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Abstract

One of the major difficulties in nonlinear elliptic problems involving critical
nonlinearities is the compactness of Palais-Smale sequences. In their celebrated
work [7], Brézis and Nirenberg introduced the notion of critical level for these
sequences in the case of a critical perturbation of the Laplacian homogeneous
eigenvalue problem. In this paper, we give a natural and general formula of
the critical level for a large class of nonlinear elliptic critical problems. The
sharpness of our formula is established by the construction of suitable Palais-
Smale sequences which are not relatively compact.
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1 Introduction
In nonlinear elliptic variational problems involving critical nonlinearities, one of the
major difficulties is to recover the compactness of Palais-Smale sequences of the
associated Euler-Lagrange functional. Such questions were first studied, in our
knowledge, by Brézis and Nirenberg in their well-known work [7]. The concentration-
compactness principle due to Lions [12] is widely used to overcome these difficulties.
Other methods, based on the convergence almost everywhere of the gradients of Palais-
Smale sequences, can be also used to recover the compactness. We refer the reader
to the papers by Boccardo and Murat [5] and by J. M. Rakotoson [14] for bounded
domains. For arbitray domains, we refer to the recent work by A. El Hamidi and J.
M. Rakotoson [9].

In [7], the authors studied the critical perturbation of the eigenvalue problem:
−∆u = λu+ u2∗−1 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(1.1)
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where Ω is a bounded domain in RN , N ≥ 3, with smooth boundary, 2∗ = 2N
N−2

is
the Sobolev critical exponent of the embedding W 1,2(Ω) ⊂ Lp(Ω), and λ is a positive
parameter. The authors introduced an important condition on the level corresponding
to the energy of Palais-Smale sequences which guarantees their relative compactness.
Indeed, let (un) be a Palais-Smale sequence for the Euler-Lagrange functional

Iλ(u) =
1

2

∫
Ω

|∇u|2 − λ

2

∫
Ω

|u|2 − 1

2∗

∫
Ω

|u|2∗ .

More precisely, the authors showed that if

lim
n→+∞

Iλ(un) <
1

N
S

N
2 (1.2)

then (un) est relatively compact, which implies the existence of nontrivial critical
points of Iλ. Here, S denotes the best Sobolev constant in the embedding W 1,2

0 (Ω) ⊂
L2∗(Ω). In this work, we begin by giving the generalization of condition (1.2) for the
quasilinear equation

−∆pu = λf(x, u) + |u|p∗−2u in Ω,

u|Γ = 0 and ∂u
∂ν
|Σ = 0,

(1.3)

where Ω is a bounded domain in RN , N ≥ 3, with smooth boundary ∂Ω = Γ ∪ Σ,
where Γ and Σ are smooth (N − 1)-dimensional submanifolds of ∂Ω with positive
measures such that Γ ∩ Σ = ∅. ∆p is the p-Laplacian and ∂

∂ν
is the outer normal

derivative. Here, f is a subcritical perturbation of |u|p∗−1.
The sharpness of our result is estabished by the construction of suitable Palais-

Smale sequences (corresponding to the critical level) which are not relatively compact.
Then we give the analogous condition to (1.2) for a general system with critical

exponents 
−∆pu = λf(x, u) + u|u|α−1|v|β+1 in Ω

−∆qv = µg(x, v) + |u|α+1|v|β−1v in Ω

together with Dirichlet or mixed boundary conditions, where f and g are subcritical
perturbations of |u|p∗−1 and |v|q∗−1 respectively, p∗ = Np

N−p
(resp. q∗ = Nq

N−q
) is the

critical exponent of the Sobolev embedding W 1,p(Ω) ⊂ Lr(Ω) (resp. W 1,q(Ω) ⊂
Lr(Ω)). Our approach provides a general condition based on the Nehari manifold,
which can be extended to a large class of critical nonlinear problems. In this work,
we confine ourselves to systems involving (p, q)−Laplacian operators and critical
nonlinearities. The sharpness of our result is estabished, in the special case p = q, by
the construction of suitable Palais-Smale sequences which are not relatively compact.
The question of sharpness corresponding to the case p 6= q is still open.

For a more complete description of nonlinear elliptic systems, we refer the
reader to the papers by De Figueiredo [10] and by De Figueiredo & Felmer [11] and
the references therein.
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2 A general local compactness result
For the reader’s convenience, we start with the scalar case and to render the paper
selfcontained we will recall or show some well-known facts.

2.1 The scalar case
Let Ω ⊂ RN , N ≥ 3, be a bounded domain with smooth boundary ∂Ω. Let
f(x, u) : Ω × R → R be a function which is measurable in x, continuous in u
and satisfying the growt condition at infinity

|f(x, u)| = o(up∗−1) as u→ +∞, uniformly in x. (2.4)

This situation occurs, for example, in the special cases f(x, u) = u or f(x, u) = uq−1,
1 < q < p∗.

Consider the problem

−∆pu = λf(x, u) + |u|p∗−2u in Ω,

u|Γ = 0 and ∂u
∂ν
|Σ = 0,

(2.5)

where Ω is a bounded domain in RN , N ≥ 3, with smooth boundary ∂Ω = Γ∪Σ, where
Γ and Σ are smooth (N − 1)-dimensional submanifolds of ∂Ω with positive measures
such that Γ ∩ Σ = ∅. Problem (2.5) is posed in the framework of the Sobolev space

W 1,p
Γ (Ω) = {u ∈ W 1,p(Ω) : u|Γ = 0},

which is the closure of C1
0(Ω∩Γ,R) with respect to the norm of W 1,p(Ω). Notice that

meas(Γ) > 0 implies that the Poincaré inequality is still available in W 1,p
Γ (Ω), so it

can be endowed with the norm

||u|| = ||∇u||p

and (W 1,p
Γ (Ω), || . ||) is a reflexive and separable Banach space. The associated Euler-

Lagrange functional is given by

Jλ(u) :=
1

p
||∇u||pp −

1

p∗
||u||p

∗

p∗ − λ

∫
Ω

F (x, u(x)) dx

the corresponding Euler-Lagrange functional, where F (x, u) :=
∫ u

0
f(x, s) ds.

We recall here that the Nahari manifold associated to the functional Jλ is given
by:

NJλ
= {u ∈ W 1,p

Γ (Ω) \ {0} : J ′λ(u)(u) = 0},

and it is clear that NJλ
contains all nontrivial critical points of Jλ. This manifold can

be characterized more explicitely by the following

NJλ
=

{
tu, (t, u) ∈ (R \ {0})× (W 1,p

Γ (Ω) \ {0}) :
d

dt
Jλ(tu) = 0

}
,
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where t 7→ Jλ(tu) is a function defined from R to itself, for every u given in
W 1,p

Γ (Ω) \ {0}. We define the critical level associated to Problem (2.5) by:

c∗(λ) := inf
w∈NJ0

J0(w) + inf
w∈NJλ

∪{0}
Jλ(w). (2.6)

At this stage, we can state and show our first result

Theorem 1 Let λ ∈ R and (un) be a Palais-Smale sequence of Jλ such that

lim
n→+∞

Jλ(un) < c∗(λ). (2.7)

Then (un) is relatively compact.

Proof. Let λ ∈ R and (un) be a Palais-Smale sequence for Jλ of level c ∈ R ((PS)c

for short) satisfying the condition (2.7). We claim that (un) is bounded in W 1,p
Γ (Ω).

Indeed, on has one hand

1

p
||∇un||pp −

1

p∗
||un||p

∗

p∗ − λ

∫
Ω

F (x, un) dx = c+ on(1), (2.8)

and
||∇un||pp − ||un||p

∗

p∗ − λ

∫
Ω

f(x, un)un dx = on(||∇un||p). (2.9)

Then,(
1

p
− 1

p∗

)
||un||p

∗

p∗ +
λ

p

∫
Ω

f(x, un)un dx− λ

∫
Ω

F (x, un) dx = c+ on(1) + on(||∇un||p).

Now, let ε > 0, using the growth condition (2.4), there exists c1(ε) > 0 such that

|f(x, u)| ≤ ε|u|p∗−1+c1 and |F (x, u)| ≤ ε

p∗
|u|p∗+c1, a.e. x ∈ Ω and for every u ∈ R.

Applying the Hölder and the Young inequalities to the last relations, it follows

||un||p
∗

p∗ ≤ ε||∇un||p + c2(|Ω|, λ, ε). (2.10)

Combining (2.10) and (2.8), we deduce that (un) is in fact bounded in W 1,p
Γ (Ω). So

passing, if necessary to a subsequence, we can consider that

un ⇀ u in W 1,p
Γ (Ω),

un → u a.e. in Ω.

On the other hand, the growth condition (2.4) implies also that, for almost every
x ∈ Ω, the functions s 7→ F (x, s) and s 7→ sf(x, s) satisfy the conditions of the
Brézis-Lieb Lemma (see Theorem 2 in [6]). Thus, we get the identities∫

Ω

F (x, vn) dx =

∫
Ω

F (x, un)−
∫

Ω

F (x, u) + on(1),∫
Ω

f(x, vn)vn dx =

∫
Ω

f(x, un)un −
∫

Ω

f(x, u)u+ on(1).
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Moreover, let ε > 0, there is c1(ε) > 0 such that∣∣∣∣∫
Ω

f(x, vn)vn dx

∣∣∣∣ ≤ ε||vn||p
∗

p∗ + c1||vn||1.

Let C > 0 (which is independent of n and ε), such that ||vn||p
∗

p∗ ≤ C. Since (vn)
converges strongly to 0 in L1(Ω), there is n0(ε) ∈ N such that ||vn||1 ≤ ε/c1, for every
n ≥ n0(ε), and consequently

|
∫

Ω

f(x, vn)vn dx| ≤ ε(1 + C), ∀n ≥ n0(ε).

In the same way, rewriting F (x, vn) =
∫ vn

0
f(x, s) ds and using the same arguments as

above, we deduce that ∫
Ω

F (x, vn) dx = on(1) (2.11)∫
Ω

f(x, vn)vn dx = on(1). (2.12)

Applying once again the Brézis-Lieb Lemma, we conclude that u ∈ NJλ
∪ {0} and

||vn||p − ||vn||p
∗

p∗ = on(1), (2.13)

J0(vn) :=
1

p
||vn||p −

1

p∗
||vn||p

∗

p∗ = c− Jλ(u) + on(1). (2.14)

A direct computation gives

NJ0 =
{
t0(u)u : u ∈ W 1,p

Γ (Ω) \ {0}
}
,

where

t0(u) :=

(
||u||p

||u||p∗p∗

) 1
p∗−p

.

Now, let b be the common limit of ||vn||p and ||vn||p
∗

p∗ . Suppose that b 6= 0. On one
hand we have

J0(t0(vn)vn) =

(
1

p
− 1

p∗

)(
||vn||p

||vn||pp∗

) p∗
p∗−p

≥ inf
w∈NJ0

J0(w).

Then
lim

n→+∞
J0(t0(vn)vn) =

b

N
≥ inf

w∈NJ0

J0(w).

On the other hand, the identity (2.14) leads to
b

N
= c− Jλ(u).

It follows then

c ≥ inf
w∈NJ0

J0(w) + Jλ(u)

≥ inf
w∈NJ0

J0(w) + inf
w∈NJλ

∪{0}
Jλ(w),

which contradicts the condition (2.7). This achives the proof. �
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2.2 Sharpness of the critical level formula in the scalar case
To show the sharpness of the critical level formula (2.7), it suffices to carry out a
Palais-Smale sequence for Jλ of level c∗(λ) which contains no convergent subsequence.
Consider, for a given ε > 0, the extremal function

Φε(x) = CNε
N−p

p2

(
ε+ |x|

p
p−1

) p−N
p with CN :=

(
N

(
N − p

p− 1

)p−1
)(N−p)/p2

which attains the best constant S of the Sobolev embedding

D1,p(RN) ↪→ Lp∗(RN).

Without loss of generality, we can consider that 0 ∈ Σ. Moreover, the set ∂Ω
satisfies the following property (see more details in Adimurthi, Pacella and Yadava
[1]):
There exist δ > 0, an open neighborhood V of 0 and a diffeomorphism
Ψ : Bδ(0) −→ V which has a jacobian determinant equal to one at 0, with
Ψ(B+

δ ) = V ∩ Ω, where B+
δ = Bδ(0) ∩ {x ∈ RN : xN > 0}.

Let ϕ ∈ C∞
0 (RN) such that ϕ ≡ 1 in a neighborhood of the origin.

We define the sequence defined by

ψn(x) := ϕ(x)Φ1/n(x), for n ∈ N∗. (2.15)

It is well known that the sequence (ψn) ⊂ W 1,p
Γ (Ω) is a Palais-Smale sequence for J0

of level infw∈NJ0
J0(w), which satisfies

ψn → 0 a.e. in Ω,

∇ψn → 0 a.e. in Ω,

||ψn||p
∗

p∗ −→
[
N inf

w∈NJ0

J0(w)

]p/N

:= ` as n −→ +∞,

||∇ψn||pp −→
[
N inf

w∈NJ0

J0(w)

]p/N

:= ` as n −→ +∞.

Now, let (un) be a Palais-Smale sequence of Jλ of level infw∈NJλ
∪{0} Jλ(w). We will

not go into further details concerning which subcritical terms f(u) allow the existence
of such sequences, but in the litterature, this occurs for various classes of subcritical
terms. Applying Theorem 1, there exists a subsequence, still denoted by (un), which
converges to some u ∈ W 1,p

Γ (Ω). Then

||un + ψn||p∗ ≤ C,

un + ψn → u a.e. in Ω,

||∇un +∇ψn||p ≤ C,

∇un +∇ψn → ∇u a.e. in Ω.

where C a positive constant independent of n. We apply the Brézis-Lieb Lemma to
the sequence (un + ψn) and get

||un + ψn||p
∗

p∗ = ||(un − u) + ψn||p
∗

p∗ + ||u||p
∗

p∗ + on(1).
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Moreover, one has

−||un−u||p∗ + ||ψn||p∗−`1/p∗ ≤ ||(un−u)+ψn||p∗−`1/p∗ ≤ ||un−u||p∗ + ||ψn||p∗−`1/p∗

which implies that
||(un − u) + ψn||p∗ − `1/p∗ = on(1).

Therefore, we conclude that

||un + ψn||p
∗

p∗ = ||u||p
∗

p∗ + `+ on(1).

The same argumets applied to the sequence (∇un +∇ψn) give

||∇un +∇ψn||pp = ||∇u||pp + `+ on(1).

Finally, using the fact that

|ψn|p
∗ ∗
⇀ `δ0 weakly ∗ in M+(Ω) (2.16)

|∇ψn|p
∗
⇀ `δ0 weakly ∗ in M+(Ω) (2.17)

where δ0 is the Dirac measure concentrated at the origin and M+(Ω) is the space of
positive finite measures [20]), we get that the sequence (un + ψn) is a Palais-Smale
sequence of Jλ of level c∗(λ).

We hence constructed a Palais-Smale sequence (un + ψn) of Jλ of level c∗(λ)
which can not be relatively compact in W 1,p

Γ (Ω). This justifies the sharpness of the
critical level formula (2.7).

Remark 2.1 If we are interested by the homogeneous Dirichlet conditions, i.e. if
Σ = ∅, the same arguments developed above are still valid, it suffices to assume that
the origin 0 ∈ Ω and consider ϕ ∈ C∞

0 (Ω) such that ϕ ≡ 1 in a neighborhood of the
origin.

2.3 The system case
Now, consider the system

−∆pu = λf(x, u) + u|u|α−1|v|β+1,

−∆qv = µg(x, v) + |u|α+1|v|β−1v,
(2.18)

together with Dirichlet or mixed boundary conditions
u|Γ1 = 0 and ∂u

∂ν
|Σ1 = 0,

v|Γ2 = 0 and ∂v
∂ν
|Σ2 = 0,

(2.19)

where, Ω is a bounded domain in RN , N ≥ 3, with smooth boundary ∂Ω = Γi ∪ Σi,
where Γi and Σi are smooth (N − 1)-dimensional submanifolds of ∂Ω with positive
measures such that Γi ∩ Σi = ∅, i ∈ {1, 2}. ∆p is the p-Laplacian and ∂

∂ν
is the
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outer normal derivative. Also, it is clear that when Γ1 = Γ2 = ∂Ω, one deals with
homogeneous Dirichlet boundary conditions. We assume here that

1 < p < N, 1 < q < N, (2.20)

and the critical condition
α+ 1

p∗
+
β + 1

q∗
= 1. (2.21)

Indeed, this condition represents the maximal growth such that the integrability of
the product term |u|α+1|v|β+1 (which will appear in the Euler-Lagrange functional)
can be guaranteed by suitable Hölder estimates.

The functions f and g are two caratheodory functions which satisfy the growth
conditions

|f(x, u)| = o(up∗−1) as u→ +∞, uniformly in x, (2.22)
|g(x, v)| = o(vq∗−1) as v → +∞, uniformly in x. (2.23)

Problem (2.18), together with (2.19), is posed in the framework of the Sobolev space
W = W 1,p

Γ1
(Ω)×W 1,q

Γ2
(Ω), where

W 1,p
Γ1

(Ω) = {u ∈ W 1,p(Ω) : u|Γ1 = 0}, W 1,q
Γ2

(Ω) = {u ∈ W 1,q(Ω) : u|Γ2 = 0},

which are respectively the closure of C1
0(Ω∩Γ1,R) with respect to the norm of W 1,p(Ω)

and C1
0(Ω ∩ Γ2,R) with respect to the norm of W 1,q(Ω). Notice that meas(Γi) > 0,

i = 1, 2, imply that the Poincaré inequality is still available in W 1,p
Γ1

(Ω) and W 1,q
Γ2

(Ω),
so W can be endowed with the norm

||(u, v)|| = ||∇u||p + ||∇v||q
and (W, || . ||) is a reflexive and separable Banach space. The associated Euler-
Lagrange functional Iλ,µ ∈ C1(W,R) is given by

Iλ,µ(u, v) = (α+1)

(
P (u)

p
− λ

∫
Ω

F (x, u)

)
+(β+1)

(
Q(v)

q
− µ

∫
Ω

G(x, v)

)
−R(u, v),

where P (u) = ||∇u||pp, Q(v) = ||∇v||qq, F (x, u) =
∫ u

0
f(x, s) ds, G(x, v) =

∫ v

0
g(x, t) dt,

and R(u, v) =
∫

Ω
|u|α+1|v|β+1dx. Notice that R(u, v) ≤ ||u||α+1

p∗ ||v||β+1
q∗ < +∞.

Consider the Nehari manifold associated to Problem (2.18) given by

Nλ,µ = {(u, v) ∈ W \ {(0, 0)} / D1Iλ,µ(u, v)(u) = D2Iλ,µ(u, v)(v) = 0},

where D1Iλ,µ and D2Iλ,µ are the derivative of Iλ,µ with respect to the first variable
and the second variable respectively.

An interesting and useful characterization of Nλ,µ is the following

Nλ,µ = {(su, tv) / (s, u, t, v) ∈ Z∗ and ∂sIλ,µ(su, tv) = ∂tIλ,µ(su, tv) = 0},

where

Z∗ = {(s, u, t, v); (s, t) ∈ R2, (u, v) ∈ W 1,p
Γ1

(Ω)×W 1,q
Γ2

(Ω), (su, tv) 6= (0, 0)}

and Iλ,µ is considered as a functional of four variables (s, u, t, v) in Z := R×W 1,p
Γ1

(Ω)×
R×W 1,q

Γ2
(Ω).

9



Definition 1 Let λ and µ be two real parameters. A sequence (un, vn) ∈ W is a
Palais-Smale sequence of the functional Iλ,µ if

• there exists c ∈ R such that lim
n→+∞

Iλ,µ(un, vn) = c (2.24)

• DIλ,µ(un, vn) converges strongly in the dual W ′ of W (2.25)

where DIλ,µ(un, vn) denotes the Gâteaux derivative of Iλ,µ.

The last condition (2.25) implies that

D1Iλ,µ(un, vn)(un) = o (||un||p∗) (2.26)
D2Iλ,µ(un, vn)(vn) = o (||vn||q∗). (2.27)

where D1Iλ,µ(un, vn) (resp. D2Iλ,µ(un, vn)) denotes the Gâteaux derivative of Iλ,µ with
respect to its first (resp. second) variable.

We introduce the critical level corresponding to Problem (2.18) by

c∗(λ, µ) := inf
w∈N0,0

I0,0(w) + inf
w∈Nλ,µ∪{(0,0)}

Iλ,µ(w). (2.28)

Then we have the following

Theorem 2 Let λ and µ be two real parameters and (un, vn) be a Palais-Smale
sequence of Iλ,µ such that

c := lim
n→+∞

Iλ,µ(un, vn) < c∗(λ, µ). (2.29)

Then (un, vn) relatively compact.

Proof. Let λ and µ be two real parameters and (un, vn) be a Palais-Smale sequence
of Iλ,µ satisfying the condition (2.29). We claim that (un, vn) is bounded inW . Indeed,
on one hand conditions (2.24), (2.26) and (2.27) can be rewritten as the following

Iλ,µ(un, vn) = c+ on(1) (2.30)

P (un)− λ

∫
Ω

f(x, un)un dx = R(un, vn) + o (||un||p∗) (2.31)

Q(vn)− µ

∫
Ω

f(x, vn)vn dx = R(un, vn) + o (||vn||q∗). (2.32)

Using (2.21), one gets

R(un, vn) =
α+ 1

p∗

(
P (un)− λ

∫
Ω

f(x, un)un

)
+ o (||un||p∗)

+
β + 1

q∗

(
Q(vn)− µ

∫
Ω

g(x, vn)vn

)
+ o (||vn||q∗). (2.33)

Suppose that there is a subsequence, still denoted by (un, vn) in W which is
unbounded, i.e. ||∇un||p + ||∇vn||q tends to +∞ as n goes to +∞.
If

lim
n→+∞

||∇un||p = +∞,
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then using (2.22) one has ∫
Ω

|f(x, un)un| = o (P (un)),∫
Ω

|F (x, un)| = o (P (un)),

since (2.22) implies that for every ε > 0, there exists c1(ε) > 0 such that

|f(x, s)| ≤ ε|s|p∗−1 + c1 and |F (x, s)| ≤ ε

p∗
|s|p∗ + c1, a.e. x ∈ Ω, ∀ s ∈ R.

Similarly, if
lim

n→+∞
||∇vn||q = +∞,

then using (2.23) it follows ∫
Ω

|g(x, vn)vn| = o (Q(vn)),∫
Ω

|G(x, vn)| = o (Q(vn)).

On one hand, suppose that

lim
n→+∞

||∇un||p = lim
n→+∞

||∇vn||q = +∞.

Substituting (2.33) in (2.30), we obtain

c+ on(1) = (α+ 1)

(
1

p
− 1

p∗
+ o (P (un))

p∗−p
p

)
P (un)

+ (β + 1)

(
1

q
− 1

q∗
+ o (Q(vn))

q∗−q
q

)
Q(vn) −→n→+∞ +∞

which can not hold true. On the other hand, suppose that

lim
n→+∞

||∇un||p = +∞ and the sequence ||∇vn||q is bounded,

then (2.31) implies that R(un, vn) is unbounded while (2.32) implies, on the contrary,
that R(un, vn) is bounded. The case

lim
n→+∞

||∇vn||q = +∞ and the sequence ||∇un||p is bounded,

leads to a contradiction with the same argument, which achieves the claim.
At this stage, we can assume, up to a subsequence, that

un ⇀ u in W 1,p
Γ1

(Ω),

vn ⇀ v in W 1,q
Γ2

(Ω),

un → u a.e. in Ω,

vn → v a.e. in Ω.

11



It is clear that
(u, v) ∈ Nλ,µ ∪ {(0, 0)}.

Let us set
Xn = un − u and Yn = vn − v.

Using again the growth conditions (2.22) and (2.23), we show easily that the functions,
which are defined on Ω×R: (x, s) 7→ sf(x, s), (x, s) 7→ sg(x, s), (x, s) 7→ F (x, s) and
(x, s) 7→ G(x, s) satisfy the conditions of the Brézis-Lieb lemma [6]. Then, we have
the decompositions∫

Ω

F (x,Xn) =

∫
Ω

F (x, un)−
∫

Ω

F (x, u) + on(1),∫
Ω

f(x,Xn)Xn =

∫
Ω

f(x, un)un −
∫

Ω

f(x, u)u+ on(1),∫
Ω

G(x, Yn) =

∫
Ω

G(x, vn)−
∫

Ω

G(x, v) + on(1),∫
Ω

g(x, Yn)Yn =

∫
Ω

g(x, vn)vn −
∫

Ω

g(x, v)v + on(1).

Moreover, let ε > 0, then there is c1(ε) > 0 such that∣∣∣∣∫
Ω

f(x,Xn)Xn dx

∣∣∣∣ ≤ ε||Xn||p
∗

p∗ + c1||Xn||1.

Let C be a positive constant such that ||Xn||p
∗

p∗ ≤ C. Since Xn converges to 0 in
L1(Ω), there exists n0(ε) ∈ N verifying ||Xn||1 ≤ ε/c1, for every n ≥ n0(ε), thus∣∣∣∣∫

Ω

f(x,Xn)Xn dx

∣∣∣∣ ≤ ε(1 + C), ∀n ≥ n0(ε).

In the same manner, writing F (x,Xn) =
∫ Xn

0
f(x, s) ds and using the same arguments

as above, we get ∫
Ω

F (x,Xn) = on(1) and
∫

Ω

f(x,Xn)Xn = on(1).

Similarly, it follows that∫
Ω

G(x, Yn) = on(1) and
∫

Ω

g(x, Yn)Yn = on(1).

Applying a slightly modified version of the Brézis-Lieb lemma [13], one has

R(Xn, Yn) = R(un, vn)−R(u, v) + on(1).

It follows that

P (Xn)−R(Xn, Yn) = on(1),

Q(Yn)−R(Xn, Yn) = on(1),

I0,0(Xn, Yn) = c− Iλ,µ(u, v) + on(1).

12



Notice that the Nehari manifold associated to I0,0 is given by

N0,0 =
{
(s0(u, v)u, t0(u, v)v); (u, v) ∈ W 1,p

Γ1
(Ω)×W 1,q

Γ2
(Ω), u 6≡ 0, v 6≡ 0

}
,

where

s0(u, v) =

[
P (u)Q(v)

r(β+1)
q(α+1)

R(u, v)
r

α+1

] 1
r−p

, t0(u, v) = t(s0(u, v)),

and

r =
(α+ 1)q

q − (β + 1)
> p, t(s) =

[
R(u, v)

Q(v)

] r
q(α+1)

s
r
q .

Let ` be the common limit of P (Xn), Q(Yn) and R(Xn, Yn). We claim that ` = 0. By
contradiction, suppose that ` 6= 0, then on one hand we get

I0,0(s0(Xn, Yn)Xn, t0(Xn, Yn)Yn) = (α+ 1)

(
1

p
− 1

r

)
K(Xn, Yn), (2.34)

≥ inf
w∈N0,0

I0,0(w),

where

K(Xn, Yn) =

[
P (Xn)(α+1)Q(Yn)(β+1) p

q

R(Xn, Yn)p

] r
(α+1)(r−p)

.

A direct computation shows that

lim
n→+∞

K(Xn, Yn) = `,

therefore

lim
n→+∞

I0,0(s0(Xn, Yn)Xn, t0(Xn, Yn)Yn) = `(α+ 1)

(
1

p
− 1

r

)
.

On the other hand,

lim
n→+∞

I0,0(Xn, Yn) = `

(
α+ 1

p
+
β + 1

q
− 1

)
= `(α+ 1)

(
1

p
− 1

r

)
.

Hence, we obtain

`(α+ 1)

(
1

p
− 1

r

)
= c− Iλ,µ(u, v),

and consequently

c ≥ inf
w∈N0,0

I0,0(w) + Iλ,µ(u, v)

≥ inf
w∈N0,0

I0,0(w) + inf
w∈Nλ,µ∪{(0,0)}

Iλ,µ(w).

This leads to a contradiction with (2.29), then ` = 0, which achieves the proof. �
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Remark 2.2 1) In the scalar case, we obtain the analogous of Theorem 2, the proof
follows easily with the same arguments. We note here that if we consider the special
case (1.1), direct computations show that

inf
w∈N0

I0(w) =
1

N
S

N
2 and inf

w∈Nλ∪{0}
Iλ(w) = 0,

which recovers the famous Brézis-Nirenberg condition (1.2).
2) It is clear that our condition (2.7) or (2.29) can be extended to a large class of
quasilinear or semilinear differential operators: Leray-Lions type operators, fourth-
order operators.
3) Using the Hölder inequality in the denominator R(u, v), we get

inf
(u,v)∈N0,0

I0,0(u, v) ≥ (α+ 1)

(
1

p
− 1

r

)[
SpS

p(β+1)
q(α+1)
q

] r
r−p

, (2.35)

where Sp (resp. Sq) denotes the best Sobolev constant in the embedding W 1,p
Γ1

(Ω) ⊂
Lp∗(Ω) (resp. W 1,q

Γ2
(Ω) ⊂ Lq∗(Ω)).

We end this note by the following interesting relation arising in the special case p = q
and Γ1 = Γ2.
Proposition 2.3 Assume that p = q > 1. Then,

inf
(u,v)∈N0,0

I0,0(u, v) =
p

N − p
S

N
p

p .

Proof. In the special case p = q, direct computations give

p∗ = α+ β + 2 and (α+ 1)

(
1

p
− 1

r

)
=

p

N − p
.

Then, using (2.35), we conclude that

inf
(u,v)∈N0,0

I0,0(u, v) ≥
p

N − p
S

N
p

p .

On the other hand, let (un) ⊂ W 1,p
Γ1

(Ω) be a minimizing sequence of Sp. Then using
the identity (2.34), we get

inf
w∈N0,0

I0,0(w) ≤ I0,0(s0(un, un)un, t0(un, un)un) =
p

N − p

[ ||∇un||pp
||un||pp∗

] rp∗
(α+1)(r−p)

=
p

N − p

[ ||∇un||pp
||un||pp∗

]N
p

.

It is clear that the last quantity goes to
p

N − p
S

N
p

p as n+∞, which achieves the proof.

�

Remark 2.4 For the sharpness of the critical level (2.29), we define the sequence
ψn(x) := ϕ(x)Φ1/n(x) as in (2.15). We consider then a Palais-Smale sequence (un, vn)
for Jλ,µ of level infw∈Nλ,µ∪{(0,0)} Iλ,µ(w). Following the same argumets developed in the
scalar case and using Proposition 2.3, we prove that the sequence (un + ψn, vn + ψn)
is a Palais-Smale sequence for Jλ,µ of level c∗(λ, µ) and which can not be relatively
compact in W . This implies the sharpness of the critical level formula (2.29).
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