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On a pertubed anisotropic equation

A. El Hamidi and J. M. Rakotoson

Abstract

We study a perturbed anisotropic equation without using the knowledge of
the limiting problem. This provides a different method from that introduced by
Brézis and Nirenberg [4]. Our arguments use some tools recently developed in
[5, 6].
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1 Introduction.
In this paper, we give new results on critical anisotropic elliptic equations. More
precisely, we study the following problem

−
N∑

i=1

∂

∂xi

(∣∣∣∣ ∂u

∂xi

∣∣∣∣pi−2
∂u

∂xi

)
= λa(x)|u|q−2u + |u|p∗−2u in RN (1)

where λ ≥ 0 is a parameter and the exponents pi, p∗ satisfy the following conditions:

pi > 1,
N∑

i=1

1

pi

> 1, max{p1, p2, ..., pN} < p∗ and the critical exponent p∗ associated

to the main operator of (1) is defined by

p∗ :=
N

N∑
i=1

1

pi

− 1

.

The function a is a nontrivial and nonnegative function in L
p∗

p∗−q (RN). In the isotropic
case pi = 2, i = 1, · · · , N , the existence of minimizing solutions in the special case
λ = 0 was completely solved by Aubin [2] and G. Talenti [13]. Their proofs are based
on symmetrization theory. Notice that this theory is not relevent in our context since
the radial symmetry of solutions can not hold true because of the anisotropy of the
operator.
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We make precise here that existence results to Problem (1) need in general
some precise knowledge of extremal functions to the limiting problem corresponding
to λ = 0 (see for example [4]). In this work, we will carry out a different method.

The natural functional framework of Problem (1) is the anisotropic Sobolev
spaces theory developed by [10, 15, 11, 12, 14]. Then, let D1,~p(RN) be the completion

of the space D(RN) with respect to the norm ‖u‖ :=
N∑

i=1

∣∣∣∣ ∂u

∂xi

∣∣∣∣
pi

. It is well known

that
(
D1,~p(RN), ‖·‖

)
is a reflexive Banach space which is continuously embedded in

Lp∗
(
RN
)
.

In this work, we deal with the nonlocal existence, with respect to λ, of non-
trivial and nonnegative solutions to Problem (1). More precisely, we will show the
existence of a characteristic value of λ, denoted by λ∗ such that Problem (1) has
nontrivial nonnegative solutions for every λ > λ∗. On the other hand, the notion
of critical level associated to (1) will be introduced, notice that this notion was first
introduced by T. Aubin [1] for the isotropic Laplace operator.

Consider the Euler-Lagrange functional associated to Problem (1) defined by

Jλ(u) :=
N∑

i=1

1

pi

∫
RN

∣∣∣∣ ∂u

∂xi

∣∣∣∣pi

dx− λ

q

∫
RN

a(x)|u|qdx− 1

p∗

∫
RN

|u|p∗dx

which is of class C1(D1,~p(RN)). The space D1,~p(RN) can also be seen as

D1,~p(RN) =

{
u ∈ Lp∗(RN) :

∣∣∣∣ ∂u

∂xi

∣∣∣∣ ∈ Lpi(RN)

}
.

We introduce
D1,~p

+ (RN) =
{
u ∈ D1,~p(RN) : u ≥ 0

}
.

By solutions of Problem (1) we understand critical points of the functional Jλ. Remark
that the functional Jλ is bounded neither above nor below on D1,~p(RN). Then, to find
possible critical points of Jλ, we limit the study to the corresponding Nehari manifold
which contains all critical points of Jλ. We recall that the Nehari manifold associated
to Jλ, denoted by NJλ

, is defined by

NJλ
:=
{
ϕ ∈ D1,~p(RN) \ {0} : J ′λ(ϕ)(ϕ) = 0

}
.

In the sequel, we will set |u|a,q :=

(∫
RN

a(x)|u|qdx

) 1
q

, Pi(u) :=

∫
RN

∣∣∣∣ ∂u

∂xi

∣∣∣∣pi

dx,

Q(u) :=

∫
RN

a(x)|u|qdx, P∗(u) :=

∫
RN

|u|p∗dx, p− = min{p1, p2, ..., pN} and p+ =

max{p1, p2, ..., pN}. Also,

K(u) =
N∑

i=1

Pi(u)− P∗(u), K+(u) = max(K(u), 0),

γi =
1

pi

− 1

p∗
, i = 1, . . . , N, J̃0(u) =

N∑
i=1

γiPi(u).
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2 Preliminary results
We start our preliminary results by this elementary lemma

Lemma 1 The functional

D1,~p(RN) −→ R

u 7−→
∫

RN

a(x)|u|qdx

is weakly continuous.

Proof. The proof is standard, it can be found in [3] �
We recall that the Nehari manifold can be characterized more explicitly by

NJλ
:=

{
tϕ ; (t, ϕ) ∈ (R \ {0})× (D1,~p(RN) \ {0}) :

d

dt
Jλ(tϕ) = 0

}
.

For this reason, we introduce the modified functional

J̃λ(t, u) := Jλ(tu), on R×D1,~p(RN).

Since we are interested in positive solutions to Problem (1), we restrict ourselves in
what follows to t > 0.

Lemma 2 Let q ∈ (p+, p∗). Then for every λ ≥ 0 and u ∈ D1,~p(RN) \ {0}, there is
a unique t(u, λ) > 0 such that t(u, λ)u ∈ NJλ

. Moreover, the map (u, λ) → t(u, λ) is
of class C1 for the strong topology on (D1,~p(RN)\{0})×R+. Furthermore, t(γu, λ) =
1

γ
t(u, λ), for every γ > 0, and t(|u|, λ) = t(u, λ).

The proof is is based on the following proposition.

Proposition 1 Consider the function

Φ : R∗
+ =]0, +∞[ −→ R

t 7−→
m∑

i=1

ait
αi −

n∑
j=1

bjt
βj

with αi, ai ≥ 0, 1 ≤ i ≤ m and bj ≥ 0, βj > 0, b1 > 0, 1 ≤ j ≤ n, and
0 < αi < βj, ∀(i, j). Then, there is a unique real number t0 > 0 such that Φ(t0) = 0,
Φ′(t0) < 0, Φ(t) < 0 for t > t0 and Φ(t) > 0 for 0 < t < t0. Moreover, Φ has exactly
one global maximum on R∗

+.

Proof. It is clear that Φ has at least one local maximum. Moreover, for every t > 0,
if Φ′(t) = 0 then one has necessarily Φ′′(t) < 0. Indeed, if Φ′(t) = 0 then

m∑
i=1

αiait
αi −

n∑
j=1

βjbjt
βj = 0.
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But Φ′′(t) has the same sign as

m∑
i=1

α2
i ait

αi −
n∑

j=1

β2
j bjt

βj <

(
m∑

i=1

αiait
αi −

n∑
j=1

βjbjt
βj

)
inf

1≤j≤n
βj = 0,

where the first inequality is due to the fact that αi < βj for every i and j. This ends
the proof. �

Now, we return to the:
Proof of Lemma 2. For given λ ≥ 0 and u ∈ D1,~p(RN)\{0}, we consider the

function

Φ(t) = J ′λ(tu) · tu =
N∑

i=1

tpiPi(u)− tp
∗
P∗(u)− λQ(u)tq.

We apply Proposition 1 with αi = pi, i = 1, . . . N = m, ai = Pi(u) ≥ 0, b1 = P∗(u) >
0, b2 = λQ(u) ≥ 0, β1 = p∗ and β2 = q. There is a unique t(u, λ) > 0, such that
Φ(t(u, λ)) = 0. The uniqueness implies

t(γu, λ) =
1

γ
t(u, λ) ∀γ > 0,

and t(|u|, λ) = t(u, λ) noticing that Pi(|u|) = Pi(u), P∗(u) = P∗(|u|). Since
∂Φ

∂t
(t(u, λ)) 6=

0, and the mappings u → Pi(u), u → P∗(u) are of class C1 for the strong topology,
the implicit function theorem shows that the mapping (u, λ) → t(u, λ) is of class C1.
�

Next, we want to study the monotonicity of the map λ → t(u, λ) for a fixed u.

Lemma 3 Let u ∈ D1,~p(RN)\{0}. Then the map λ ∈ R+ → t(u, λ) is decreasing if
Q(u) > 0. If Q(u) = 0, then t(u, λ) = t(u, 0) for every λ ≥ 0.

Proof. Let us show that the continuous map λ → t(u, λ) is injective for u ∈
D1,~p(RN)\{0} and Q(u) > 0. Let (λ1, λ2) be such that t(u, λ1) = t(u, λ2) then

φ(t(u, λ1)) = φ(t(u, λ2)),

where

φ(t) =
N∑

i=1

tpi−qPi(u)− tp
∗−qP∗(u), t > 0.

By the definition of t(u, λ) given in Lemma 2, one has

φ(t(u, λi)) = λiQ(u), for i = 1, 2,

thus, since Q(u) > 0, one has λ1 = λ2. Thus the map λ → t(u, λ) is necessarily strictly

monotone, but by the definition of t(u, 0), if we set Φ(t) :=
N∑

i=1

tpiPi(u) − tp
∗
P∗(u),

one has for every λ > 0:
Φ(t(u, 0)) = 0 < Φ(t(u, λ)).

Applying Proposition 1, we conclude that t(u, λ) < t(u, 0). This shows that λ →
t(u, λ) is decreasing. Finally, if Q(u) = 0 then t(u, λ) = t(u, 0). �
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It follows from Lemma 2 that for every λ ≥ 0, on has more precisely

NJλ
=
{
± t(u, λ)u : u ∈ D1,~p(RN) \ {0}

}
.

At this stage, for every λ ≥ 0, we introduce

α(λ) := inf
u∈NJλ

Jλ(u) = inf
u∈D1,~p(RN )\{0}

Jλ(t(u, λ)u).

The lemma 2 implies again that the functional

D1,~p(RN) \ {0} −→ R
u 7−→ Jλ(t(u, λ)u)

is 0-homogeneous and is even. Then we get

α(λ) = inf
u∈S

Jλ(t(u, λ)u), (2)

where

S :=

{
u ∈ D1,~p(RN) :

N∑
i=1

Pi(u)
1
pi = 1

}
.

Lemma 4 Let

N0 =
{

v ∈ D1,~p(RN)\{0} : P∗(v) =
∑

i

Pi(v)
}

= NJ0 ,

Ñ0 =
{

v ∈ D1,~p(RN)\{0} :
∑

i

Pi(v) ≤ P∗(v)
}

.

Then for every λ ≥ 0 and v ∈ Ñ0 one has t(v, λ) ≤ 1. Furthermore, we have the
equivalence: t(v, 0) = 1 if only if v ∈ N0.

Proof. Let v ∈ Ñ0, from the definition of t(v, λ), one has :

N∑
i

t(v, λ)piPi(v) = t(v, λ)p∗P∗(v) + t(λ, v)qλQ(v) ≥ t(v, λ)p∗
N∑

i=1

Pi(v).

Thus : ∑
i

(
t(v, λ)pi−p∗ − 1

)
Pi(v) ≥ 0.

This inequality implies necessarily that t(v, λ) ≤ 1 since pi − p∗ < 0 and v 6≡ 0.

By Proposition 1 applied to Φ(t) =
N∑

i=1

tpiPi(v) − tp
∗
P∗(v), if v ∈ N0 then

Φ(t(v, 0)) = 0 since Φ(1) = 0, thus t(v, 0) = 1 and conversely. �

Lemma 5 Let u ∈ D1,~p(RN)\{0} with Q(u) > 0 and λ(u) =
K+(u)

Q(u)
. Then

t(u, λ(u)) =


1 if u ∈ N0

< 1 if u ∈ Ñ0\N0

1 if u /∈ Ñ0
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Proof. If u ∈ N0, according to the above lemma 4, t(u, 0) = 1 and λ(u) = 0.
If u ∈ Ñ0\N0 thus λ(u) = 0 and t(u, 0) < 1 (according to Lemma 4).

If u /∈ Ñ0 then λ(u) =
1

Q(u)

(
N∑

i=1

Pi(u)− P∗(u)

)
> 0, that is

N∑
i=1

Pi(u)− P∗(u)− λ(u)Q(u) = 0.

Considering Φ(t) =
N∑

i=1

tpiPi(u)− tp
∗
P∗(u)− λ(u)tqQ(u). We may apply Proposition

1 to conclude that 1 is the unique zero of Φ : Φ(1) = 0 = Φ
(
t(u, λ(u))

)
by definition,

thus t(u, λ(u)) = 1. �

Corollary 1 (of Lemma 5) Let u ∈ D1,~p(RN)\{0}. Then, the set
{

λ ≥ 0 : t(u, λ) ≤

1
}

is an interval of the form
]
λmin(u); +∞

[
if Q(u) > 0 and is empty or equal to R+

otherwise.

Proof. By Lemma 5, the set
{

λ ≥ 0 : t(u, λ) ≤ 1
}

is not empty if Q(u) > 0 and
the fact that λ → t(u, λ) is decreassing implies that the set is an interval, we set
λmin(u) = inf

{
λ ≥ 0 : t(u, λ) ≤ 1

}
. If Q(u) = 0 the set is empty if t(u, 0) > 1 and is

equal to R+ if t(u, 0) ≤ 1. �

The link between Jλ and J̃0 is carried out in the following:

Lemma 6 For every v ∈ D1,~p(RN)\{0} and λ ≥ 0, one has

Jλ(t(v, λ)v) = J̃0(t(v, λ)v)− λ

(
1

q
− 1

p∗

)
t(v, λ)qQ(v).

Proof. We set temporarily t = t(v, λ). Then,

Jλ(t(v, λ)v) =
N∑

i=1

1

pi

tpiPi(v)− tp
∗

p∗
P∗(v)− λ

q
tqQ(v). (3)

By the definition of t(v, λ), one has
N∑

i=1

tpiPi(v) = tp
∗
P∗(v) + λtqQ(v), (4)

we deduce from relations (3) and (4) that

Jλ(t(v, λ)v) =
N∑

i=1

(
1

pi

− 1

p∗

)
tpiPi(v)− λ

(
1

q
− 1

p∗

)
tqQ(v)

= J̃0

(
t(v, λ)v

)
− λ

(
1

q
− 1

p∗

)
t(v, λ)qQ(v).

�
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3 Palais-Smale sequences on the Nehari manifold
In what follows, we will write (PS)c to denote a Palais-Smale sequence of Jλ with the
level c ∈ R.

Lemma 7 Let λ ≥ 0. Then we have the following assertions:
(i) Every minimizing sequence (un) ⊂ S of (2) satisfies

0 < lim inf
n→∞

t(un, λ) ≤ lim sup
n→∞

t(un, λ) < +∞.

(ii) There exists a nonnegative minimizing sequence of (2) denoted by (un) ⊂ S such
that (t(un, λ)un) is a bounded Palais-Smale sequence for Jλ.

Proof. (i) Let us first show that t(un, λ) is bounded as n → +∞. Suppose that
there exists a subsequence, still denoted by (un) such that

lim
n→+∞

t(un, λ) = +∞.

On one hand, it is clear that

N∑
i=1

t(un, λ)piPi(un) = t(un, λ)qQ(un) + t(un, λ)p∗P∗(un). (5)

On the other hand, using the usual Sobolev embedding, there is a positive constant
c1 (which is independent of n) such that

Q(un)
1
q ≤ c1P∗(un)

1
p∗ .

It follows that
N∑

i=1

t(un, λ)piPi(un) ≤ c2

(
t(un, λ)P∗(un)

1
p∗
)q

+
(
t(un, λ)P∗(un)

1
p∗
)p∗

.

Then, one has necessarily

lim
n→+∞

t(un, λ)P∗(un)
1

p∗ = +∞

and consequently,

t(un, λ)qQ(un) = on

(
t(un, λ)p∗P∗(un)

)
,

N∑
i=1

t(un, λ)piPi(un) = t(un, λ)p∗P∗(un)(1 + on(1)).

Therefore, there exists c3 > 0 independent of n, such that

lim
n→+∞

Jλ(t(un, λ)un) = lim
n→+∞

N∑
i=1

(
1

pi

− 1

p∗

)
t(un, λ)piPi(un)

≥ c3 lim
n→+∞

t(un, λ)p−||un|| = +∞.
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This is in contradiction with the fact that α(λ) is finite.
Now, suppose that there exists a subsequence, still denoted by (un) such that

lim
n→+∞

t(un, λ) = 0.

But, it is clear that
∂2J̃λ

∂t2
(t, un)

∣∣∣
t=t(un,λ)

< 0.

Then, combining this fact with (5), we get

N∑
i=1

pit(un, λ)piPi(un) < qt(un, λ)qQ(un) + p∗t(un, λ)p∗P∗(un).

Therefore, there exists c4 > 0 independent of n, such that

c4t(un, λ)p+||un|| ≤ qt(un, λ)qQ(un) + p∗t(un, λ)p∗P∗(un).

Using the assumptions p+ < q and p+ < p∗, we obtain the following contradiction

1 = ||un|| ≤
1

c4

[
qt(un, λ)q−p+Q(un) + p∗t(un, λ)p∗−p+P∗(un)

]
→ 0 as n → +∞,

which ends the claim (i).
(ii) For every u ∈ D1,~p(RN) \ {0} and λ ≥ 0, we have ∂tJ̃λ(t(u, λ), u) = 0 and

∂ttJ̃λ(t(u, λ), u) < 0, and t(u, λ) is C1 with respect to u. Let us introduce the C1

functional Jλ defined on S by

Jλ(u) = J̃λ(t(u, λ), u) ≡ Jλ(t(u, λ)u) = Jλ(|u|).

Then
α(λ) = inf

u∈S
Jλ(u).

Using the Ekeland variational principle on the complete manifold (S, ‖ ‖) to the
functional Jλ, there exists a nonnegative minimizing sequence of (2) denoted by (un) ⊂
S such that:

|J ′
λ(un)(ϕn)| ≤ 1

n
||ϕn||, for every ϕn ∈ TunS,

where TunS is the tangent space to S at the point un. Moreover, for every ϕn ∈ TunS,
one has

J ′
λ(un)(ϕn) = ∂tJ̃λ(t(un, λ), un)t′(un, λ)(ϕn) + ∂uJ̃λ(t(un, λ), un)(ϕn),

= ∂uJ̃λ(t(un, λ), un)(ϕn),

since ∂tJ̃λ(t(un, λ), un) ≡ 0, where t′(un, λ) denotes the derivative of t(., λ) with re-
spect to its first variable at the point (un, λ).
Furthermore, let

π : D1,~p(RN) \ {0} −→ R× S

u 7−→
(
||u||, u

||u||

)
:= (π1(u), π2(u)).
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Writing ‖u‖ :=
N∑

i=1

|∂xi
u|pi

and applying Hölder’s inequality for each i ∈ {1, 2, · · ·N},

we get for every (u, ϕ) ∈
(
D1,~p(RN) \ {0}

)
×D1,~p(RN): |π′1(u)(ϕ)| ≤ ||ϕ||,

||π′2(u)(ϕ)|| ≤ 2
||ϕ||
||u||

.

>From (i), there is a positive constant c5 such that

t(un, λ) ≥ c5, ∀ n ∈ N.

Then for every ϕ ∈ D1,~p(RN), there are ϕ1
n := π′1(t(un, λ)un)(ϕ) ∈ R and ϕ2

n :=

π′2(t(un, λ)un)(ϕ) ∈ TunS such that |ϕ1
n| ≤ ||ϕ||, ||ϕ2

n|| ≤
2

c5

||ϕ|| and

J ′λ(t(un, λ)un)(ϕ) = ∂tJ̃λ(t(un, λ), un)(ϕ1
n) + ∂uJ̃λ(t(un, λ), un)(ϕ2

n),

= ∂uJ̃λ(t(un, λ), un)(ϕ2
n),

= J ′
λ(un)(ϕ2

n). (6)

Therefore,

J ′λ(t(un, λ)un)(ϕ) ≤ 1

n
||ϕ2

n||

≤ 2

nc5

||ϕ||.

We easily conclude that

lim
n→∞

J ′λ(t(un, λ)un) = 0 in D−1,~p′(RN) =
(
D1,~p(RN)

)′
,

which achieves the proof. �
Let us introduce the "critical level" c∗ defined by

c∗ := inf
u∈S

J0(t(u, 0)u) = inf
N0

J̃0(v). (7)

Then, one has the

Proposition 2 The critical level c∗ satisfies:

c∗ = inf
N0

J̃0(v) = infeN0

J̃0(v).

Proof.

We know already that c∗ = inf
N0

J̃0(v). For v ∈ N0,

N∑
i=1

Pi(v) = P∗(v) so that J0(v) =

J̃0(v). Moreover, one has :

infeN0

J̃0(v) ≤ inf
N0

J̃0(v) = c∗ ≤ infeN0

J̃0(t(v, 0)v) ≤ infeN0

J̃0(v), (since t(v, 0) ≤ 1).

�
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4 Existence results
At this stage, we will use a recent result about compactness for quasilinear Leray-
Lions type operators involving critical exponents [6]. For the reader’s convenience, we
will recall some notations and the main result therein.

Let Ω be an arbitrary open set of RN . We set

L~p
loc(Ω) =

N∏
i=1

Lpi

loc(Ω), ~p = (p1, . . . , pN),

W 1,~p
loc (Ω) =

{
v ∈

N⋃
i=1

Lpi

loc(Ω) : ∇v ∈ L~p
loc(Ω)

}
.

For every ε > 0 and σ ∈ R, consider the troncature function

Sε(σ) =

{
σ if |σ| ≤ ε
ε sign(σ) otherwise.

and set σk := Sk(σ) for every integer k.
Let â : Ω × R × RN 7−→ RN be a nonlinear map satisfying the standard

Leray-Lions conditions :

(L1) â(x, ·, ·) is continuous for almost every x and â(·, σ, ξ) is measurable for all
(σ, ξ) ∈ R× RN ,

(L2) â maps bounded sets of W 1,~p
loc (Ω) into bounded sets of

N∏
i=1

L
p′i
loc(Ω).

For almost every x ∈ Ω and all ξ ∈ W 1,~p
loc (Ω), the map u 7−→ â(x, u, ξ) is

continuous from W 1,~p
loc (Ω)–weak to

N∏
i=1

L
p′i
loc(Ω)–strong.

For almost all x ∈ Ω, for all (σ, ξ) in R× RN , â(x, σ, ξ) · ξ ≥ 0,

(L3) for almost every x ∈ Ω, for all (σ, ξi) ∈ R× RN , i = 1, 2,

[â(x, σ, ξ1)− â(x, σ, ξ2)][ξ1 − ξ2] > 0, for ξ1 6= ξ2.

(L4) if for some x ∈ Ω, there is a sequence (σn, ξ1n) ∈ R × RN , ξ2 ∈ RN such that[
â(x, σn, ξ1n)− â(x, σn, ξ2)

]
[ξ1n − ξ2] and σn are bounded as then |ξ1n| remains

in a bounded set of R.

Theorem 1 ([6])
Let (un) be a bounded sequence of W 1,~p

loc (Ω). Then

(i) There is a subsequence, still denoted by, (un) and a function u ∈ W 1,~p
loc (Ω) such

that un(x) −→ u(x) a.e. in Ω as n −→ +∞.

11



(ii) If furthermore, we assume (L1)-(L4) and that ∀ϕ ∈ C∞
c (Ω), ∀ k ≥ k0 > 0 :

lim sup
n→+∞

∫
Ω

â(x, un(x),∇un(x)) · ∇(ϕSε(un − uk)) dx ≤ oε(1)

then there exists a subsequence still denoted by (un) such that

∇un(x) −→ ∇u(x) a.e. in Ω.

Corollary 1 (of Theorem 1) Let q ∈ (p+, p∗) and λ ≥ 0. Let (un) be a bounded
Palais-Smale sequence for the functional Jλ, whose weak limit, up to a subsequence,
is u. Then there exists a subsequence, still denoted by (un) such that

∇un(x) −→ ∇u(x) a.e. in RN .

Proof. It is a direct consequence of the above theorem. Indeed, since (un)n≥0 remains
in a bounded set of D1,~p(RN) then is bounded in W 1,~p

loc (RN). Thus, passing if necessary
to a subsequence, one has un(x) → u(x) as n → +∞ a.e. Setting

ã(∇u) =

(∣∣∣∣ ∂u

∂x1

∣∣∣∣p1−2
∂u

∂x1

, . . . ,

∣∣∣∣ ∂u

∂xN

∣∣∣∣pN−2
∂u

∂xN

)

then, one has for every ϕ ∈ C∞
c (RN):

J ′λ(un).(ϕSε|un − uk|) =

∫
RN

ã(∇un(x)) · ∇(ϕSε(un − uk))dx

−
∫

RN

|un|p
∗−2unϕSε(un − uk)dx− λ

∫
RN

a(x)|un|q−2unϕSε(un − uk).

Since (un) is bounded in Lp∗(RN), there is a positive constant C such that |un|a,q ≤ C
and ∫

RN

|un|p
∗−1|ϕ| |Sε(un − uk)| ≤ ε|ϕ|Lp∗ |un|p

∗−1

Lp∗ ≤ C ε,∫
RN

a(x)|un|q−1|ϕ| |Sε| ≤ C ε.

Since lim
n
‖J ′λ(un)‖∗ = 0, we get

lim sup
n→+∞

∫
RN

ã(∇un(x)) · ∇(ϕSε(un − uk))dx ≤ Cε.

�

Lemma 8 We have the following assertions:
(a) α(0) > 0
(b) For every λ > 0, α(λ) ≥ 0.
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Proof. (a) Let (un) ⊂ S be a minimizing sequence of (2) for λ = 0. Then, since
N∑

i=1

Pi(un) = 1, we get

J0(t(un, 0)un) =
N∑

i=1

(
1

pi

− 1

p∗

)
t(un, 0)piPi(un),

≥ F (t(un, 0)),

where

F (t) =

(
1

p+

− 1

p∗

)
tp+ if t ∈ [0, 1),(

1

p+

− 1

p∗

)
tp− if t ∈ [1, +∞).

On the other hand, it is known from Lemma 7 that there is a constant c1 > 0 such
that t(un, 0) ≥ c1 > 0, for every integer n. Hence there exits is a constant c2 > 0 such
that J0(t(un, 0)un) ≥ c2 > 0 for every integer n.

(b) Let λ > 0 and u ∈ D1,~p(RN) \ {0}. >From Lemma 2, the positive real
number t(u, λ) is the unique value of t realizing the global maximum of the the
real valued function ϕu: t 7−→ Jλ(tu) defined on [0, +∞). Since ϕu(0) = 0 then
ϕu(t(u, λ)) = Jλ(t(u, λ)u) ≥ 0. This implies that Jλ is nonnegative on the Nehari
manifold NJλ

. �

Lemma 9 Let (vn) be a bounded sequence in D1,~p(RN) satisfying:

N∑
i=1

Pi(vn) = P∗(vn) + on(1)

and

lim
n→+∞

(
N∑

i=1

Pi(vn)

)
= lim

n→+∞
P∗(vn) = b 6= 0.

Then
lim

n→+∞
t(vn, 0) = 1.

Proof. Actually, for every u ∈ D1,~p(RN)\{0}, the quantity t(u, 0) depends on u only
by the mean of Pi(u), 1 ≤ i ≤ N , and P∗(u). Then let us write

∀u ∈ D1,~p(RN) \ {0}, t(u, 0) := τ(P1(u), P2(u), · · · , PN(u), P∗(u)).

We extend the domain of definition of τ to [0, +∞)N×]0, +∞) as the following:
For every (β1, β2, · · · , βN+1) ∈ [0, +∞)N×]0, +∞), we define τ(β1, β2, · · · , βN+1) by
substituting (P1(u), P2(u), · · · , PN(u), P∗(u)) by (β1, β2, · · · , βN+1) in the definition of
τ(P1(u), P2(u), · · · , PN(u), P∗(u)). Moreover, since t(u, 0) = 1 for every u ∈ NJ0 , it fol-

lows that for every u ∈ D1,~p(RN)\{0}, if
N∑

i=1

Pi(u) = P∗(u) then τ(P1(u), P2(u), · · · , PN(u), P∗(u)) =

13



1. Therefore, for every
(β1, β2, · · · , βN+1) ∈ [0, +∞)N×]0, +∞), it holds

N∑
i=1

βi = βN+1 =⇒ τ(β1, β2, · · · , βN+1) = 1.

On the other hand, for every i ∈ {1, · · · , N}, the sequences (Pi(vn))n is bounded in
R. If βi ≥ 0 is an arbitrary adherence value of (Pi(vn))n, for 1 ≤ i ≤ N , then

N∑
i=1

βi = lim
n→+∞

P∗(vn) = b 6= 0,

and consequently τ(β1, · · · , βN , b) = 1. Since t(u, 0) depends continuously on (P1(u), · · · , PN(u), P∗(u))
in RN+1, it follows that limn→+∞ t(vn, 0) = τ(β1, · · · , βN , b) = 1, which ends the proof.
�

Lemma 10 Let q ∈ (p+, p∗) and λ ≥ 0. Let (un) be a (PS)c for the functional Jλ

such that c < c∗, then (un) is relatively compact.

Proof. Let (un) be a (PS)c for the functional Jλ such that c < c∗, with λ ≥ 0. We
can show easily that (un) is bounded. According to Corollary 1 of Theorem 1 we can
assume then that

un ⇀ u in D1,~p(RN),

un → u a.e. in RN ,

∇un(x) → ∇u(x) a.e. in RN .

We set vn := un − u, then using the Brézis-Lieb Lemma, it follows that
N∑

i=1

Pi(vn) = P∗(vn) + on(1),

J0(vn) = = c− Jλ(u) + on(1).

Let b be the common limit to
N∑

i=1

Pi(vn) and P∗(vn) as n goes to infinity. Suppose

that b 6= 0. Applying Lemma 9, it follows that lim
n→+∞

t(vn, 0) = 1 and consequently

lim
n→+∞

J0(t(vn, 0)vn) = lim
n→+∞

J0(vn) = c− Jλ(u).

On the other hand,
J0(t(vn, 0)vn) ≥ inf

w∈NJ0

J0(w).

Therefore, c − Jλ(u) ≥ c∗, which means that c ≥ c∗ since u ∈ NJλ
and it is known

that Jλ is nonnegative on NJλ
. This achieves the proof. �

Let M∗ =
{

v ∈ D1,~p(RN)\{0} : Q(v) > 0 and J̃0(v) = c∗
}

. Since c∗ = α(0) >

0, thus M∗ is not empty. We define :

λ∗ = inf
{

λmin(u) : u ∈ M∗
}

we have the following fundamental proposition :

14



Proposition 3 If λ > λ∗ ≥ 0 then α(λ) < c∗.

Proof. Let λ > λ∗, then there exists u ∈ M∗ such that λ > λmin(u) > λ∗, thus
t(u, λ) ≤ 1. From Lemma 6, one has

Jλ(t(u, λ)u) = J̃0(t(u, λ)u)− λtq(u, λ)

(
1

q
− 1

p∗

)
Q(u). (8)

Since J̃0(t(u, λ)u) ≤ J̃0(u) = c∗, the above relation (8) becomes

α(λ) ≤ Jλ(t(u, λ)u) ≤ c∗ − λt(u, λ)q

(
1

q
− 1

p∗

)
Q(u) < c∗.

�
At this stage, we state and show our main result:

Theorem 2 For every λ > λ∗, there exists at least one nonnegative nontrivial solu-
tion to (1).

Proof. >From Lemma 7 there is a sequence Un = t(un, λ)un ≥ 0 bounded inD1,~p(RN)
and which is a Palais sequence for Jλ at the level α(λ), i.e.

Jλ(Un) → α(λ), lim inf
n→+∞

‖Un‖ > 0, as n → +∞,

and
J ′λ(Un) → 0 in

(
D1,~p(RN)

)′ as n → +∞.

Passing, if necessary to a subsequence, we may assume that Un ⇀ U in D1,~p(RN)-
weak, a.e. in RN . If λ > λ∗ then α(λ) < c∗, thus applying Lemma 10, one deduces
that Un → U in D1,~p(RN)-strong and Lp∗(RN)-strong. Thus

{ J λ (U) = α(λ) ≥ 0 : U ∈ D1,~p
+ (RN)\{0}, J ′λ(U) = 0, ‖U‖ = lim

n
‖Un‖ > 0.

�
Remark. If u ∈ M∗ ∩ Ñ0 then λmin(u) = 0 thus λ∗ = 0.
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