, 8 and
Q. Indeed, using the Hdélder inequality, we get

R(u,v) < |Q°[|u A

+1
o [lv

)

where § > 1 is such that 1% + q% + 3 = 1. Using the continuous embedding Wplf(Q) C L9 (Q) we

get .
P, (u)r*
A(u,v) < 61%,
(1 — ) =0
where P, (u) = |[u gi and ¢1 = ¢c1(p,p1,¢,a,0,9). Using again the continuous embeddings

WP (Q) € L7 () and WP (Q) C LP"(Q) we obtain

pP—P1

B+1
Au,v) > co(pg — p)=FFD 7>

where Co = CQ(papla q, O[767 Q) and then

~ p—P1

B+1
Mp) > calpy — p) =00 =5

which achieves the claim. Now let us introduce

~

D= {(Ap) € (0, +00) x (=00, p11) = A < A(p)}-

For every (), ) € D, the functionals (u,v) € (W;lp(Q)\{O})X(WEQq(Q)\{O}) > I(si(u, v, \, 1), w, ti(w, v, A, 1), v)

1 =1, 2, are well defined and one can show easily that they are bounded below. Hence, for every



(M, ) € D, we define

ar(A\p) = inf{I(sq(u,v, A 1), us by (u, 0, A, 1), 0), (u,v) € W} (11)

as(A\p) = inf{I(sa(u,v, A 1), u, ta(u, v, A, ), v), (u,v) € W} (12)

where

W o= (WEP(Q)\ {0}) x (W) \ {0}).

Our aim in the sequel is to show that a1 (A, p) and as(A, 1) are in fact critical values of

the Euler-Lagrange functional I for every (A, u) € D. We start with the following

Lemma 2 Let (un,v,) € W be a minimizing sequence of (11) (resp. of (12)) and let (U}, V.}) :=
(Sl(una Un, )\7 /L)’Ll/n, tl(un7 Un, )\7 N)Un)
(resp. (U2,V2) := (52(Un, Un, A\, 1) Un, t2(Un, Un, X, )0y ). Then it holds:

n? n

(i) limsup||(Uy, V)l < oo (resp.limsup [|(U3, V)] < o0).
n—-+4oo n—-+4oo

(i) 1im+inf||(Uﬁ,V73)|l >0 (T68p~lim+inf||(U37Vf)|| > 0).

Proof. We show the assertion (i), let (un,v,) € W be a minimizing sequence of (11). Since
aST(S]_(Un, Un7 )\7 /1’)7 un7 tl (un7 U’n7 )\7 /J’)7 Un) = 0 a‘nd

OtI (81 (Un,, Uy Ay 1), Uny b1 (Unp, U, Ay 1), vp) = 0, it follows that

P(U,) = AP1(U,) = (a + YR(U,.V,)) = 0, (13)

Q(V,) — u@Q1 (V) = (B+ DR(U,, V) = 0. (14)
Suppose that there is a subsequence, still denoted by (U}, V,!1), such that

lim,,— oo [|(UL, V,1)]| = co. We will distinguish three cases:

Case a) lim,,_, ||[VU}||, = 0o and ||[VV,}|], is bounded. By (14) we get that R(U}, V,!)

n? n

is bounded. On the other hand, using the continuous embedding erip (Q) c LP*(Q)), we have

Pi(U}) =0, (P(U})), as n goes to +oo. By (13) we get R(UL,V,}) = %H(l +o0,(1))P(U}) as n

goes to +oo and hence lim,, o R(U}, V,l) = +o00, which cannot hold true.

n? n

Case b) lim,— ;o ||[VV,}|; = co and ||[VU}||, is bounded. By (13) we get R(U.},V,!)
bounded. If 0 < p < p1, using the Sobolev and Young inequalities, for every ¢ € (0,1), there is a
positive constant C. such that

9
IVallE < EIIVVJIIZﬂLCa



which gives (8 + 1)R(UL, V1) + puC. > (1 —)Q(V,}). Then lim,—, 1o R(UL, V,!) = +00, which is

impossible. If u < 0, then Q(V,})—uQ1(V,}) = (B+1)R(UL, V) > Q(V,}) solim,, 1 R(UL, V1) =

~+00, which is also impossible.

Case ¢) lim,_ o0 ||[VUL||, = lim,— 400 [|[VV,}|| = 00. As in the first case, we have

), as n goesto + oo.

R(UL V) = — =1+ 0,(1) P(U}

Then I(U}, V) = 75 (0%1 + % -1+ on(l)) P(U}) as n goes to +oo. Hence, using the hy-

pothese (5), lim,, .40 I (U}, V;}) = +00, which is impossible. Consequently, limsup,,_,, . [[(U}, V;})|| <

n? n

co. We show in the same way that limsup,,_,_ . [[(UZ2,V,2)]| < co.

n? n

Now, we show the assertion (ii), let (u,,v,) € W be a minimizing sequence of (11).

Suppose that there is a subsequence, still denoted by (U}, V1), such that lim,, 4 |[(U}, V.1)|| = 0.

n? n n? n

By (13) we get lim,, 1o, I(U}, V,}) = 0 and this can not hold true because I(U},V,!) < 0 for every

n''’'n n 'n

n.

Similarly, let (u,,v,) € W be a minimizing sequence of (12). Suppose that there is a

subsequence, still denoted by (U2, V;2), such that

n? n

lim, 400 [[(U2,V,2)]| = 0. I p > a+ 1, by (10) , we have
Dss (U3, Vi2) = (p = DP(UZ) = Mpr = 1) PL(U32) — e+ D)R(UZ, V,?) < 0

Then (p—1)P(U2)—A(p—1)P1(U2)—apR(U2,V,2) < 0, which implies that (p—(a+1))R(U2,V,?) <

n? n n? n

0 and this is impossible. Finally, if p < o + 1, then (p — p1)P(U2) < (a + 1)2R(UZ2,V;2). Since

n? n
ap—tl—i—% < 1and O‘Tfl—i—% > 1, then there exist p and ¢ satisfying p < p < p*, ¢ < ¢ < ¢* and
a+1 +1

+ﬂ—~:

p q

1. (15)
Therefore,

RUZ,V2) < o(Qp,@)|U2|[SH V22

IN

< (Q,p,q)l|VUZ|a V2| |2+

and consequently, (p —p1) < ¢/(Q,p,q)(a + 1)?||[VUZ[[oT~P||[VV,2||5+! which converges to 0 as n

goes to +o0o. This contradicts the fact p > p;, which ends the proof. (I



3 Palais-Smale sequences in the Nehari Manifold

It is interesting to notice that for every v > 0, 6 > 0, it holds

~ u v
I —,6t, =
<78777 75>
U

f(s, u,t,v),

1 ~
= =01
< A/ 6) 5815 (S,’I,L,t,’l]),
~ U v 1.~
OsI | vs,—,dt, = = —04I(s,u,t,v),
(7 ¥ 5) gt ( )
U v 1 ~
ssI ,—,0t, — = 5 ssI ,u,t,v).
o <’ys 5 5) 728 (s,u,t,v)
This implies that
1 U v
= - - = 1
Sl(U,U7)\,M) 781 <7,5,A,M>, V5>07 ( 6)
1 U v
= - - = 1
SQ(U,’U,)\,,U) 752 (A’/adaAv,u)a V5>07 ( 7)
1 u v
t A = —t1|—,=, A A 1
1(”7“7 7;“’) 5 1<7757 7/1')7 A/>07 ( 8)
1 u v
t A = =t —,=, A A 1
2(”7“7 7;“’) 52<7757 7/1')7 A/>0 (9)
It follows that
al()\au) = inf {T(Sl(uvv7)\au)7uat1(u’avaAmu)av)}a (20)
(u,v)ESp XSq
as(A\p) = inf {I~(82(U,U7>\, W), uy ta(u, v, A, 1), v)}, (21)

(u,v)€Sp XSy

where S, and S, are the unit spheres of erip (Q) and eréq(Q) respectively. Make precise that

Sp x Sq is a 2-codimensional and complete submanifold of W, we will denote it in the sequel by S.

Lemma 3 Let (A, ) € D and let (un,v,) € S be a minimizing sequence of (20) (resp. of (21)).
Then (Sl(un7 Un, )\7 M)u’na tl(una Un, )‘7 M)Un)}

(resp. (82(Un, Uny A, () Un, t2(Un, Un, A, )0y,)) is a Palais-Smale sequence for the functional I.

Proof. Let (\, 1) € D and consider a minimizing sequence (u,,v,) € S of (20). Let us set

U, = Sl(unavn; /\,,u)un,

Vn - tl (un; Un, )\a ,U)Un-

The sequence (U, V,,) is clearly bounded in W. On the other hand, the gradient (resp. the Hessian
determinant) of I with respect to s and ¢ at (s,t) = (81 (tn, vy, As 1), 11 (Un, Uny A, 1)) is equal to



zero (resp. is strictly negative). So, the implicit function theorem implies that that s1(w,, vn, A, i)

and t1 (U, vn, \, i) are C with respect to (u,v), since I is.

We introduce now the functional Z defined on S by

Z(u’/l}) = (81(u7v7>\7u)7u7t1(u71}7A?#)’/U)’

then
ar(Ap) = inf T(u,v) = lim Z(up,vn).

(u,v)€S n—-+0oo
Applying the Ekeland variational principle on the complete manifold (S, ||.||) to the functional 7
we get

, 1
T (unvvn)(Qpnawn) S ﬁ|

[(ens ¥n)ll; V(on, ¥n) € Tun,0.)S;

where T(,, ,,)S denotes the tangent space to S at the point (un,v,). Recall that T, .S =
Tu,Sp x Ty, Sy, where T, S, (resp. T,,S,) is the tangent space to S, (resp. S,;) at the point w,,
(resp. vy).

Set
A’n« = (unvvnv)\a:u)v a’nd BTL = (81(un,Un,)\,u),un,tl(un,vn,/\,,u),vn).

For every (¢n,¥n) € Ty, Sp X T, Sy, one has

I/(un, V) (Pns Yn) = D1I(By)(n) + D21(By)(¥n)

where

le(Bn)(‘Pn) = 8u51(An)(<Pn)8sf(Bn) + 8uT(Bn)(<Pn) + 8ut1(An)(<Pn)8tT(Bn)

Oul (Br)(¢n)-

Similarly, one has

DyI(Bn)(¢n) = BUT(BH)(@/%)
Furthermore, consider the "fiber" maps

T WRP@Q)\ {0} — RxS,

u — (IVully, 75 ) = (ra(w), ma(w)),
TooWRI@Q)\ {0} — RxS,
v — (IVvlle ) = (Fa(0), 7a(0).

10



Applying the Hélder inequality we get, for every (u,p) € (W;lp(Q) \ {0}) x erip(Q) and (v,v¢) €
(W () \ {0}) x W 7(Q), the following estimates

M < 9l Ime)] <20
ROWI < [Vl B <2THE

On one hand, from Lemma, (2), there is a positive constant K such that s;(A,) > K and 1 (A4,,) >
K, for every integer n. On the other hand, for every (¢,v) € W,
DyI(Un, Vi) () = ‘quzasf(Bn) + &JT(Bn)(‘Pi) + ‘szatf(Bn)

&JT(Bn)(‘P?z)-

where ol = 7} (u,)(¢) and 92 = 75 (uy)(p). Then the following estimates hold true: |¢L| < [|Ve||,

and ||[V¢2||, < 2||V¢l|p. In the same manner, we get

DoI(Un, Vi) (W) = 918,1(By) + 9,1(Bn)(¥2) + -0, 1(By)
= 8UT(B7L)(1/’121)-

where ) = 71 (v,)(¥) and ¥2 = T5(v,) (1), with the estimates [¢}| < ||[V||, and [|[Vy2]|, <
2||V4||q. Therefore

1

2
<
< nKHV‘PHp
and
1
DL (Un, Va) (@) < —[[Vezlly
2
< — .
< Vel

We conclude easily that
lirf ||II(Um Va)lls =0,

where I'(U,,, V;.) (¢, ¥) = D11(U,,, V) () + D2I(Uy, Vi) () and || ||« is the norm on the dual space
of W.

The arguments are similar if (u,,v,) € S is a minimizing sequence of (21). Hence, the

lemma is proved. O

11



Remark. For every (u,v) € W and (A, p) € D, one has I(s,u,t,v) = I(s,|ul,t, [v]),
si(Jul, [vl, A, p) = si(u,v, A\ @), @ € {1,2} and consequently ¢;(|ul, |v|, A, ) = t;(u,v, A, ), ¢ € {1,2}.
Therefore, every minimizing sequence (un,vn) € S, X Sq of (20) or (21) can be considered as a

sequence satisfying u,, > 0 and v,, > 0 in Q.

4 Positive solutions and the behaviour of their energy

Theorem 1 Let (\, i) € D. Then Problem (1) has at least two nontrivial solutions (U, V'?),
i € {1,2}, such that U* >0 and V' >0 in Q and U* # 0, V' #£ 0, for i € {1,2}.

Proof. We will use the notations of the previous lemmas. Let (A, ) € D and consider a nonneg-

ative minimizing sequence (u,,v,) € S of (20). It is known from Lemma (3) that

lim I(U,, V) = ar(\p),

n—-+o0o

I
=

lim |1 (Un, Vo)l

n—-+o0o

and that (U, V,,) is bounded in W. Passing if necessary to a subsequence, there are Ul € WI};p Q)
and V! € W%(Q) such that

U, — U' in WpP(Q),
U, — U'in LP*(Q) and L?(Q),
Ve — V' in WR(Q),
Vi, — V%'in L?(Q) and LI(Q),

where p and § are specified in (15). At this stage, we use the well known inequalities: V(z,y) € RY

lz—yl" < C(lz" Pz — |y ?y) (x—y), if v>2,
lz =yl < Ozl =y (|2 22— [y 2y) - (z —y), if y<2.

where - denotes the scalar product in RV.

12



In the case p > 2, we obtain

PU, -UY

IN

C/ (VUL [P72VU, — |VV,|P2VV,) - (VU, — VV,,)
Q
= C(DI(U,, V) (U, —UY — D I(UL VYU, —-UY) +
C/\/ (|Un|P 20U, — UM 20) (U, = UY) +
Q
Cla+ 1)/ (Un|Un|a—1|Vn|ﬂ+l _ U1|U1|a—1|vl|5+1) (U, — Ul).
Q
Since lim,, . 1o [|[I'(Un, Vi)|l« = 0, (V4,) is bounded, and using the fact that U, — U! in LP*(Q)
and in LP(Q), V,, — V1 inin L9(f2), we conclude, by the Holder inequality, that P(U,, — U') — 0,
as n goes to +00, which means that
U, — U in WEP(Q).
In the case p < 2, a direct computation gives
VU = VU < C(IVUE? + IVUHE?) x
/ (IVU,[P~2VU, — |VU'P2VUY) - (VU, — VU?).
Q
Since ||VU,,—VU!||, is bounded, the same arguments used above show that U,, — U' in W;;p(Q),
as n goes to +0o. In a similar way we get V,, — V! in W;;q(Q), as n goes to +0o.

Moreover, it is clear that (U!, V1) is a nontrivial solution of Problem (1) verifying U! > 0
and V! > 0in Q and U! # 0, V! # 0. On the other hand, there is a subsequence of (u,,v,), still
denoted by (uy,vy,) such that

Un = Sl(unavna )\,M)Un - Ul in WI};p(Q%

Vi i= t1 (U, Uny A, p)v, — V1 in WI};(Q)

According to Lemma, (2), let (s1,t1) € (0, +00)? such that

$1(Up, Up, A, ) —  s1 in R,
tl(unavna)\aﬂ) — tl in ]Ra

1, 1
Un, — ' =% in WpP(9Q),

1_ Vo L,q
Un — UV = T m WF2 (Q),

with u! = g—ll €Sy, vt = ‘t/—ll € Sy, s1 = si(ut, v, A\ p) and ¢4 = t;(u', v, A\, u). Therefore,

Oss I (s1(ub, v\ p), ut, ty (ut, vl A ), vb) > 0.

13



Proceeding in the same manner with a nonnegative minimizing sequence (i, 0,) € S of

(21), we obtain a second nontrivial solution (U2, V?) of (1) verifying U2 > 0 and V2 > 0 in 2 and

U2 £0, V2 £0.
Now, we have to show that (U', V1) £ (U% V?). Let (s2,t2) € (0,+00)? such that

52(’&47176717)\7/14) — s in Ra
to(Un, On, A\, b)) — to in R,

~ 2, 1
T, — = g—Q in WpP(Q),

= 2 _ V2 Lq
Un — V" = 2 m WF2 (Q),

with u? = g—; €Sy, v = ‘;—; € Sy, s2 = so(u?, v A\ p) and to = to(u?,v? A\, u). Therefore,

Dss (52(u2,v2, \, 1), u2, ta(u?,v2, A\, 1), v?) < 0. Hence (U, V1) # (U2, V?), which ends the proof.
O

In the sequel, for every (A, ) € D, the functions (u',v!) and (u?,v?) will be denoted by
(ut(\, ), vt (A, 1)) and (u?(\, i), v%(\, 1)) respectively. Similarly, the solutions (U¢, V*?), i € {1, 2},

will be denoted by (U*(\, n), Vi(A, ), i € {1,2}.
Theorem 2 Let (A, ) € D. Then
() I(ULVY) <0 for X€j0,\(p)],

(i) (U2 V2 >0 for A€]0,\o(u)],
I(U2,V?) <0 for A €]Xo(p), A(u)],

where
r—pi

o) =2 (2) 77 A

Proof. In this proof, u will be fixed in (—oo, ut1), so we will omit the dependence on p in the

expressions which will follow. However, the dependece on A will be specified. In particular, the
Euler-Lagrange functional I will be denoted by 1.

(i) Let (u,v) be an arbitrary element of . We denote
sP A

Ta(s, 0, 4(5),0) = 2 P(u) — 25 Py (u) — S A(u, ),
p p1 r

and write
I\ (s,u,t(s),v) = sP*Gx(s, u, v),

14



where

éA(S,u,U) = sp—mw _ /\Pl(u) _ g A(u,v).

p P r

It follows that
881:)\(5, u, t(s),v) = plsm*lé)\(s, u,v) + splaséx(s,u, v),

with

0sGx(s,u,v) = sP~P1—1 {Z%P(u) — #87’_1)14(1@’0)} .

The real valued function s — é,\(s, u,v) is increasing on |0, so(u, v)][, decreasing on ]sg (u, v), +00[

and attains its unique maximum for s = so(u, v), where

so(u, v) = (%) ~ 5, (u,v),

and 5, (u,v) is defined in (7). On the other hand, a direct computation gives

> (p —p1 P(u)

Ga(so(u,v),u,v) = p—— v)>ﬁR(u,v)—)\P1(u).

(22)

Similarly, G (so(u,v),u,v) > 0 (resp. Ga(so(u,v),u,v) < 0)if A < Ao(u,v) (resp. A > Ao(u,v))

and (N?Ag(u)v) (so(u,v),u,v) = 0, where

)\O(U’a U) = n

|
VR
s
N——
3
|
k]
=
£
=

with A\(u,v) given by (8). Thus, we get

In(so(u,v),u,t(so(u,v)),v) >0 if X< Xo(u,v),

In(so(u,v),u,t(so(u,v)),v) =0 if A= Ao(u,v),

In(so(u,v), u, t(so(u,v)),v) <0 if A > Ao(u,v).

First, since the function
10,1 — R

Int
t 1—t

is increasing, then for every real numbers x, y such that 0 < x < y < 1, one has
11—z
1 1— 1 1\ v
In [—] > “In {—} =1In (—) ,
€T 1—y Y Y
1 1=
1—y
O<z (—) <1
Y

In the particular case x = p1/r and y = p/r we get

and consequently

T—P1
T—p
o<f£(£) <1
T A\P

15
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and therfore 0 < A\o(u, v) < A(u,v).

Moreover, for every (u,v) € W, one has é,\o(u,v)(s, u,v) < 0 for s €]0, +oo[\{so(u, v)} and
é)\o(u,v)(SQ(u,U)7u,v) = 0. Hence, the real valued function s — fkg(u,v)(s,u,t(s)m), (s > 0),

attains its unique maximum at s = so(u,v) and we obtain the following interesting identity
so(u, v, Ao (u,v), ) = so(u,v). (25)

We will set

to(u,v) == ta(u,v, Ao(u, v), ).

On the other hand, it is clear that the functional A\o(u,v) is weakly lower semi-continuous on w.
Thus, the value

Xo:= inf  Ag(u,v) (26)
(u,v)EW

is achieved on . Since Ao(u,v) is 0-homogeneous in u and v, we can assume that there is some
(u*,v*) € Sy x S4 such that Xo = Ao(u*,v*).

Now, let A be such that 0 < A < Ag. Then, for every (u,v) € W one has 0 < A < Ao(u,v) and
consequently I (so(u,v), u, t(so(u,v)),v) > 0 holds from (24). But, s — Iy(s, u,t(s),v), (s > 0)
attains its unique maximum for s = so(u, v, A), hence TA(SQ(u,v, A), u, to(u, v, A),v) > 0, for every

(u,v) € W. In particular, we have

In(s2(u?(\), 02 (), A), u*(N), ta(u*(N), v* (N), A), v2(N)) > 0,

i.e. I,(U%(\),V2(\) > 0.

If\= :\\0, then

I, (U (), V2 (\)) I, (52(u2(R0), v* (M), M), u? (No), £ (u* (M), v* (M), Ao), 0% (No))

= (u,v)iensfpxsq IXO (s2(u, v, Ao), u, ta(u, v, Ao), v)
< T’XO(SQ(U*, v*), u*, ta(u*, v"), v)

= TAQ(U*,U*)(SO(U*v’U*)vU’*atO(U’*aU*)aU*)

=0
which implies that I5 (U 2(X0), V2(Ao)) < 0. In addition, it is known from (24) that

fxo(so(u,v),ujo(u,u)w) > 0,

I, (51(u, v, X)), 11 (1,0, A),0) - < 0,
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for every (u,v) € W. Then

so(u,v) > sl(u,v,xo), Y(u,v) € W.
It follows that

I, (s2(u*(X0), v* (M), M), w2 (o), t2(u?(Ro), v* (M), Xo), v* (Ro)) >

~ ~

I, (s0(u' (M), v' (M), ' (M) to (1! (M), v* (M), v* (Ro)) > 0.
Hence,

L (U2(0), V2(N) = Ig, (s2(u®(N0), v2(R), M), u2 (M), t2 (1 (M), 2 (M), Ao), 12 (No))

= 0.

Finally, assume that XO <)< Since, for every s €]0, +oo[ and (u,v) € W, the real valued

function A — I, A(8,u,1(s),v) is decreasing, it follows that
I\ (s,u,t(s),v) < INXO (s,u,t(s),v), forevery s >0 and (u,v) € w. (27)
In addition, we have

Li(s2(u(N), 02 (A), ), u? (V) 2 (uP(N), 02 (A), A), w2 (V) =
(u7v)ienSfp ‘5, Iy (s2(u, v, A), u, ta(u, v, A),v)

IA(SQ(U*7’U*)A)7u*)t2(u*)v*)A)7’U*) <

IN

INXO (SQ(U*,U*, )\)7U*7t2(U*7 ’U*a )‘)ﬂ)*)

where the last inequality follows from (27). Moreover, the real valued function s — TXD (s,u*,t(s),v*),

(s > 0), achieves its unique maximum at s = so(u*,v*). Thus,

T’XD(SQ(U*,U*,)\),U*,tg(u*,’l}*,)\),’l}*) S T}:D(SO(U*av*)7U*7t0(U*7v*)av*)
= Txg(u*,v*)(SO(U*, v*), u, to(u*,v*), v¥)

= 0.

Hence Iy (s2(u2(X), v2(A), A), u2 (), t2(u2(N), v2(N), A), v2(A)) < 0, which ends the proof. O

The following result shows the subtle link existing between the characteristic value 3\\0 defined

by (26) and Problem (1).

Theorem 3 If (u,v) is a solution of (26) then (so(u,v)u,to(u,v)v) is a solution of the system (1)
when \ = XO.
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Proof. Let (u,v) be a solution of (26). In order to simplify the notations, we set U := so(u,v)u

and V := to(u,v)v. Thus, for A = No = Ao(u,v) we have:

_ So(u,’U)p N SO(U’av)pl SO(”?“)T

I/XD,N(U’ V) ’ P(u) — Ao s Py(u) — " A(u,v)
and for every o € W, (Q):
Duls, (U V)(9) = SPU)(9) ~ S PI(U)(9) - s DIAU,V)(e),
where
P'U) () = so(u,v)"" 1P (u)(yp),
Pi(U)(#) = so(u, v)P" " P(u)(9),
D1AUV)(¢) = so(u,v) "' D1A(u,v)(¢).

We calculate now,

MNP{(U)(@) = Aolu,v)so(u,v)" " P(u)()

p—p
r—

B0 G

p1—1

. T—p(f>iw(p‘“ PW))?ifﬁww>

r—p1 \p r—p1 A((u,v)
r—ppr (p—p\"7 (r\77 Pu) Pu) 7,

= —_— - P U
rT—p1 T D (T‘—pl) <p> P, A(u,v) 1) (%)

PLT=D e o1 P1W)(9)
Dt Wl ) E

In addition, one has

DiAUV)(p) = so(u,v)" " Dy (u,v)(p)
_ Tp—pi P(u) %:’fp—]?l P(u) w. v
n <pr—p1 A(u,v)) pr—pi A(u,v)DlA( 0)(%)
— TP P pyso (o)t 2EAM (@)
= prop R TRGy
Consequently, we obtain
_ [Pw)lp)  r—p Pl(u)(p) p—p1DiA(u,v)(p)
DIIXD’”(U’ Vile) = [ P(u) o -1 iDl(u) o —-p1 A(u,v) }
" (u)so(u, v)P~1
p
_ r—pi P(u)(p)  Piu)(p) p—p1 DiA(u,v)()
- k(T R e )




where K := :_‘;’1 %so(u, v)P~1. On the other hand, a direct computation gives:

Dido(u, v)(0) = Xo <7“ —p P'Ww)(p) Pl p-p D1A(u,v)(<p)) |

r—p P(u) Py (u) r—p  Au,v)
which is equal to zero by assumption. Hence DiI3, #(U, V)(¢) = 0 since it is proportional to

D1o(u, v)(e)-
Moreover, for every 1 € Wol’q(Q), we get

Do, 0)(4) =~ Aow,wW,

which is also equal to zero by assumption. This implies that Dy A(u,v)(¢)) = 0, since A\o(u,v) =

o # 0. Then

so(u,v)"

DIy, (UV)(¥) = — Dy A(u,v)(¥) = 0.

which implies that (so(u,v)u,to(u,v)v) is well a solution of the problem (1) with A = Xo. O
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