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17042 La Rochelle Cedex 1
http://www.univ-lr.fr/labo/lmca

On local Poisson-type deviation
inequalities for curved continuous time
Markov chains, with applications to

birth-death processes

Aldéric Joulin

Mars 2006

Classification: 60E15, 60J27, 47D07, 41A25.
Mots clés: continuous time Markov chain, deviation inequality, semigroup,
Wasserstein curvature, Γ-curvature, birth-death process, stationary distribution,
M/M/1 queueing process.

2006/02



On local Poisson-type deviation inequalities for

curved continuous time Markov chains, with

applications to birth-death processes

Aldéric Joulin∗
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Abstract

In this paper, we present new local Poisson-type deviation inequalities for
continuous time Markov chains whose Wasserstein curvature or Γ-curvature is
bounded below. Although these two curvatures are equivalent for Brownian
motion on Riemannian manifolds, they are not comparable in discrete settings
and yield deviation bounds involving different Lipschitz seminorms. In the
case of birth-death process, we provide some conditions on the rates of the
associated generator for such discrete curvatures to be bounded below, and we
extend to this framework the local deviation inequalities of [2] established for
continuous time random walks on graphs, seen as models in null curvature. By a
limiting argument, deviation bounds are derived for the stationary distribution
of birth-death process in the finite state space case and we recover the optimal
Gaussian deviation for Ornstein-Uhlenbeck processes constructed as fluid limits
of rescaled continuous time Ehrenfest chains. Finally, an extension of these
local deviation inequalities to sample vectors of the M/M/1 queueing process
completes this work.
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1 Introduction

In recent years, the area of concentration of measure has been deeply investigated in

the context of discrete time Markov chains, using mass transportation and functional

inequalities related to the convergence to stationarity. For instance, in the contract-

ing case, Gaussian concentration of measure was put forward by K. Marton [16], via

Pinsker-type inequalities derived from information theory. It has been then extended

by P.M. Samson [18] to a large class of Markov chains, among them Doeblin recurrent

Markov chains, whereas H. Djellout, A. Guillin and L. Wu [9], and lately G. Blower

and F. Bolley [4], established similar deviation bounds under assumptions of trans-

portation inequalities. On the other hand, C. Houdré and P. Tetali [13] in the case of

reversible Markov chains, and C. Ané and M. Ledoux [2] for continuous time random

walks on graphs corresponding to null curvature models, obtained Poisson-type tail

estimates using modified logarithmic Sobolev inequalities and the Herbst method.

The purpose of the present paper is to give new local Poisson-type deviation bounds

for continuous time Markov chains, which extend and sharpen in the case of curved

birth-death processes the tail inequalities of [2] mentioned above. Our approach is

based on semigroup analysis and uses the notion of curvature for Markov processes on

general metric measure spaces recently investigated in [20], in the context of continu-

ous time Markov chains: the Wasserstein curvature involving the Lipschitz seminorm

of the Markov semigroup, and the Γ-curvature related to a commutation relation be-

tween the semigroup and the “carré du champ” operator Γ.

In the case of Brownian motion on smooth Riemannian manifolds, Theorem 2 to-

gether with Corollary 1 in [20] state that the following assertions are equivalent for

any K ∈ R:

(i) the Brownian Wasserstein curvature is bounded below by K,

(ii) the Brownian Γ-curvature is bounded below by K,

(iii) the Ricci curvature of the manifold is bounded below by K.

Therefore, such an equivalence gives a characterization of uniform lower bounds of

the Ricci curvature of the manifold in terms of gradient estimates of heat kernels.

However, the equivalence between (i) and (ii) does not hold in the framework of

continuous time Markov chains since discrete gradients do not satisfy the chain rule

formula. Thus, it is natural to study the role played by each type of discrete curvature
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in the concentration of measure phenomenon. Actually, the constants in the deviation

inequalities we establish in this paper turn out to be different when one or the other

discrete curvature above is bounded below. For instance, let (Xt)t≥0 be a regular

continuous time Markov chain on a discrete metric space E, with jumps bounded

by some positive b. Let f : E → R be a Lipschitz function and denote g(u) =

(1 + u) log(1 + u)− u, u > 0. If (Xt)t≥0 has Wasserstein curvature bounded below by

ρ > 0 and angle bracket bounded by some positive V 2, we show via Theorem 3.1 the

tail probability:

sup
x∈E

Px (f(Xt) − Ex [f(Xt)] ≥ y) ≤ exp

(

−(1 − e−2ρt)V 2

2ρb2
g

(

2ρby

(1 − e−2ρt)V 2‖f‖Lip

))

≤ exp

(

− y

2b‖f‖Lip
log

(

1 +
2ρby

(1 − e−2ρt)V 2‖f‖Lip

))

,

whereas if the Γ-curvature is bounded below by the same ρ and if ‖Γf‖∞ < +∞, we

get the estimate:

sup
x∈E

Px (f(Xt) − Ex [f(Xt)] ≥ y) ≤ exp

(

−(1 − e−2ρt)‖Γf‖∞
ρb2‖f‖2

Lip

g

(

ρby‖f‖Lip

(1 − e−2ρt)‖Γf‖∞

)

)

≤ exp

(

− y

2b‖f‖Lip
log

(

1 +
ρby‖f‖Lip

(1 − e−2ρt)‖Γf‖∞

))

,

cf. Corollary 4.4. Although the exponential decays above are somewhat similar, we

note that a lower bound on the Γ-curvature entails more general inequalities involving

the mixed Lipschitz seminorms ‖ · ‖Lip and f 7→ ‖Γf‖1/2
∞ , whereas a lower bound on

the Wasserstein curvature leads to deviation results including the sole ‖ · ‖Lip and

enforces the angle bracket of the chain to be bounded.

The paper is organized as follows. In Section 2, some basic material on con-

tinuous time Markov chains is recalled and we introduce two notions of curvatures of

Markov chains, namely the Wasserstein curvature and the Γ-curvature. In Section 3,

Theorem 3.1, a local Poisson-type deviation inequality is established for continuous

time Markov chain with Wasserstein curvature bounded below, and we analyze the

influence of the sign of such a lower bound in large deviation inequalities. In Section 4,

a general estimate is derived in Theorem 4.2 under the hypothesis of a lower bound on

the Γ-curvature, and with further assumptions on the chain, these upper bounds are

computed to yield local Poisson tail probabilities involving the mixed Lipschitz semi-

norms ‖ · ‖Lip and f 7→ ‖Γf‖1/2
∞ . The case of irreducible birth-death process on N or

{0, 1, . . . , n} is investigated in Section 5, in which we give some conditions on the rates
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of the associated generator for such discrete curvatures to be bounded below. As a

result, we extend to birth-death processes the deviation inequalities of [2] established

for continuous time random walks on graphs, seen as models in null curvature. By

a limiting argument, deviation bounds are derived for the stationary distribution of

birth-death process on the finite state space {0, 1, . . . , n} and we recover the optimal

Gaussian concentration for Ornstein-Uhlenbeck processes constructed as fluid limits

of rescaled continuous time Ehrenfest chains. Finally, these local Poisson-type devia-

tion inequalities are extended to sample vectors of the M/M/1 queueing process by

using a tensorization procedure of the Laplace transform together with an integration

by parts formula satisfied by the underlying semigroup.

2 Notation and preliminaries

Throughout the paper, E is a countable set endowed with a non-trivial metric d,

F (E) is the collection of all real-valued functions on E, B(E) ⊂ F (E) is the space

of all real-valued bounded functions on E equipped with the supremum norm ‖f‖∞ =

supx∈E |f(x)|, and Lip(E) is the subspace of F (E) consisting of Lipschitz functions

on E, i.e.

‖f‖Lip := sup
x6=y

|f(x) − f(y)|
d(x, y)

< +∞.

2.1 Basic material on continuous time Markov chains

On a probability space (Ω,F ,P), consider an E-valued continuous time Markov chain

(Xt)t≥0 with its natural filtration (F t)t≥0 and homogeneous semigroup (Pt)t≥0 acting

on Dom (Pt)t≥0 := {f ∈ F (E) : Ptf exists for any t ≥ 0} ⊃ B(E) as follows:

Ptf(x) := Ex[f(Xt)] =
∑

y∈E

f(y)Pt(x, y), x ∈ E.

We assume through the paper that the càdlàg chain (Xt)t≥0 is regular, i.e. the number

of its discontinuities is finite on each compact time interval. Define

Qx = lim
t↓0

1 − Pt(x, x)

t
∈ [0,+∞], Q(x, y) = lim

t↓0

Pt(x, y)

t
∈ [0,+∞), y 6= x,

and denote Q(x, x) = −Qx, x ∈ E. By Theorem 2.2 page 337 in [6], the regularity

assumption implies that (Xt)t≥0 is stable and conservative, i.e. for any x ∈ E, Qx <

+∞, and
∑

y∈E Q(x, y) = 0, respectively. The generator L of the chain is given by

L f(x) =
∑

y∈E

(f(y) − f(x))Q(x, y), x ∈ E,
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where f ∈ Dom L := {f ∈ F (E) : L f exists} ⊃ Dom(Pt)t≥0. In addition, if

supx∈E Qx < +∞, then L is bounded and the chain admits a uniform version, i.e.

there exists λ > 0 and a transition matrix P such that L = λ(P−I), where I denotes

the identity on F (E). The version of the chain with λ = supx∈E Qx is called minimal.

In the remainder of the paper, the chains we consider are implicitly assumed to be

non-explosive. In other words, if (Tn)n∈N denotes the sequence of jump times of the

chain (Xt)t≥0, i.e. T0 = 0 and Tn+1 = inf{t > Tn : Xt 6= XTn
}, n ∈ N, then for any

initial state x ∈ E, we have Px (limn→+∞ Tn = +∞) = 1.

Given f ∈ B(E), the process M f = (Mf
t )t≥0 defined by

Mf
t = f(Xt) − f(X0) −

∫ t

0

L f(Xs)ds, t ≥ 0,

is a (Px,F t)-martingale for any x ∈ E, which has the representation:

Mf
t =

∑

y,z∈E

∫ t

0

(f(y) − f(z)) 1{Xs−=z}(Nz,y − σz,y)(ds),

where (Nz,y)z,y∈E is a family of independent Poisson processes on R+ with respective

intensity σz,y(dt) = Q(z, y)dt.

If (Xt)t≥0 is square-integrable, then the angle bracket process exists and is given by

〈X,X〉t =
∑

y,z∈E

d(z, y)2

∫ t

0

1{Xs=z}Q(z, y)ds, t ≥ 0.

If there exists V > 0 such that
∥

∥

∥

∑

y∈E d(·, y)2Q(·, y)
∥

∥

∥

∞
≤ V 2, then 〈X,X〉t ≤ V 2t

and we say that (Xt)t≥0 has angle bracket bounded by V 2.

Finally, we say that the chain (Xt)t≥0 has jumps bounded by some positive b if

supt>0 d(Xt−, Xt) ≤ b.

2.2 Curved continuous time Markov chains

Wasserstein curvature of regular Markov chains

Let us introduce the notion of curved Markov chain in the Wasserstein sense.

Definition 2.1 The Wasserstein curvature at time t > 0 of a regular Markov chain

with semigroup (Pt)t≥0 is defined by

Kt := −1

t
sup

{

log

(‖Ptf‖Lip

‖f‖Lip

)

: f ∈ Dom(Pt)t≥0 ∩ Lip(E), f 6= const

}

∈ [−∞,+∞).

It is said to be bounded below by K ∈ R if inf t>0Kt ≥ K.
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Remark 2.2 We call this curvature the Wasserstein curvature since it is connected

with the so-called Wasserstein distances. Indeed, if P(E) denotes the space of prob-

ability measures on the subsets of E equipped with the weak topology and P1(E) is

the subset of P(E) consisting of all µ such that
∑

y∈E d(x, y)µ(y) < +∞ for some (or

equivalently for any) x ∈ E, then given µ, ν ∈ P1(E), define the Wasserstein distance

W between µ and ν by

W (µ, ν) := inf
π

∑

x,y∈E

d(x, y)π(x, y),

where the infimum runs over all π ∈ P1(E×E) with marginals µ and ν, making P1(E)

a Polish space, see for instance [21]. The Kantorovich-Rubinstein duality theorem

states that the Wasserstein distance rewrites as

W (µ, ν) = sup

{∣

∣

∣

∣

∣

∑

x∈E

f(x)(µ(x) − ν(x))

∣

∣

∣

∣

∣

: ‖f‖Lip ≤ 1

}

.

Thus, if a Markov kernel Pt(x, ·) ∈ P1(E) for some x ∈ E and any positive t, then the

following assertions are equivalent:

(i) inf t>0Kt ≥ K;

(ii) ‖Ptf‖Lip ≤ e−Kt‖f‖Lip, for any f ∈ Dom(Pt)t≥0 ∩ Lip(E) and any t > 0;

(iii) W (Pt(x, ·), Pt(y, ·)) ≤ e−Ktd(x, y) for any x, y ∈ E and any t > 0.

Hence, these assertions characterize lower bounds on the Wasserstein curvature in

terms of contraction properties of the semigroup in the Wasserstein metric W .

Remark 2.3 By the Kantorovich-Rubinstein duality theorem together with [8, Theo-

rem 5.23], any chain with Wasserstein curvature bounded below by some positive con-

stant K is positive recurrent and thus has a unique stationary distribution π ∈ P1(E).

Therefore, according to the Kantorovich-Rubinstein duality theorem, we have:

W (Pt(x, ·), π) = sup
‖f‖Lip≤1

∣

∣

∣

∣

∣

∑

y∈E

f(y)(Pt(x, y) − π(y))

∣

∣

∣

∣

∣

= sup
‖f‖Lip≤1

∣

∣

∣

∣

∣

∑

y,z∈E

f(y)(Pt(x, y) − Pt(z, y))π(z)

∣

∣

∣

∣

∣

≤ sup
‖f‖Lip≤1

∑

z∈E

|Ptf(x) − Pt(z)|π(z)

≤ e−Kt
∑

z∈E

d(x, z)π(z),
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which goes to 0 as t tends to infinity. Hence, the positive numberK describes the speed

of convergence of the Markov chain to stationarity with respect to the Wasserstein

metric W .

Γ-curvature of regular Markov chains

Recall that the “carré du champ” operator Γ is the symmetric bilinear mapping defined

on DomL × DomL by

Γ(f, g)(x) :=
1

2
(L (fg)(x) − f(x)L g(x) − g(x)L f(x))

=
1

2

∑

y∈E

(f(y)− f(x)) (g(y)− g(x))Q(x, y).

We let Γf = Γ(f, f) and introduce the notion of curved Markov chains in the Γ-sense:

Definition 2.4 The Γ-curvature at time t > 0 of a regular Markov chain with semi-

group (Pt)t≥0 is defined by

ρt := −1

t
sup

{

log

(

(ΓPtf)1/2 (x)

Pt (Γf)1/2 (x)

)

: f ∈ Dom(Pt)t≥0, f 6= const, x ∈ E

}

∈ [−∞,+∞).

It is said to be bounded below by ρ ∈ R if inf t>0 ρt ≥ ρ.

Remark 2.5 By definition, the Γ-curvature is bounded below by ρ ∈ R if and only

if for any f ∈ Dom(Pt)t≥0,

(ΓPtf)1/2 (x) ≤ e−ρtPt (Γf)1/2 (x), x ∈ E, t > 0, (1)

which is the analogue in discrete settings of the classical commutation relation between

local gradient and heat kernel on Riemannian manifolds with Ricci curvature bounded

below, see [3].

Main differences between discrete curvatures

As already mentioned in the introduction, both curvatures are essentially equivalent

for Brownian motions on Riemannian manifolds, see [20, Theorem 2]. This is no

longer the case in discrete settings since discrete gradients do not satisfy the chain

rule formula, and the discrete curvatures defined above are not directly comparable.

However, note that the inequality (1) is a pointwise commutation relation between the

semigroup and a discrete gradient induced by the operator Γ, whereas a lower bound
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on the Wasserstein curvature entails via the item (ii) of Remark 2.2 an inequality

between Lipschitz seminorms and where the semigroup is dropped in its right-hand-

side. Hence, the assumption (ii) is weaker than (1) in some sense and we expect that

a lower bound K on the Wasserstein curvature entails weaker deviation results than

that established under the assumption of the same lower bound K on the Γ-curvature.

Preliminary comments on tail estimates

Let us make some comments on the deviation inequalities we will establish in the

remainder of this paper:

• Our estimates are said to be local since they are given with respect to the

probability measures Pt(x, ·), t > 0, uniformly in the initial state x ∈ E. Moreover,

we give in general two estimates for each result, to emphasize the good order of

magnitude of the exponential decays in the deviation bounds. The second one is easily

deduced from the first one by using the elementary inequality (1+u) log(1+u)−u ≥
u log(1 + u)/2, u ≥ 0.

• For the sake of simplicity, our results are concerned with right tail esti-

mates of type Px (f(Xt) − Ex [f(Xt)] ≥ y) , where the level of deviation y is positive.

However, replacing in the corresponding inequalities f by −f , two-side tail estimates

Px (|f(Xt) − Ex [f(Xt)] | ≥ y) can be obtained.

• Similarly to the paper [11] for infinitely divisible random vectors with com-

pactly supported Lévy measures, the boundedness assumption on the jumps of the

chain allows us to derive explicit Poisson like inequalities, see for instance Theorem 3.1

or Corollary 4.4, whereas the general case yields the formal tail estimate (4) of Theo-

rem 4.2. Moreover, all our results are still available when replacing the upper bound

on the jumps b ≥ supt>0 d(Xt−, Xt) by the deterministic time-dependent upper bound

bt ≥ sup0<s≤t d(Xs−, Xs), t > 0.

• We do not investigate in this paper the case of independent product Markov

chains, since our results would be sub-optimal with respect to the dimension. Indeed,

our proofs are based on the tensorization of the Laplace transform with respect to the

`1-metric, which is not well-adapted to handle dimension-free concentration results,

see for instance the discussion in [15, Section 1.6].

• Denote log+(x) = max(log(x), 0), x > 0. A classical consequence of our

Poisson-type deviation inequalities is the following exponential integrability property:
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for any f ∈ Lip(E), any positive t and sufficiently small λ > 0, we have:

sup
x∈E

Ex

[

eλ|f(Xt)−E x[f(Xt)]| log+ |f(Xt)−Ex[f(Xt)]
]

< +∞.

3 Deviation bounds for curved Markov chains in

the Wasserstein sense

In this part, we present Poisson-type deviation results under the assumption of a lower

bound on the Wasserstein curvature.

Theorem 3.1 Let (Xt)t≥0 be a regular Markov chain on E with jumps and angle

bracket bounded respectively by b > 0 and V 2 > 0. Assume moreover that its Wasser-

stein curvature is bounded below by K ∈ R. Let f ∈ Lip(E) and define for any t > 0

the positive numbers Ct,K = sup0≤s≤t e
−K(t−s) and Mt,K = (1−e−2Kt)/(2K) (Mt,K = t

if K = 0). Then for any initial state x ∈ E, any y > 0 and any t > 0, we have the

local Poisson-type deviation inequality:

Px (f(Xt) − Ex [f(Xt)] ≥ y) ≤ exp

(

−Mt,KV
2

b2C2
t,K

g

(

bCt,Ky

Mt,KV 2‖f‖Lip

)

)

(2)

≤ exp

(

− y

2bCt,K‖f‖Lip

log

(

1 +
bCt,Ky

Mt,KV 2‖f‖Lip

))

,

where g(u) = (1 + u) log (1 + u) − u, u > 0.

Proof. Fix x ∈ E, t > 0, and assume first that f is bounded. The process
(

Zf
s

)

0≤s≤t

given by

Zf
s := Pt−sf(Xs) − Ptf(X0)

is a real Px-martingale with respect to the truncated filtration (F s)0≤s≤t and we have

by Itô’s formula:

Zf
s =

∑

y,z∈E

∫ s

0

(Pt−τf(y) − Pt−τf(z)) 1{Xτ−=z}(Nz,y − σz,y)(dτ).

Since the Wasserstein curvature is bounded below, the jumps of
(

Zf
s

)

0≤s≤t
are bounded

for any s ∈ [0, t]:

∣

∣

∣
Zf
s − Zf

s−

∣

∣

∣
= |Pt−sf(Xs) − Pt−sf(Xs−)|

≤ d(Xs, Xs−)‖f‖LipCt,K

≤ b‖f‖LipCt,K,
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as its angle bracket:

〈Zf , Zf〉s =
∑

y,z∈E

∫ s

0

(Pt−τf(y) − Pt−τf(z))2 1{Xτ−=z} σz,y(dτ)

≤ ‖f‖2
Lip

∑

y,z∈E

∫ s

0

e−2K(t−τ)d(z, y)21{Xτ−=z}Q(z, y)dτ

≤ ‖f‖2
LipMt,KV

2.

By [14, Lemma 23.19], for any positive λ, the process (Y
(λ)
s )0≤s≤t given by

Y (λ)
s := exp

(

λZf
s − λ2ψ(λb‖f‖LipCt,K)〈Zf , Zf〉s

)

is a Px-supermartingale with respect to (F s)0≤s≤t, where ψ(z) = z−2 (ez − z − 1),

z > 0. Thus, we get for any λ > 0:

Ex

[

eλ(f(Xt)−Ex[f(Xt)])
]

= Ex

[

eλZ
f
t

]

≤ exp
(

λ2‖f‖2
LipMt,KV

2 ψ(λb‖f‖LipCt,K)
)

Ex

[

Y
(λ)
t

]

≤ exp
(

λ2‖f‖2
LipMt,KV

2 ψ(λb‖f‖LipCt,K)
)

= exp

(

Mt,KV
2

b2C2
t,K

(

eλb‖f‖LipCt,K − λb‖f‖LipCt,K − 1
)

)

.

Finally, using the exponential Chebychev’s inequality and optimizing in λ > 0 in the

exponential estimate above, the deviation inequality (2) is established in the bounded

case.

To remove the boundedness assumption, let f ∈ Lip(E) and consider the bounded

function fn = max{−n,min{f, n}}, n ∈ N. We have the pointwise convergence fn ↑ f
and by a classical argument, see for instance the proof of Proposition 10 in [5], (fn)n∈N

is uniformly integrable with respect to the probability measure Pt(x, ·), which implies

the convergence of Ex[fn(Xt)] to Ex[f(Xt)]. Since ‖fn‖Lip ≤ ‖f‖Lip and that g is

non-decreasing on R+, we finally have by Fatou’s lemma:

Px (f(Xt) − Ex[f(Xt)] ≥ y) ≤ lim inf
n→+∞

Px (fn(Xt) − Ex[fn(Xt)] ≥ y)

≤ lim inf
n→+∞

exp

(

−Mt,KV
2

b2C2
t,K

g

(

bCt,Ky

Mt,KV 2‖fn‖Lip

)

)

≤ exp

(

−Mt,KV
2

b2C2
t,K

g

(

bCt,Ky

Mt,KV 2‖f‖Lip

)

)

.

Theorem 3.1 is established in full generality.
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Remark 3.2 If K = 0, then Theorem 3.1 recovers the tail inequalities of [11, 19]

established for Lévy processes, since the independence of the increments implies that

the Wasserstein curvature is bounded below by 0. If K < 0, then the decay in

(2) is slower, due to the exponential factor e−Kt, whereas if K > 0, the chain is

positive recurrent and such estimates can be extended to the stationary distribution,

as illustrated below and in Section 5.2.

Large deviation bounds

Let us now analyze the influence of the sign of the lower bound K of the Wasserstein

curvature on some large deviation inequalities which are direct applications of (2).

Fix the initial state x ∈ E and the deviation level y > 0. Under the assumptions of

Theorem 3.1, we have the following behaviors:

(i) If t tends to 0, then we have the estimate independent of K:

lim sup
t→0

− 1

log(t)
log Px (f(Xt) − Ex [f(Xt)] ≥ y) ≤ − y

b‖f‖Lip

.

The speed of convergence is −1/ log(t), which is sharp in the case of continuous

time Markov chains whose rate functions of the generator are bounded, see [1].

One deduces that the sign of K has no influence in small time in (2).

(ii) If t tends to infinity, then the sign of K is crucial in (2). Indeed, if K is

positive, then the existence of a unique stationary distribution π is assured by

positive recurrence, as noted in Remark 2.3. The positivity of K achieves the

best deviation inequality and as t tends to infinity, (2) entails an inequality for

the stationary distribution π:

π (f − Eπ[f ] ≥ y) ≤ exp

(

y

b‖f‖Lip
−
(

y

b‖f‖Lip
+

V 2

2b2K

)

log

(

1 +
2bKy

V 2‖f‖Lip

))

,

where Eπ[f ] denotes the expectation of f with respect to π. See Section 5.2

for a more careful analysis of deviation estimates for stationary distributions of

curved birth-death processes on finite state spaces. On the other hand, if K ≤ 0,

then the worst deviation inequality is realized and the limiting argument above

is no longer available in (2), since Ct,K and Mt,K (which strongly depend on K)

are not bounded uniformly in time.

To conclude this section, note that Theorem 3.1 allows us to consider neither Markov

chains with unbounded angle bracket nor another Lipschitz seminorms than ‖ · ‖Lip.
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To overcome this difficulty, one has to require some assumptions on another curvature

of the chain, namely the Γ-curvature.

4 Estimates for curved Markov chains in the Γ-

sense

In this section, we adapt to the Markovian case the covariance method of the papers

[11, 12] to derive local deviation inequalities for curved Markov chains in the Γ-sense.

Although Wasserstein and Γ-curvatures are not comparable in discrete spaces, the

results we give in this part are more general than that in Section 3.

4.1 A general bound

Given (Xt)t≥0 a regular Markov chain on E and two functions f, g ∈ B(E), we define

the local covariance of f(Xt) and g(Xt) by

Covx [f(Xt), g(Xt)] := Ex [(f(Xt) − Ex [f(Xt)]) (g(Xt) − Ex [g(Xt)])] , x ∈ E.

Before turning to Theorem 4.2 below, let us establish the following

Lemma 4.1 Let (Xt)t≥0 be a regular Markov chain on E with Γ-curvature bounded

below by ρ ∈ R. Let g1, g2 ∈ B(E) with ‖Γg1‖∞ < +∞ and define Lt,ρ = (1 −
e−2ρt)/(2ρ) if ρ 6= 0, and Lt,ρ = t otherwise. Then for any initial state x ∈ E and any

time t > 0, we have the local covariance inequality:

Covx [g1(Xt), g2(Xt)] ≤ 2Lt,ρ‖Γg1‖1/2
∞ Ex

[

(Γg2)
1/2(Xt)

]

, t > 0.

Proof. Fix x ∈ E and t > 0. As in the proof of Theorem 3.1, we have for i = 1, 2:

gi(Xt) − Ex [gi(Xt)] =
∑

y,z∈E

∫ t

0

(Pt−sgi(y) − Pt−sgi(z)) 1{Xs−=z}(Nz,y − σz,y)(ds).

By Cauchy-Schwarz inequality,

Covx [g1(Xt), g2(Xt)]

= Ex [(g1(Xt) − Ex [g1(Xt)]) (g2(Xt) − Ex [g2(Xt)])]

= 2 Ex

[
∫ t

0

Γ(Pt−sg1, Pt−sg2)(Xs) ds

]

= 2

∫ t

0

Ps (Γ(Pt−sg1, Pt−sg2)) (x) ds

13



≤ 2

∫ t

0

Ps
(

(ΓPt−sg1)
1/2 (ΓPt−sg2)

1/2
)

(x) ds

≤ 2

∫ t

0

e−2ρ(t−s)Ps
(

Pt−s(Γg1)
1/2 Pt−s(Γg2)

1/2
)

(x) ds, (3)

where in (3) we used the assumption of a lower bound ρ on the Γ-curvature. Since

(Pt)t≥0 is a contraction operator on B(E), we have:

Covx [g1(Xt), g2(Xt)] ≤ 2 ‖Γg1‖1/2
∞

∫ t

0

e−2ρ(t−s)Ps
(

Pt−s(Γg2)
1/2
)

(x) ds

= 2Lt,ρ‖Γg1‖1/2
∞ Ex

[

(Γg2)
1/2(Xt)

]

.

Now, we are able to state Theorem 4.2 which presents a general deviation bound for

curved Markov chains in the Γ-sense:

Theorem 4.2 Let (Xt)t≥0 be a regular Markov chain on E with Γ-curvature bounded

below by ρ ∈ R. Let f ∈ Lip(E) with ‖Γf‖∞ < +∞, and define the function ψf,t :

(0,+∞) → R+ ∪ {∞} by

ψf,t(λ) :=
√

2Lt,ρ‖Γf‖1/2
∞

∥

∥

∥

∥

∥

∑

y∈E

(f(y) − f(·))2

(

eλ‖f‖Lipd(·,y) − 1

‖f‖Lipd(·, y)

)2

Q(·, y)
∥

∥

∥

∥

∥

1/2

∞

, t > 0,

where Lt,ρ is defined in Lemma 4.1. Then for any initial state x ∈ E, any deviation

level y > 0 and any t > 0, we get the local tail probability:

Px (f(Xt) − Ex [f(Xt)] ≥ y) ≤ exp inf
λ∈(0,Mf,t)

∫ λ

0

(ψf,t(τ) − y) dτ, (4)

where Mf,t = sup{λ > 0 : ψf,t(λ) < +∞}.

Remark 4.3 Note that ψf,t is bijective from (0,Mf,t) to (0,+∞), so that the term

in the exponential is negative and the inequality (4) makes sense.

Proof. Fix x ∈ E and t > 0. Proceeding as in the end of the proof of Theorem 3.1,

it is sufficient to establish the result for bounded Lipschitz function f . Applying

Lemma 4.1 with g1 = f − Ex[f(Xt)] and g2 = exp (λ(f − Ex[f(Xt)])) , λ ∈ (0,Mf,t),

we have:

Ex

[

(f(Xt) − Ex[f(Xt)]) e
λ(f(Xt)−Ex[f(Xt)])

]

= Covx
[

f(Xt) − Ex[f(Xt)], e
λ(f(Xt)−Ex[f(Xt)])

]
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≤ 2Lt,ρ‖Γf‖1/2
∞ e−λEx[f(Xt)]Ex

[

(

Γeλf
)1/2

(Xt)
]

=
√

2Lt,ρ‖Γf‖1/2
∞ Ex



eλ(f(Xt)−E x[f(Xt)])

(

∑

y,z∈E

(

eλ(f(y)−f(z)) − 1
)2

1{Xt=z}Q(z, y)

)1/2




≤
√

2Lt,ρ‖Γf‖1/2
∞

× Ex



eλ(f(Xt)−E x[f(Xt)])

(

∑

y,z∈E

(f(y) − f(z))2 1{Xt=z}

(

eλ‖f‖Lipd(y,z) − 1

‖f‖Lipd(y, z)

)2

Q(z, y)

)1/2


 ,

where in the last inequality we used the elementary |ez−1| ≤ e|z|−1, z ∈ R, together

with the increase of the function z 7→ (ez − 1)/z on (0,+∞). Thus, we obtain:

Ex

[

(f(Xt) − Ex[f(Xt)]) e
λ(f(Xt)−Ex[f(Xt)])

]

≤ ψf,t(λ)Ex

[

eλ(f(Xt)−E x[f(Xt)])
]

.

Letting Hf,t,x(λ) = Ex

[

eλ(f(Xt)−Ex[f(Xt)])
]

, the latter inequality rewrites as

dHf,t,x(λ)

dλ
≤ ψf,t(λ)Hf,t,x(λ),

and integrating the above differential inequality yields:

Ex

[

eλ(f(Xt)−Ex[f(Xt)])
]

≤ e
R λ

0
ψf,t(τ)dτ , λ ∈ (0,Mf,t).

Finally, using the exponential Chebychev’s inequality, Theorem 4.2 is established.

4.2 Some explicit tail estimates

Since the estimate (4) is very general, let us make further assumptions on the chain

to get more explicit inequalities. Denote in the sequel Lt,ρ = (1− e−2ρt)/(2ρ) if ρ 6= 0,

and Lt,ρ = t otherwise, and denote the function g(u) = (1 + u) log(1 + u) − u, u > 0.

Using the notation of Theorem 4.2, we have the

Corollary 4.4 Under the hypothesis of Theorem 4.2, suppose moreover that (Xt)t≥0

has jumps bounded by b > 0. Then for any initial state x ∈ E, any y > 0 and any

t > 0, we get the local Poisson-type deviation inequality:

Px (f(Xt) − Ex [f(Xt)] ≥ y) ≤ exp

(

−2Lt,ρ‖Γf‖∞
b2‖f‖2

Lip

g

(

by‖f‖Lip

2Lt,ρ‖Γf‖∞

)

)

(5)

≤ exp

(

− y

2b‖f‖Lip
log

(

1 +
by‖f‖Lip

2Lt,ρ‖Γf‖∞

))

.
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Proof. Under the notation of Theorem 4.2, the boundedness of the jumps implies

Mf,t = +∞, t > 0, and ψf,t is bounded by

ψf,t(λ) ≤ 2Lt,ρ‖Γf‖∞
eλb‖f‖Lip − 1

b‖f‖Lip
, λ > 0.

Using then Theorem 4.2 and optimizing in λ > 0, the proof is achieved.

Note that (5) is more general than (2), since the finiteness assumption on ‖Γf‖∞
allows us to consider Markov chains with non necessarily bounded angle bracket.

Thus, when the angle bracket of the process is bounded, the next corollary exhibits

an estimate comparable to that of Theorem 3.1:

Corollary 4.5 Let (Xt)t≥0 be a regular Markov chain on E with jumps and angle

bracket bounded respectively by b > 0 and V 2 > 0. Assume moreover that its Γ-

curvature is bounded below by ρ ∈ R, and let f ∈ Lip(E). Then for any initial state

x ∈ E, any y > 0 and any t > 0, we get the local Poisson tail probability:

Px (f(Xt) − Ex [f(Xt)] ≥ y) ≤ exp

(

−Lt,ρV
2

b2
g

(

by

Lt,ρV 2‖f‖Lip

))

(6)

≤ exp

(

− y

2b‖f‖Lip
log

(

1 +
by

Lt,ρV 2‖f‖Lip

))

.

Proof. By the boundedness of the jumps and of the angle bracket, the function ψf,t

in Theorem 4.2 is bounded by

ψf,t(λ) ≤ Lt,ρV
2‖f‖Lip

eλb‖f‖Lip − 1

b
, λ > 0.

Finally, applying Theorem 4.2 yields the result.

Remark 4.6 As in Section 3, a similar discussion about large deviation bounds under

the assumption of Γ-curvature bounded below can be derived from the estimates (5)

and (6), so we omit it.

5 Deviation probabilities for curved irreducible birth-

death processes

Among the main results of the paper [2], some local deviation inequalities are estab-

lished for continuous time random walks on graphs. Actually, such processes may be

seen as models in null curvature, since the rates of the associated generator do not

depend on the space-variable.
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By using the general results of Sections 3 and 4, the purpose of this section is to

extend and sharpen these local tail estimates to birth-death processes whose dis-

crete curvatures are bounded below. Let us introduce now some basic material

about birth-death processes. Let (Xt)t≥0 be a birth-death process on the state space

E = N or E = {0, 1, . . . , n}. It is a regular Markov chain with generator defined on

DomL = F (E) (recall that F (E) is the collection of real-valued functions on E) by

L f(x) = λx (f(x + 1) − f(x)) + νx (f(x− 1) − f(x)) , x ∈ E, (7)

where the function rates λ and ν are respectively called the birth and death rates of

the chain. The chain (Xt)t≥0 is irreducible on E if and only if the rates λ and ν are

positive with 0 as reflecting state, i.e. ν0 = 0 (if E = {0, 1, . . . , n}, the state n is also

reflecting, i.e. λn = 0), and we assume irreducibility in the remainder of the paper.

The transition probabilities of the associated semigroup (Pt)t≥0 are given for any

x ∈ E by

Pt(x, y) =















λxt + o(t) if y = x+ 1,
νxt + o(t) if y = x− 1,
1 − (λx + νx)t+ o(t) if y = x,
0 if y ∈ E\{x− 1, x, x+ 1},

where the function o is defined in a neighborhood of 0 and is such that o(t)/t converges

to 0 as t tends to 0. The chain is positive recurrent if and only if

∑

x∈E\{0}

x
∏

y=1

λy−1

νy
< +∞,

and in this case, the unique stationary distribution π is given for any x ∈ E by

π(x) = π(0)

x
∏

y=1

λy−1

νy
, with π(0) =



1 +
∑

x∈E\{0}

x
∏

y=1

λy−1

νy





−1

. (8)

By Reuter’s criterion, any irreducible birth-death process on E = N is non-explosive

in finite time if and only if

+∞
∑

x=1

(

1

λx
+

νx
λxλx−1

+ · · · + νx · · · ν1

λx · · ·λ1λ0

)

= +∞,

see for instance Theorem 4.5 page 352 in [6].

Remark 5.1 If the birth rate λ is bounded, then Reuter’s criterion immediately

applies.
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Before stating the main results of this section, let us give some criteria on the rates of

the generator of an irreducible birth-death process on E which ensure that its discrete

curvatures are bounded below.

First, we deal with the Wasserstein curvature.

Proposition 5.2 Let (Xt)t≥0 be an irreducible birth-death process on E with genera-

tor L given by (7). Assume that there exists a real number K such that

inf
x∈E\{0}

λx−1 − λx + νx − νx−1 ≥ K. (9)

Then the Wasserstein curvature of the chain is bounded below by K.

Remark 5.3 If E = N and the rates of the generator are bounded and satisfy the

assumptions of Proposition 5.2, then necessarily K ≤ 0.

Proof. Let us establish the result via coupling methods. Consider (Xx
t )t≥0 and

(Xy
t )t≥0 two independent copies of (Xt)t≥0, starting respectively from x and y. Then

the two-dimensional process (Xx
t , X

y
t )t≥0, which is an independent coupling of (Xt)t≥0,

see for instance [8, Chapter 5], is an irreducible birth-death process on E×E starting

from (x, y) and with generator given for any f ∈ F (E×E) by L̃ f = L ⊗ I+ I⊗L ,

where we recall that I is the identity on F (E). In other words, L̃ rewrites as

L̃ f(z, w) = (L f(·, w))(z) + (L f(z, ·))(w), z, w ∈ E.

Denote by d the classical distance on E, i.e. d(z, w) = |z−w|, z, w ∈ E. Since the rates

of the generator satisfy the inequality (9), we have immediately the bound L̃ d(z, z+

1) ≤ −K, z ∈ E, which is equivalent to the inequality L̃ d(z, w) ≤ −Kd(z, w) for any

z, w ∈ E. Therefore, letting the semigroup act in both sides and integrating the latter

inequality yield the estimate E(x,y) [d(Xx
t , X

y
t )] ≤ e−Ktd(x, y) which in turn implies

the following inequality in terms of Wasserstein distance:

W (Pt(x, ·), Pt(y, ·)) ≤ e−Ktd(x, y).

Finally, by the equivalence between (ii) and (iii) of Remark 2.2, the Wasserstein

curvature of (Xt)t≥0 is bounded below by K.

In order to establish modified logarithmic Sobolev inequalities for continuous time

random walks on Z, the authors in [2] used a suitable Γ2-calculus to give a criterion

under which the Γ-curvature is bounded below by 0. Actually, this criterion can be
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generalized to any real lower bound on the Γ-curvature via Lemma 5.4 below. As in

the diffusion case [3], define the Γ2-operator on F (E) by

Γ2f(x) =
1

2
(L Γf(x) − 2Γ(f,L f)(x)) , x ∈ E.

By adapting the proof in [2] mentioned above, we get the

Lemma 5.4 Let (Xt)t≥0 be an irreducible birth-death process on E with generator L

given by (7). Assume that there exists ρ ∈ R such that the inequality

Γ2f(x) − Γ (Γf)1/2 (x) ≥ ρΓf(x), x ∈ E, (10)

is satisfied for any f ∈ F (E). Then (Xt)t≥0 has Γ-curvature bounded below by ρ.

Proposition 5.5 Let (Xt)t≥0 be an irreducible birth-death process on E with gen-

erator L given by (7). Assume that λ and ν are respectively non-increasing and

non-decreasing and that there exists some non-negative number ρ such that

inf
x∈E\{0,supE}

min{λx−1 − λx, νx+1 − νx} ≥ ρ. (11)

Then the Γ-curvature is bounded below by ρ.

Remark 5.6 If E = N and the rates of the generator satisfy the assumptions of

Proposition 5.5, then necessarily ρ = 0.

Proof. By Lemma 5.4, the result holds true if the Γ2-inequality (10) above is

satisfied, that we prove now. Letting the forward and backward gradients be defined

as d+f = f(· + 1) − f and d−f = f(· − 1) − f , we have for any x ∈ E:

2Γ2f(x) − 2Γ (Γf)1/2 (x) =

λx(νx+1 − νx)
(

d+f(x)
)2

+ νx(λx−1 − λx)
(

d−f(x)
)2

+ I(x) + J(x),

where:

I(x) := λxλx+1d
−f(x+ 1)d+f(x+ 1) + λxνxd

−f(x+ 1)d+f(x− 1)

+λx

(

λx+1

(

d+f(x + 1)
)2

+ νx+1

(

d+f(x)
)2
)1/2 (

λx
(

d+f(x)
)2

+ νx
(

d−f(x)
)2
)1/2

,

and

J(x) := νxνx−1d
+f(x− 1)d−f(x− 1) + λxνxd

−f(x+ 1)d+f(x− 1)

+νx

(

λx−1

(

d+f(x− 1)
)2

+ νx−1

(

d−f(x− 1)
)2
)1/2 (

λx
(

d+f(x)
)2

+ νx
(

d−f(x)
)2
)1/2

.
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Since the rates λ and ν are respectively non-increasing and non-decreasing and satisfy

furthermore the inequality (11), we get:

2Γ2f(x) − 2Γ (Γf)1/2 (x) ≥ 2ρΓf(x) + I(x) + J(x).

Proving in the same way that J ≥ 0, it is sufficient to establish that I is non-negative.

Letting a = d−f(x+ 1), b = d+f(x− 1) and c = d+f(x+ 1), we obtain:

I(x) = λx
(

λx+1c
2 + νx+1a

2
)1/2 (

λxa
2 + νxb

2
)1/2

+ λxλx+1ac+ λxνxab

≥ λx
(

λx+1c
2 + νx+1a

2
)1/2 (

λxa
2 + νxb

2
)1/2 − λxλx+1|ac| − λxνx|ab|

= λx (I1(x) − I2(x)) ,

where

I1(x) :=
(

λx+1c
2 + νx+1a

2
)1/2 (

λxa
2 + νxb

2
)1/2

and I2(x) := λx+1|ac| + νx|ab|.

Using again the monotonic assumptions on the rates of the generator, we have:

(I1(x))
2 − (I2(x))

2

= λx+1(λx − λx+1)a
2c2 + νx(νx+1 − νx)a

2b2 + λxνx+1a
4 + λx+1νxb

2c2 − 2νxλx+1a
2bc

≥ νxλx+1(a
2 − bc)2 ≥ 0.

The proof is complete.

5.1 The case E = N

An estimate for bounded generators

In order to apply the deviation inequalities of Theorem 3.1, one has to require that

regular Markov chain has Wasserstein curvature bounded below and bounded angle

bracket. In the case of an irreducible birth-death process on N, the latter assumption

is equivalent to assume that the rates of the generator are bounded.

Theorem 5.7 Let (Xt)t≥0 be an irreducible birth-death process on N with generator

L given by (7), where λ, ν ∈ B(N). Assume that there exists K ≤ 0 such that

infx∈N \{0} λx−1 − λx + νx − νx−1 ≥ K, and let f ∈ Lip(N). Then for any initial state

x ∈ N, any deviation level y > 0 and any t > 0, we have the local Poisson-type tail

estimate:

Px (f(Xt) − Ex [f(Xt)] ≥ y) (12)
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≤ exp

(

−sinh(tK)‖λ+ ν‖∞
KetK

g

(

yK

sinh(tK)‖λ+ ν‖∞‖f‖Lip

))

≤ exp

(

− ye−tK

2‖f‖Lip
log

(

1 +
yK

sinh(tK)‖λ+ ν‖∞‖f‖Lip

))

,

where g(u) = (1 + u) log(1 + u)− u, u > 0. If K = 0, then replace (12) by its limit as

K → 0.

Proof. By Proposition 5.2, the Wasserstein curvature is bounded below by K. Since

λ is bounded, the chain is non-explosive in finite time, and the use of Theorem 3.1

achieves the proof.

An inequality for non necessarily bounded generators

In this part, no particular boundedness assumption is made on the generator of birth-

death process.

Theorem 5.8 Let (Xt)t≥0 be an irreducible birth-death process on N with genera-

tor L given by (7). Assume that λ and ν are respectively non-increasing and non-

decreasing. Let f ∈ Lip(N) with furthermore ‖Γf‖∞ < +∞. Then for any initial

state x ∈ N, any y > 0 and any t > 0, we have the local deviation estimate:

Px (f(Xt) − Ex [f(Xt)] ≥ y) ≤ exp

(

−2t‖Γf‖∞
‖f‖2

Lip

g

(

y‖f‖Lip

2t‖Γf‖∞

)

)

≤ exp

(

− y

2‖f‖Lip
log

(

1 +
y‖f‖Lip

2t‖Γf‖∞

))

,

where g(u) = (1 + u) log(1 + u) − u, u > 0.

Proof. By Proposition 5.5, the Γ-curvature is bounded below by 0. Since the birth

rate λ is bounded above by λ0, the chain is non-explosive, and applying Corollary 4.4

with the lower bound ρ = 0 yields the result.

Remark 5.9 As claimed above, Theorem 5.8 is available for birth-death processes

with non necessarily bounded generator, in contrast to Theorem 5.7. However, the

price to pay in the unbounded case is to require that f is bounded, since the unbound-

edness of the death rate ν together with the finiteness assumption of ‖Γf‖∞ imply

that f is a convergent sequence, hence bounded.
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5.2 The case E = {0, 1, . . . , n}

If π denotes the stationary distribution of an irreducible Markov chain on a finite state

space, then it satisfies a logarithmic Sobolev inequality, see [17], which in turn implies

via the Herbst method that Lipschitz functions have Gaussian tails under π. However,

it is sometimes interesting to weaken the upper bound in terms of the deviation level

to have a better control of the tail with respect to some parameters, see for instance

the discussion in [5] about concentration for Bernoulli distributions and penalties.

In this way, the purpose of this part is to refine Theorem 5.7 and Theorem 5.8 when

the state space is finite, in order to establish by a limiting argument Poisson-type

deviation estimates for stationary distributions of birth-death processes. To do so,

the crucial point is to obtain positive lower bounds on discrete curvatures.

Our estimates below may be compared to that of [13, Proposition 4] established under

reversibility assumptions and without notion of discrete curvatures.

Theorem 5.10 Let (Xt)t≥0 be an irreducible birth-death process on {0, 1, . . . , n} with

generator L given by (7) and stationary distribution π. Assume that there exists

K > 0 such that minx∈{1,...,n} λx−1−λx+νx−νx−1 ≥ K, and let f ∈ Lip({0, 1, . . . , n}).
Then for any initial state x ∈ {0, 1, . . . , n}, any deviation level y > 0 and any t > 0,

we have:

Px (f(Xt) − Ex [f(Xt)] ≥ y)

≤ exp

(

−(1 − e−2Kt)‖λ+ ν‖∞
2K

g

(

2Ky

(1 − e−2Kt)‖λ+ ν‖∞‖f‖Lip

))

,

where g(u) = (1 + u) log (1 + u) − u, u > 0.

In particular, letting t going to infinity in the above local inequality yields the deviation

estimate under π:

π (f − Eπ[f ] ≥ y) ≤ exp

(

y

‖f‖Lip
−
(

y

‖f‖Lip
+

‖λ+ ν‖∞
2K

)

log

(

1 +
2Ky

‖λ+ ν‖∞‖f‖Lip

))

.

Proof. By Proposition 5.2, the Wasserstein curvature is bounded below by K.

Therefore, it remains to apply Theorem 3.1 to get the result.

Under different assumptions on the rates of the generator, we get a somewhat similar

estimate:

Theorem 5.11 Let (Xt)t≥0 be an irreducible birth-death process on {0, 1, . . . , n} with

generator L given by (7) and stationary distribution π. Assume that the rates λ and
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ν are respectively non-increasing and non-decreasing and that there exists ρ > 0 such

that minx∈{1,...,n−1} min{λx−1 − λx, νx+1 − νx} ≥ ρ. Let f ∈ Lip({0, 1, . . . , n}). Then

for any initial state x ∈ {0, 1, . . . , n}, any deviation level y > 0 and any t > 0, we

have:

Px (f(Xt) − Ex [f(Xt)] ≥ y)

≤ exp

(

−(1 − e−2ρt)(λ0 + νn)

2ρ
g

(

2ρy

(1 − e−2ρt)(λ0 + νn)‖f‖Lip

))

,

where g(u) = (1 + u) log (1 + u) − u, u > 0.

In particular, letting t going to infinity in the above local inequality entails the following

tail probability under the stationary distribution π:

π (f − Eπ[f ] ≥ y) ≤ exp

(

y

‖f‖Lip

−
(

y

‖f‖Lip

+
λ0 + νn

2ρ

)

log

(

1 +
2ρy

(λ0 + νn)‖f‖Lip

))

.

Proof. By Proposition 5.5, the Γ-curvature is bounded below by ρ. Hence, applying

Corollary 4.5 achieves the proof.

Remark 5.12 In order to obtain deviation bounds for stationary distributions, the

positivity of lower bounds of discrete curvatures is crucial and thus does not allow us

to extend such estimates to birth-death processes on the infinite state space E = N,

see the Remark 5.3 and Remark 5.6.

In particular, it excludes the M/M/1 and M/M/∞ queueing processes recently inves-

tigated by D. Chafai [7]. The stationary distributions for these queues are respectively

the Poisson and geometric distributions on N, which deviation is of Poisson-type, see

[11]. Therefore, we expect to recover such estimates by taking the limit as t → +∞
in some appropriate local deviation inequalities satisfied by the queueing processes

above, and such an interesting problem will be addressed in a forthcoming research.

Note also that while both Theorem 5.7 and Theorem 5.8 apply for the M/M/1 queue,

cf. Section 5.4 below, the sole Theorem 5.8 with ρ = 0 is available for the M/M/∞
queueing process, and such a result does not reflect the positive exact curvature of

this queue emphasized in [7].

5.3 Ornstein-Uhlenbeck processes as fluid limits of rescaled

Ehrenfest chains

In this part, we recover via Theorem 5.10 the optimal Gaussian concentration for an

Ornstein-Uhlenbeck process constructed as a fluid limit of a rescaled continuous time
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Ehrenfest chain.

Given n ∈ N, let (Xn
t )t≥0 be the continuous time Ehrenfest chain on {0, 1, . . . , n}

starting from some xn ∈ {0, 1, . . . , n} and with generator given by:

L nf(x) = λ(n− x) (f(x+ 1) − f(x)) + νx (f(x− 1) − f(x)) , x ∈ {0, 1, . . . , n},

where 0 < λ ≤ ν < 1 are such that λ+ ν = 1.

Let y(t) = λ + (y0 − λ)e−t, t > 0, where y0 = limn→+∞Xn
0 /n, and define for any

n ∈ N\{0} the process (Zn
t )t≥0 by Zn

t = (Xn
t −ny(t))/

√
n, t > 0. Assume furthermore

that the sequence of initial states (Zn
0 )n∈N converges to z0 (say).

By the central limit theorem in [10, Chapter 11], the sequence of processes (Zn
t )t≥0

converges as n goes to infinity to the process (Zt)t≥0 which is the unique solution of

the equation

Zt = z0 +

∫ t

0

√

λ+ (ν − λ)y(s)dBs −
∫ t

0

Zsds, t > 0,

where (Bt)t≥0 is a standard Brownian motion.

In particular, if y0 = λ, then y(t) = λ for any t > 0 and (Zt)t≥0 rewrites as the

Ornstein-Uhlenbeck process (Ut)t≥0:

Ut = z0e
−t +

√
2λν

∫ t

0

e−(t−s)dBs, t > 0.

Now, fix n ∈ N\{0} and time t > 0, and let f ∈ Lip(R). If hn denotes the function

hn = f ◦ φn, where φn is defined on {0, 1, . . . , n} by φn(x) = (x − nλ)/
√
n, then

hn ∈ Lip({0, 1, . . . , n}) with constant at most n−1/2‖f‖Lip. Therefore we can apply

Theorem 5.10 to (Xn
t )t≥0 and hn, with K = 1, to get for any fixed n ∈ N\{0}, any

deviation level y > 0 and any t > 0, the local deviation estimate:

Pxn
(hn(X

n
t ) − Exn

[hn(X
n
t )] ≥ y)

≤ exp

(

−(1 − e−2t)nν

2
g

(

2
√
ny

(1 − e−2t)nν‖f‖Lip

))

,

where g(u) = (1 + u) log (1 + u) − u, u > 0. Finally, letting n going to infinity in the

above inequality yields for any y > 0 and any t > 0 the optimal Gaussian deviation:

Pz0 (f(Ut) − Ez0 [f(Ut)] ≥ y) ≤ exp

(

− 2y2

(1 − e−2t)ν‖f‖2
Lip

)

,

see for instance Theorems 5.1 and 5.3 in [15].
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5.4 A local deviation inequality for sample vectors of the

M/M/1 queue

In this part, we give a local deviation estimate for sample vectors of the M/M/1

queueing process. Recall it is an irreducible birth-death process whose generator is

given by

L f(x) = λ (f(x+ 1) − f(x)) + ν1{x6=0} (f(x− 1) − f(x)) , x ∈ N,

where the positive numbers λ and ν correspond respectively to the input rate and

service rate of the queue: the independent and identically distributed interarrival

times and independent and identically distributed service times of the customers follow

an exponential law with respective parameters λ and ν. As noticed in Remark 5.12,

we are unable to recover via Theorem 5.7 or Theorem 5.8 the Poisson-type deviation

inequality satisfied by the geometric distribution, cf. [11], which is by (8) the unique

stationary distribution of the M/M/1 queueing process in the positive recurrent case

λ < ν. However, the existence of an integration by parts formula for the associated

semigroup together with a tensorization procedure of the Laplace transform allow

us to provide with Theorem 5.13 below a local inequality for sample vectors of the

M/M/1 queue.

We say in the sequel that a function f : N
d → R is `1-Lipschitz if

‖f‖Lip(d) = sup
x6=y

|f(x) − f(y)|
‖x− y‖1

< +∞,

where ‖ · ‖1 denotes the `1-norm ‖z‖1 =
∑d

i=1 |zi|, z ∈ N
d.

Now, we can state the following

Theorem 5.13 Let (Xt)t≥0 be the M/M/1 queue with input and service rates λ and

ν. Let f be `1-Lipschitz on N
d and consider the sample vector Xd = (Xt1 , . . . , Xtd),

t1 < · · · < td = T . Then for any initial state x ∈ N and any deviation level y > 0, we

have the mulitdimensional local Poisson like deviation inequality:

Px (f(Xd) − Ex[f(Xd)] ≥ y) ≤ exp

(

−T (λ + ν)g

(

y

Td(λ+ ν)‖f‖Lip(d)

))

(13)

≤ exp

(

− y

2d‖f‖Lip(d)
log

(

1 +
y

Td(λ+ ν)‖f‖Lip(d)

))

,

where g(u) = (1 + u) log(1 + u) − u, u > 0.
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Proof. Fix the initial state x ∈ N. If u is a one dimensional Lipschitz function on N

and t > 0, then rewriting the proof of Theorem 4.2 for the M/M/1 queue yields for

any τ > 0:

Ex

[

eτu(Xt)
]

≤ exp (τEx[u(Xt)] + h(τ, t, ‖u‖Lip)) , (14)

where h is the function defined on (R+)3 by h(τ, t, z) = t(λ + ν) (eτz − τz − 1) and

‖ · ‖Lip remains for the classical Lipschitz seminorm on N.

To obtain a multidimensional version of (14), the idea is to tensorize it via an inte-

gration by parts formula satisfied by the semigroup (Pt)t≥0 of the M/M/1 queueing

process. We sketch now the argument for d = 2. Let 0 < s < t and denote fy the

function fy(z) = f(y, z) and f1(y) =
∑

z∈N
f(y, z)Pt−s(y, z). By the Markov property

together with (14), we have:

Ex [exp (τf(Xs, Xt))]

=
∑

y,z∈N

exp (τfy(z))Pt−s(y, z)Ps(x, y)

≤
∑

y∈N

exp

(

τ
∑

z∈N

fy(z)Pt−s(y, z) + h(τ, t− s, ‖fy‖Lip)

)

Ps(x, y)

≤ exp
(

h(τ, t− s, ‖f‖Lip(2))
)

∑

y∈N

exp (τf1(y))Ps(x, y)

≤ exp
{

h(τ, t− s, 2‖f‖Lip(2)) + h(τ, s, ‖f1‖Lip) + τEx[f(Xs, Xt)]
}

, (15)

since the function z 7→ h(·, ·, z) is non-decreasing on [0,+∞). Now, let us bound

‖f1‖Lip by 2‖f‖Lip(2). To do so, observe that we have the commutation relation L d+ =

d+L , where d+ is the forward gradient d+f(x) = f(x + 1) − f(x), x ∈ N. It implies

Ptd
+ = d+Pt for any non-negative t, which in turn entails for any u ∈ F (N) the

integration by parts formula:
∑

y∈N

u(y)Pt(x + 1, y) =
∑

y∈N

u(y + 1)Pt(x, y), x ∈ N.

Thus, we have:

‖f1‖Lip = sup
y∈N

|f1(y + 1) − f1(y)|

= sup
y∈N

∣

∣

∣

∣

∣

∑

z∈N

f(y + 1, z)Pt−s(y + 1, z) −
∑

z∈N

f(y, z)Pt−s(y, z)

∣

∣

∣

∣

∣

= sup
y∈N

∣

∣

∣

∣

∣

∑

z∈N

(f(y + 1, z + 1) − f(y, z))Pt−s(y, z)

∣

∣

∣

∣

∣

≤ 2‖f‖Lip(2).
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Therefore, plugging this into (15) entails:

Ex [exp (τf(Xs, Xt))] ≤ exp
{

t(λ + ν)
(

e2τ‖f‖Lip(2) − 2τ‖f‖Lip(2) − 1
)

+ τEx[f(Xs, Xt)]
}

.

In the general case, we show similarly that for any i = 1, . . . , d, the function fi defined

on N
i by

fi(x1, . . . , xi) :=
∑

xi+1,...,xd∈N

f(x1, . . . , xi, . . . , xd)Pti+1−ti(xi, xi+1) · · ·Ptd−td−1
(xd−1, xd),

has Lipschitz seminorm (with respect to the ith variable) smaller than (d − i +

1)‖f‖Lip(d), and thus than d‖f‖Lip(d). Therefore, since h is non-decreasing in its third

variable, we obtain by using recursively (15) (t0 = 0 by convention):

Ex

[

eτf(Xd)
]

≤ exp

(

τEx[f(Xd)] +

d
∑

i=1

h(τ, ti − ti−1, d‖f‖Lip(d))

)

= exp
{

τEx[f(Xd)] + T (λ+ ν)
(

eτd‖f‖Lip(d) − τd‖f‖Lip(d) − 1
)}

.

Finally, dividing in both sides by eτE x[f(Xd)] and using the exponential Chebychev’s

inequality achieve the proof.

Remark 5.14 To conclude this work, note that Theorem 5.13 does not allow us to

extend such inequality to functionals on path spaces. Thus, it would be an interesting

project to refine suitably (13) in terms of the increments ∆i = ti − ti−1, as ∆i → 0.
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01-04 Nicolas Privault. Distribution-valued iterated gradient and chaotic decompositions of Poisson
jump times functionals.
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