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Critical Exponents for Semilinear PDEs with
Bounded Potentials

José Alfredo Lépez-Mimbela Nicolas Privault

Abstract

Using heat kernel estimates obtained in [18] and the Feynman-Kac formula,
we investigate finite-time blow-up and stability of semilinear partial differential
equations of the form %(w) = Aw(x) =V (z)w(x)+v(2) G(we(z)), wo(z) > 0,
z € R where v and G are positive measurable functions subject to certain
growth conditions, and V is a positive bounded potential. We recover the
results of [19] and [14] by probabilistic arguments and in the quadratic decay
case V(1) ~4o0 a(1+|2|?)7L, @ > 0, we find two critical exponents S, (a), 5*(a)
with 0 < B.(a) < 5*(a) < 2/d, such that any nontrivial positive solution blows
up in finite time if 0 < § < B, (a), whereas if 5*(a) < /3, then nontrivial positive
global solutions may exist.

Key words: Semilinear partial differential equations, Feynman-Kac representation, critical
exponent, finite time blow-up, global solution.
Mathematics Subject Classification: 60H30, 35K55, 35K57, 35B35.

1 Introduction

Consider a semilinear Cauchy problem of the form

Ju
a—tt(x) = Auy(z) +u " (2), uo(z) = (), z €RY, (1)
where 8 > 0 is constant, ¢ > 0 is bounded and measurable, and A is the generator of
a strong Markov process in R?. It is well known that, for any non-trivial initial value
¢, there exists a number T, € (0, 0o] such that (1) has a unique mild solution u which
is bounded on [0,7] x R? for any 0 < T' < T,,, and if T}, < oo, then [|u;(+)]|oc — 00

as t T T,. When T, = oo the function u is called a global solution of (1), and when

T, < oo one says that u blows up in finite time or that u is nonglobal.



The blow-up behaviors of semilinear equations of the above type have been
intensely studied mainly in the analytic literature; see [1, 3, 7, 12, 13] for surveys. In
the case of the fractional power A = —(—A)*/2 of the Laplacian, 0 < o < 2, it has
been proved that, for d < a/f, any nontrivial positive solution of (1) is nonglobal,
whereas if d > «/8, then the solution of (1) is global provided the initial value
satisfies ¢ < vG% for some r > 0 and some sufficiently small constant v > 0, where
G%, r > 0, are the transition densities of the stable motion with generator —(—A)*/2,
see [2, 4, 10, 11, 15].

Critical exponents for blow-up of the semilinear equation

ou
a—tt(x) = Auy(z) — V(z)u(x) + ut1+6(93), uo(z) = o(z), = €RY, (2)
where ¢ > 0 and V' is a bounded potential, have been studied in [14, 18, 19], where
it is proved that if d > 3 and

a

< < —
0sV@) s 5

r € RY, (3)

for some a > 0 and b € [2,00), then b > 2 implies finite time blow-up of (2) for all
0 < (8 < 2/d, whereas if b = 2, then there exists (.(a) < 2/d such that blow-up occurs
if 0 < B < fBi(a). It is also proved that if

Viz) > Lx zeRY, (4)

for some a > 0 and 0 < b < 2, then (2) admits a global solution for all 5 > 0 and
all non-negative initial values satisfying ¢(x) < ¢/(1 + |z|?) for a sufficiently small
constant ¢ > 0 and all o obeying o > b/[.

In this note we give conditions for finite time blow-up and for existence of
nontrivial global solutions of the semilinear problem

ou
Tt (@) = M) — V@)u(a) + (@G (@), wle) =ple), wERL ()
where V', ¢ are as above, and v, G are positive measurable function subject to certain
growth conditions. Using heat kernel estimates obtained in [18] and the Feynman-Kac
representation of (5) we prove that, for dimensions d > 3, condition (3) with b > 2

entails finite time blow-up of any nontrivial positive solution of (5) provided

G(z) > k2™, 2>0 and v(z)> tclBtl/2 (z), (x,t) e R x Ry,



where k > 0 and 3, ¢ are positive constants satisfying 0 < § < 2(1+()/d. (Here and
in the sequel, B,.(z) denotes the open ball of radius r centered at z).
We also prove that Eq. (5) admits nontrivial global solutions if (4) holds with
b < 2 and vy (2)G(z) < kt21P ¢t >0, 2 > 0, for some positive constants x, ¢ and 3.
As to the critical value b = 2, we investigate Equation (2) with a potential
satisfying either (3) or (4), and with more general nonlinearities. We prove that, in
dimensions d > 3, there exist critical exponents [,(a), 8*(a), both decreasing in a > 0,

given by

2(1 —4
0<fla):= ( c—li_—f)2ac -

SN 2(1+¢) 21+ Q)
<A = e D760~ 4

where ¢ > 0 is independent of a, and such that

a) f0<V(z) < — % then (2) blows up in finite time provided 0 < § < (.(a).

b) If V(z) > — % then (2) admits a global solution for all 5 > §*(a).

14 |xf?
We remark that the blow-up behavior of (2) with potentials of the class we are con-
sidering here remains unknown when f,(a) < < (*(a), but notice that in the
(unbounded) case V(z) = al|z|?, it can be deduced from [1], [8] and [5] that (2)
admits a unique critical exponent 3(a) < 2/d, given by

2
T 1td/2+ Va+(d—2)2/4

B(a)

Namely, if V(x) = a|z|~2, then no global nontrivial solution of (2) exists if 3 < 3(a),
whereas global solutions exist if G(a) < B. However, the approaches of the papers
quoted above are specially suitable for the potential V(z) = a|x|~2 and do not apply
to our potentials, which are bounded on R? in the subcritical case.

In the case of the one-dimensional equation

ou
T (w) = ~(~A)"Pu(@) = V(2hu(e) + G lua)), wole) = p(a), T ER, (6)
where G(z) satisfies a suitable growth condition with respect to z1*?, we show that,
for every a € (1,2] and ¢ > 0, any nontrivial solution of (6) blows up in finite time
whenever 0 < f§ <14+ a and V : R — R, is integrable. The same happens when
3 =14 a¢ and the L'-norm of V is sufficiently small. We were not able to investigate

here the blow-up properties of (6) in the general case d > 1. From the perspective of



our present methods, such investigation requires to derive sharp heat kernel estimates
for the operator A, — V', which is a topic of current research.

Let us remark that the heat kernel bounds from [18] play a major role in our
arguments. In Section 2 we briefly recall such estimates, and derive some other ones
that we will need in the sequel. These estimates are used to obtain semigroup bounds
in Section 3. In Section 4 we investigate finite time blow-up of solutions using the
Feynman-Kac approach developed in [2] (see also [9]). Section 5 is devoted to proving
results on existence of global solutions.

We end this section by introducing some notations and basic facts we shall
need.

Let A, = —(—A)*2 denote the fractional power of the d-dimensional Lapla-
cian, 0 < a < 2. We write (S§")>0 for the semigroup generated by A, —V, i.e.

Sto(y) = /Rd o()pf(z,y)dx = fi(y),

where f; denotes the solution of

A

= (@) = Dafi(x) = V(@)fi(x),  folw) = (),

and p2(z,y), t > 0, are the transition densities of the Markov process in R? having

A, — V as its generator. Recall that from the Feynman-Kac formula we have

i) = Gita B e (= [ v as) [we =), g

where (W)ser, is a symmetric a-stable motion, and G§, t > 0 are the corresponding

a-stable transition densities. In case o = 2 we will omit the index « and write

1 |2

Gi(z) = WQ_T’

reRY t>0,

for the standard Gaussian kernel, and

p(r,y) = Gz —y) By {eXp (— /Ot V(W) dS) )Wt = y] ,  t>0,

where (W;)ser, is a Brownian motion.

2 Heat kernel bounds of A — V

Recall that from Theorem 1.1 in [18] we have:



Theorem 2.1 Letd >3, b >0, a >0, and assume that

a

\% D — R
SRS

There exist constants c1,cy,c3 > 0, and ay(a) > 0, such that for all z,y € R? and

t > 0 there holds

r o \1-b/2 o\ 1702\
c2Gi(cs(z —y)) exp <—01 <%> - (%) if b < 2,

pt(x7y> S ]

—ai(a) —ai(a)
c2Gi(c3(z — y)) max <1i/‘;, 1) " max <1t41r/|32/|’ 1) 1 if b=2,

( 2Gi(es(z —y)) ifb> 2.

We also recall the following estimates, cf. Theorem 1.2 in [18].

Theorem 2.2 Let d > 3 and assume that, for some b >0 and a > 0,

a

0<V(r) < ———

r € R (8)

There exist constants cy, cs,cg > 0, and ap(a) > 0, such that for allt > 0 and x,y € R?
there holds
cee 2 Gy(cy(z —y))  if b <2,
pt(x>y) Z Cﬁt_a2(a)Gt(c4(‘T - y)) Zfb = 2a

c6Gr(ca(z — y)) if b>2.
Remark 2.1 Notice that from Proposition 2.1 of [17] we have

a1(a) = min(1,a(d + 4)72/64), a>0.

Moreover, from the arguments in [18], pp. 391-392, it follows that as = ca for some

¢ > 0 independent of a.

Let B, C R? denote the open ball of radius r > 0, centered at the origin. Notice that,
under (8), Lemma 4.5 and Lemma 5.1 of [18] imply the more precise statement: for
t>1and z,y € RY,

066_265t1Ba1t1/2 (33)1]5)altl/2 (y), it 0<b<2,

p(z,y) >

CGt_a2(a)_d/21B 1/2 (x)]‘B 1/2 (y)7 lf b = 27
agt

agt
where ¢s, ¢g, a1, ay are positive constants and as(a) = ca is a linear function of a.
We complete the above results with the following estimate, which yields an

extension of Theorem 2.2 to the case a € (1, 2], though only in dimension d = 1.
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Theorem 2.3 Let d = 1 and o € (1,2], and assume that V(x) is integrable on R.
Then, for all x,y € R,

(e} - “le ~q
Py (x,y) >e o Gt (QE - y)lBtl/a( )1Bt1/a (y> t>0, (9)

where C > 0 is a constant.

Proof. Using (7) and Jensen’s inequality we have

t
o) 2 Gila = pyesp (<. | [ vovsaslws =) ).
0
From the scaling property of stable densities we obtain, for y € B,/ and x € B,i/a,

Ge(z —2)GY (2 — ) st — 5) VG (T (2 — 2))GR((t — 5) "V (2 — y))

Gy — ) tVeGy (e (y — 1))
S_l/a(t _ S)—l/a

< OO‘ t—1/a

, 0<s<t,

for some C,, > 0. Hence

E, [/OtV(W;“)dsW —y} // Gaz_x()ﬁ;() =Y 4z ds
< C’a/RV(z) dz/o i 1/0‘555_1—/0[5) v ds

1
= C’atl_l/o‘/V(z) dz/ s7V(1 — 5)7V ds. (10)
R 0

3 Semigroup bounds

In this section we establish some bounds for the semigroup (S;);er, of generator A—V.

The following proposition will be used in the proof of Theorem 5.2.

Proposition 3.1 Let a,a2,0 >0 and 0 < b < 2, and assume that

a1
Vx) > TW and 0 <px) <

, r € RY.
L+ |z|°
i) If b < 2 then for all € € (0,1) we have

1S1plo0 < et o020, t >0,

for some c. > 0.



i) If b= 2 then for all e € (0,1) there exists c. > 0 such that
||St§0||oo < Cat—(l—a)al(a1)—d/2’ . 07

provided o > d.

Proof. i) If b < 2, applying Theorem 2.1 we obtain

Sroly) = /]R dso(af)pt(fv,y)dfﬂ

t1/2 1—b/2
< /Rd @(z) exp <_Cl (W) ) Gt(03(a: —y))dx

4172 1-b/2
< — - G — d
< cexp C1 (1+t(1—5)/2) /{leq(le)/b} o(7)Gi(cs(r — y))dw
e, / o(2)Gi(es(z — y))dz,
{lzl>t0-5/}

hence

t1/2 142 Q2Co
Sip(y) < agexp <—Cl (—1 T ta—s)/z) T e

i1) Let now b =2 and ¢ € (0,1). From Theorem 2.1 we know that

tl/2 —ai(a1) tl/2 —ai(a1)
Sio(y) < o /gp(a:) max (m, 1) max (m, 1) Gi(es(x —y))dx

tl/2 —ai(a1)
<af pwme () Gl o
{|x|<te/2} 1+ ‘(L’|

11/2 —ai(a1)
+cCo /{|x|>t€/2} 90(13> max <1 T ‘ili’|, ) t(Cg(IL’ y)) €T

IA

tl/2 —ai(a1)
of e (ihes)  Glal-adera [ pGial - s
{lal<t=/2} + {

|| >te/2}

IA

Czt_(l‘e)al(al)/2/ p(z)Gi(cs(r — y))dz + C2d/2 t_d/z/ p(z)dx
(el <t=/2} (4m) {la]>t=/2}

C2
(47T>d/2

IA

t—(l—a)al(al)/2—d/2/ go(x)dx+07t_("_d)€/2_d/2.
{la|<t=/2}

Hence for some ¢. > 0 we have

Sip(y) < et UmDenlanp=d2 =y e RE ¢ > 1,

provided (1 —¢)as(ar) < (0 — d)e. O



The following lemma will be used in the proof of Theorem 4.1.

Lemma 3.1 Let d > 3, b > 2, and let p : R? — R, be bounded and measurable.

Assume that

< < .
0=V < 9

Then, for allt > 1 and y € R? we have
Sep(y) = cot ™1, (y) / p(z) dz,
B,12
where ag = 0 if b > 2, and as(a) = ca for some ¢ > 0 when b = 2.

Proof. Let y € Bji/2. Due to Theorem 2.2 and self-similarity of Gaussian densities

we have

Slr) = [ elan(o.p)do

> CQt_QQ(“)/B o(2)Gi(ca(x —y)) da

11/2

> @rw@%ﬂ/' ()G (eat™ (2 — y)) da
B

11/2

> ot 2(@—d/2 / o(x) dx.
B

11/2

4

The next lemma, which will be needed in the proof of Theorem 4.1 below, provides
lower bounds on certain balls for the distributions of the bridges of the Markov process

(X¢)ier, generated by A — V.

Lemma 3.2 Assume that d > 3 and let (Xt)t€R+ denote the Markov process with
generator A — V. If for some b > 2,

a

< < —
0sV@) s o

r € R
Then there exists cs > 0 such that for allt 22, y € Bup», @ € By and s € [1,1/2],
ﬂz(Xs € B2 ‘ X, = y) > 6815—2042((1)7

where as(a) =0 when b > 2 and as(a) = ca when b = 2.



Proof.  Since V(z) > 0, the Feynman-Kac formula (7) yields p;(z,y) < Gi(y — x),
t > 0, z,y € RY An application of Theorem 2.2 and of the Markov property of
(XS>S€R+ give

ﬁ[w(XS E BSI/Q | Xt = y) Z / pt—s(y, Z)ps(Z,l’) d
le/z pt(y>l')

_ 1 Gis(aaly —2)Gs(ealz —2))
N /351/2 !

z

C%SQQ(G’) (t — S>0¢2(a) Gt(C4(y - x))

2 c8t—2a2(a)7

where we used Lemma 2.2 of [2] to obtain the last inequality. O
We conclude this section with the following lemma, which will be used in the proof
of Theorem 5.2.

Lemma 3.3 Let d >3 and V(z) > 0, x € R%. Assume that

> a
= T4 [z

V(x)

holds for all |x| greater than some ro > 0, where a > 0 and 0 < b < 2. There exists
v > 0 such that for all bounded measurable D C RY,

Sip(z) <ept M 2 e RY (11)

for all sufficiently large t, where cp does not depend on x and t.

Proof. By Theorem 2.1 we have

nien) < aGileste e (-o ((5505) +(555) ) 0

for certain constants ¢y, ¢y, c3,c4 > 0. Condition (11) is obviously fulfilled for any
positive « if b = 0, hence let us assume that 0 < b < 2. For any bounded measurable

D C R we have, provided ¢t > || D||* := sup,cp [|y||*,

t

Sitple) < ca [ Guleata =) lFT) "y
D
C2

— d
<4ms>d/2/p Y

< CDt_(H'V),

with v = (d —2)/2 > 0. O
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4 Explosion in subcritical dimensions

Recall that if u,, v; respectively solve

) = Auly) + Gy, Sr) = Duy) + Ew)uly),

with ug > vy and (; > & for all ¢ > 0, then u; > vy, t > 0. In particular, if ¢ > 0 is

bounded and measurable, and if u; is a subsolution of

wy 1+8

E(y} = Awt(y) + Kwy (y)v Wo = @,

where k, 3 > 0, then any solution of

ov
a—tt(?/) = Avy(y) + wuy (y)oily), Vo = ¢,
remains a subsolution of (13).

Theorem 4.1 Letd>3,b>2, >0 and a > 0, and assume that

a

0< V() < —— € R%
Let G : Ry — Ry be such that
G
(2) > /@zﬁ, z >0,
z

for some k > 0. Let v: R, x R — R, be a measurable function satisfying
w(r) > t1p, , ()

for some ¢ > 0. Consider the semilinear equation

8u(;§$) = Auy(z) — V(2)u(z) + v (2)G(uy(z)), uo(z) = o(z), z€R?

where p > 0 is bounded and measurable.

a) If b > 2 and
2(1+¢)
d Y

then any nontrivial positive solution of (16) blows up in finite time.

0< <

b) If b=2 and

1+ (¢ —2ac  2(1+Q)

0<f<Bila):= ac+d/2 < d

(13)

where 2ac < 14+ and ¢ > 0 is given in Remark 2.1, then any nontrivial positive

solution of (16) blows up in finite time.

11



Proof. Let g, denote the mild solution of

%(x) = Agi(z) = V(2)g:(x) + vt(x)ngi;x)»gt(x), go(z) = p(z),

where f; = Sy satisfies

W) = L)~ V@ le), Do) = pla).

By the Feynman-Kac formula (7) we have

al) = [ oot e [ o0 SLED 0 x,— ] ar

Let ag(a) = 0if b > 2, and as(a) = ca if b = 2. Then, for y € B,i,2, and for certain
positive constants K, Ky, K3, we have by Lemma 3.1 that

aw) = [ eomteE: [ew ki [ n0xn0e) s

t/2
exp Kgsc_dﬁm_ﬁ"‘?(a)lle/2 (Xs)ds
1

X, = y] dx

> /Rd o(x)pe(z,y) By

X, = y] dx
t/2
> / o(x)pe(z,y) exp Kg/ §¢—dB/2=Paz(a)q (Xs € By Xy =y) ds | dx
Rd 1

t/2
> / p()pe(z,y) exp (th‘2a2(“) / sg‘dw‘ﬁ”(“)ds) da
R4 1

> / @(2)p(, y)dz exp (K g0/ H2o(@) 1)
Rd

where we used Lemma 3.2 to obtain the fourth inequality. The above argument shows

that g eventually grows to +oo uniformly on the unit ball B; provided
¢~ dB/2 - (B+2as(a) > —1.

This condition is satisfied for all 0 < 8 < 2(1+()/d if b > 2, and for all 0 < 8 < f.(a)
if b = 2. Since g is subsolution of (16), the comparison result recalled at the beginning
of this section shows that the solution u; of (16) also grows to +oo uniformly on B;.
A well-known argument [6] involving Condition (14) then shows blow-up of (16). For
the sake of completeness we include this argument here. Given ¢ty > 1, let @ = w4y,

and K (tg) = inf,ep, uy (2). The mild solution of (16) is given by
t
aie) = [ egan@dy+ [ [ peo g, @6 w) dyds
R 0 JR

12



Thus, for all t € (1,2] and x € B; we get from Theorem 2.2:
t
ww) = [ pleadyn [ 5[ peenal ) dyds
B 0 B,

t
> K (to) [ Gilealw —y))dy + ke / s | Geslea(z —y))ai ™ (y) dyds.
B 0 By

Since ¢ := ¢;“mingep, mingep 9 9. (Ws € Be,) > 0, we have

t
min @, (z) > e K (o) + K{CG/ s¢(min @y (z))"* ds.
z€B1 0 z€B1

It remains to choose ¢y, > 0 sufficiently large so that the blow-up time of the equation

¢
v(t) = EcsK (to) + Iiﬁcﬁ/ sSv' TP (s) ds
0
is smaller than 2. 0

The following result gives an explosion criterion which is actually valid for any a €
(1,2] and d = 1; its proof uses Theorem 2.3 instead of Theorem 2.2 and Lemma 3.2.
Here the potential V' need not be bounded.

Theorem 4.2 Let o € (1,2], 5 > 0 and assume that V : R — R, is integrable. Then

the solution of

3ut

=7 (@) = =(=8)"uy(x) = V(z)u(w) + wtCu; P(x), wo(z) = p(z), z €R,

blows up in finite time whenever 0 < f < 1+ (. If 3 =1+ a( the same happens
provided [, V(2) dz is sufficiently small.
Proof. Let g, denote the mild solution of

dg:

I (1) = —(=A) P g(w) = Vi@)g(a) + 6 F @) (0), go(a) = pla), v ER

where f; = P,y satisfies

o/

2L (0) = (AP A), folw) = o),

and (P)ier, is the a-stable semigroup. The Feynman-Kac formula and Jensen’s

inequality yield

9:(y) = t
[ eiGite e (£ | [ (-vove 4 s ap)?) asfe =) ) as

13



where, for any ¢t > 1,

' t
Ex |:/ SC (PSCP(WSQ))ﬁ dS‘Wta — y:| 2 C2Ex |:/ S—,B/a+<1{B l/a}(W:))VVta _ y:|
0 . .
t
= Cz/ (W& € Baje | W =1y)sP/o+ds
1

t
> 05/ s¢Blagsg
1

_ 5 (tl—ﬁ/a+C _ 1);

14+¢—B/a
here we applied Lemma 2.2 of [2]. The last inequality together with (10) renders

e—catl—l/a Je V(2) dz+ l_ﬁcfaﬂ (t1+<—ﬁ/a—1)7

9:(y) >

hence by the same steps as in the proof of Theorem 4.1 (comparison result for PDEs
and blow-up argument of [6]), finite time explosion occurs if 5 < 1+a(, or if f = 1+a(
and [, V(2) dz is sufficiently small. O

Since 0 < V(x) < (1+ |2|°)7L, 2 € R, and 1 < b < 2 imply integrability of V() on
R, Theorem 4.2 yields a partial extension of Theorem 4.1 to the case 0 < a < 2.

5 Existence of global solutions

We have the following non-explosion result, which is a generalization of Theorem 4.1

in [9].

Theorem 5.1 Consider the semilinear equation

0
(@) = Awn(e) = V(@wi(a) + £G(w(@),  wole) = pla), zeRY  (17)
where ( € R, ¢ is bounded and measurable, and G : Ry — R, is a measurable function
satisfying
0< Glz) <A, z€(0,0), (18)
z

for some X, 3,¢ > 0. Assume that ¢ > 0 is such that

A3 / 1Sl dr < 1
0

and

0 1/8
||¢HOOSc(1—w / rfusrson?odr) . (19)
0

14



Then Equation (17) admits a global solution ui(x) that satisfies
Sip(x)

(18 frlspliar)

Proof.  This is an adaptation of the proof of Theorem 3 in [16], see also [9]. Recall

that the mild solution of (17) is given by

0 <u(z) <

reRY t>0.

¢
w(z) = Syp(x) +/ ¢S, G (u, () dr. (20)
0

Setting

t -1/p
5o = (1-3 [ KIsplar) .tz

0

it follows that B(0) = 1 and

d

t -1-1/8
G50 =50l (123 [ SIsplar) ISl ),
0

hence .
Bt)=1+ /\/ || Spp |2 B (1) dr.
0

Let (t,z) — v;(x) be a continuous function such that v:(-) € Co(R?), t > 0, and
Sip(x) < v(z) < B(t)Spp(z), t>0, r€R% (21)

Let now .
RO)(t2) = Sipla) + [ 1681, Glon(a) dr
0
Since v.(z) < B(r)||S:¢|loo, 7 = 0, we have from (21), (19) and (18) that

R()(t,x) = Stgo(zv)—i-/o 7S, (%7:7«)%) (x)dr
< Siplw)+ A [ B ISPILS v la)dr
< Syp(x) +A/0 r B ()] S,0l1 % Si-r (Srip()) dr

t
= Sip(x) (1 + )x/ ¢)|S, || 2 B P (r) dr) :
0
where the last inequality follows from (21). Hence
Sip(z) < R(v)(t,x) < B(t)Syp(z), t>0, v € R%

Let
uf(z) = Spo(z), and upt(x) = R(u")(t,z), n €N.
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Then v(x) < ui(z), t > 0, z € R% Since S; is non-negative, using induction we
obtain

0 <uf(z) <uft(z), n > 0.
Letting n — oo yields, for t > 0 and = € RY,
Sip(w)

0 < wu(z) = lim ui(z) < B(t)Sip(zr) < 175
_ e s
(1 =28 Jy rélISrepliedr)

n—00 -

Thus, u, is a global solution of (20) due to the monotone convergence theorem.  [J

As a consequence of Theorem 5.1, an existence result can be obtained under an inte-

grability condition on .

Theorem 5.2 Let G : R, — R, andv: Ry xR? — R, be measurable functions such
that G(z) < k12", 2 > 0, and vi(x) < Kot®, (t,2) € Ry x R, where 3,¢, ky, Ky > 0.
Let 0 <b<2,a>0, and assume that

i) If b < 2, then the equation

aut

E(@ = Auy(z) — V(z)ug(x) + vi(2) G (ue(2)), wy = @, (22)

admits a global solution for all 5 > 0.

ii) If b=2 and

B> B(a) = 7;11;8)

then (22) admits a global solution.

Proof. Clearly, it suffices to consider the semilinear equation

3ut

= (@) = Duy(w) = V(@)u(a) + wtou (@), uolw) = (), (23)

for a suitable constant k > 0. Suppose that for some o > 0,

C
0<px) <—, r € RY

i) Assume that o > b(1 + ¢)/3, and let € € (0,1) be such that (1 —e)Bo/b > 1+ (.

From Proposition 3.1.i we get

/ €IS llLdt < 1,
1
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provided C' is sufficiently small.

it) Ifb=2and § > 2(1+()/(d+ ai(a)), let € € (0,1) be such that 5(d/2 + (1 —
g)ay(a)) > 14 (. From Proposition 3.1.ii there exists o > d such that
| elseelt <1
1

provided C' is sufficiently small. O

Remark 5.1 An alternative proof of Theorem 5.2-1) consists in letting the initial
value ¢ in (23) be such that
() < 751p(),

for a sufficiently small constant 7 > 0, where D C R? is bounded and Borel measur-

able. By Lemma 3.3,
Sep(x) < 78plp(x) < Tep(1+ )1,

thus showing that [ ¢[|Syp[|? dt can be made arbitrarily close to 0 by choosing
7 sufficiently small. By Theorem 5.1 we conclude that (23) admits positive global

solutions.

Remark 5.2 In the same way as in the above remark we can deal with the semilinear

system
( %(@ = Auy(x) — Vi(@)ug(z) + w(z)on(x),  uo(z) = o(x),
(24)
| 20 = Aule) — V(o) + (o). () = vlo),
where z € R?, d > 2, ¢,v > 0, and
M)~ @~ s vER (25)

with a; >0 and b; > 0,7=1,2.

Theorem 5.3 If max(by,by) < 2, then (24) admits nontrivial positive global solu-

tions.

17



Proof. Without loss of generality let us assume that b:= b; < 2. Let (S});>0 denote

the semigroup with generator L = A — V;. By Lemma 3.3, there exists v > 0 such

that

SMp(z) <ept Uz eRY

for all sufficiently large ¢ > 0, where ¢p does not depend on x and ¢t. The proof is

finished by an application of Theorem 1.1 in [10]. O
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