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Abstract

This article is devoted to the study of the asymptotic behavior of a Caginalp
phase-field system with Neumann boundary conditions and singular potentials. We
first prove the existence and uniqueness of solutions, and then the existence of
exponentials attractors (and thus of finite dimensional global attractors). We finally
study the convergence of solutions to steady states as time goes to infinity ; in
particular, we are able to prove that, in some cases, the trajectories converge to
spatially homogeneous steady states exponentially fast.
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1 Introduction
We consider in this article the following system of partial differential equations in a

bounded smooth domain Ω of R3:
δ ∂tφ−∆φ+ f(φ)− u = g,
ε ∂tu+ ∂tφ−∆u = 0,
∂u
∂n/∂Ω

= 0, ∂φ
∂n/∂Ω

= 0,

φ/t=0 = φ0, u/t=0 = u0,

0 < ε < 1, δ > 0. This system of equations was proposed by G. Caginalp in [4] in
order to model melting-solidification phenomena in certain classes of materials. Here,
u corresponds to the relative temperature and φ is the order parameter, or phase field,
which describes the proportion of either of the phases ; φ = ±1 correspond to the pure
states.
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This system, with various types of boundary conditions and for a regular potential f ,
has been much studied, see, e.g., [1], [2], [3], [4], [8], [13], [17] and the references therein.
In particular, one has satisfactory results on the existence and uniqueness of solutions,
the existence of finite dimensional attractors and the convergence of solutions to steady
states. We note however that, for regular potentials, we are not able to prove that the
order parameter remains in the physically relevant interval [−1, 1].

In this article, we consider the case of singular potentials f ; in particular, we have in
mind the following thermodynamically relevant logarithmic potential:

f(r) = −κ0r + κ1 ln
1 + r

1− r
, r ∈ (−1, 1), 0 < κ0 < κ1.

This problem, with Dirichlet boundary conditions, was considered in [9] ; in particular,
the existence and uniqueness of solutions and the existence of exponential attractors
(see [5]) was proven in [9]. The convergence of solutions to steady states, based on the
Lojasiewicz inequality and the analyticity of f (see [11], [12] and [16]), was proven in
[10] for mixed Dirichlet (for the temperature) and Neumann (for the order parameter)
boundary conditions. We can note that such singular potentials allow to prove that the
order parameter remains strictly between −1 and 1, as it is expected from the physical
point of view, contrary to regular potentials.

In this article, we endow both equations with Neumann boundary conditions. In
particular, this yields that the quantity∫

Ω

(εu+ φ) dx

is conserved. Then, by adapting the techniques of [9], [13] and [17], we study the
existence and uniqueness of solutions, the existence of exponential attractors (and thus
of finite dimensional global attractors) and the convergence of solutions to steady states.
Furthermore, when the above conserved quantity is, in absolute value, large enough, we
can prove that the solutions converge to spatially homogeneous steady states (which are
given explicitly) exponentially fast.

2 Setting of the problem
In this article, we are interested in the study of the long time behavior of the following

problem: 
δ ∂tφ−∆φ+ f(φ)− u = g,
ε ∂tu+ ∂tφ−∆u = 0,
∂u
∂n/∂Ω

= 0, ∂φ
∂n/∂Ω

= 0,

φ/t=0 = φ0, u/t=0 = u0.

(2.1)

We assume that Ω is a bounded smooth domain of R3, that 0 < ε < 1 and δ > 0, and
that the function f satisfies the following conditions:

f ∈ C3(−1, 1), lim
r→±1

f(r) = ±∞, lim
r→±1

f ′(r) = +∞. (H1)
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Such a function f satisfies the following properties (see [9]):

f ′(r) ≥ −K ∀r ∈ (−1, 1),

−c ≤ F (r) ≤ f(r)r + C ∀r ∈ (−1, 1), F (r) =
∫ r

0
f(s)ds,

(2.2)

where K, c and C are strictly positive constants.
Throughout this article, we denote by ‖.‖ and ((., .)) the norm and the scalar

product in L2(Ω), and we set < u >=
1

|Ω|

∫
Ω

u(x) dx for u ∈ L1(Ω). We also set

Aφ = −∆φ + φ, D(A) = H2
N(Ω) (= {φ ∈ H2(Ω),

∂u

∂n/∂Ω
= 0}). Furthermore, we

set ‖φ‖1 = ((A
1
2φ, A

1
2φ))

1
2 , and this norm is equivalent to the usual one in H1(Ω).

Finally, the singularities of the potential f lead us to define the quantity D[u(t)] =
(1− ‖u(t)‖L∞ )−1. Hereafter, C will denote a positive constant which may vary from line
to line, and Q, Qε will denote increasing functions, the latter depending on ε.

3 Existence and uniqueness of the solution
We start with the following theorem, which is the analogue of Theorem 1.1 in [9].

Nevertheless, contrary to [9], our estimates are not independent of ε.

Theorem 3.1 Let M > 0, the nonlinearity f satisfy assumption (H1), and g belong to
L∞(Ω). Then, for any initial datum (φ0, u0) satisfying

D[φ0] + ‖φ0‖2
H2 + ‖u0‖2

H2 < ∞, | < εu0 + φ0 > | ≤ M, (3.3)

equation (2.1) possesses a unique solution (φ(t), u(t)) which satisfies, for t ≥ 0, the
estimate

D[φ(t)]+ ‖φ(t)‖2
H2 + ‖u(t)‖2

H2 ≤ Qε(D[φ0] + ‖φ0‖2
H2 + ‖u0‖2

H2) e−αt + Qε(‖g‖L∞), (3.4)

where the positive constant α and the increasing function Qε are independent of (φ0, u0)
but depend on M .

Proof : We rewrite (2.1) in the form
δ ∂tφ+ Aφ+ f̃(φ)− u = g,
ε ∂tu+ ∂tφ−∆u = 0,
∂u
∂n/∂Ω

= 0, ∂φ
∂n/∂Ω

= 0,

φ/t=0 = φ0, u/t=0 = u0,

(3.5)

with f̃(φ) = f(φ) − φ. The function f̃ still satisfies (2.2). We set F̃ (φ) =

∫ r

0

f̃(s) ds.

Clearly, the first equation of (2.1) (or (3.5)) has a sense provided that φ is separated from
the singular points of f , namely −1 < φ(x, t) < 1 for almost (x, t) ∈ Ω× R+. Hence we
assume that, a priori,

‖φ‖L∞(Ω×R+) < 1.
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Integrating the second equation of (3.5) over Ω, we obtain the following conservation law:

ε < u(t) > + < φ(t) >= ε < u0 > + < φ0 >=: I0 ∀ t ≥ 0.

We multiply the first equation of (3.5) by φ(t) + ∂tφ(t), the second one by u(t), we sum
and integrate over Ω. We obtain, after straightforward simplifications,

1
2

d
dt{δ‖φ(t)‖2 + ‖φ(t)‖2

1 + 2((F̃ (φ(t)), 1)) + ε‖u(t)‖2} + δ
2
‖∂tφ(t)‖2 + ‖φ(t)‖2

1

+((F̃ (φ(t)), 1)) + ‖∇u(t)‖2 ≤ ((u(t), φ(t))) + c‖g‖2 + c′.

This, together with the analogue of Friedrich’s inequality

‖∇u(t)‖2 ≥ C1 ‖u(t)− < u(t) > ‖2 = C1(‖u(t)‖2 − |Ω| < u(t) >2),

lead to

1
2

d
dt{δ‖φ(t)‖2 + ‖φ(t)‖2

1 + 2((F̃ (φ(t)), 1)) + ε‖u(t)‖2} + δ
2
‖∂tφ(t)‖2 + ‖φ(t)‖2

1

+((F̃ (φ(t)), 1)) + C1

2
‖u(t)‖2 ≤ C‖g‖2 + C ′ + C1|Ω| (I0+1)2

ε2

≤ C‖g‖2 + C ′ +
C ′′

ε2
.

Thus, for some appropriate positive constant α > 0, we have

d
dt{δ‖φ(t)‖2 + ‖φ(t)‖2

1 + 2((F̃ (φ(t)), 1)) + ε‖u(t)‖2} + δ‖∂tφ(t)‖2

+α {δ‖φ(t)‖2 + ‖φ(t)‖2
1 + 2((F̃ (φ(t)), 1)) + ε‖u(t)‖2} ≤ C‖g‖2 + C ′ +

C ′′

ε2

and Gronwall’s Lemma implies

‖φ(t)‖2
1 + ε‖u(t)‖2 +

δ

2

∫ t

0

‖∂tφ(s)‖2 e−α(t−s) ds

≤ Q(D[φ0] + ‖φ0‖2
1 + ‖u0‖2) e−αt +Q

′

ε(‖g‖).

(3.6)

Next, we rewrite the second equation of (3.5) as

ε∂tu+ Au = u− ∂tφ,

multiply this equation by Au(t) + ∂tu(t) and integrate over Ω. Again, standard
transformations, as well as (3.6) and Gronwall’s Lemma, yield, for α > 0 small enough,

‖u(t)‖2
1 +

∫ t

0

(‖∂tu(s)‖2 + ‖Au(s)‖2) e−α(t−s) ds

≤ Qε(D[φ0] + ‖φ0‖2
1 + ‖u0‖2

1) e
−αt +Qε(‖g‖).

Thus, combining (3.6) and the latter inequality, we find
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‖u(t)‖2
1 + ‖φ(t)‖2

1 +

∫ t

0

(‖∂tu(s)‖2 + ‖Au(s)‖2 + ‖∂tφ(s)‖2) e−α(t−s) ds

≤ Qε(D[φ0] + ‖φ0‖2
1 + ‖u0‖2

1) e
−αt +Qε(‖g‖).

(3.7)

We differentiate the first equation of (3.5) with respect to t:

δ ∂2
ttφ(t) + A∂tφ(t) + f̃ ′(φ(t))∂tφ(t)− ∂tu(t) = 0,

multiply this equation by ∂tφ(t) and integrate over Ω. Using the fact that f ′(r) ≥ −K,
we obtain

δ

2

d
dt
‖∂tφ(t)‖2 + ‖∂tφ(t)‖2

1 ≤ (K +
1

2
) ‖∂tφ(t)‖2 +

1

2
‖∂tu(t)‖2.

Since ∂tφ(0) =
1

δ
{∆φ(0)− f(φ(0)) + u(0) + g }, Gronwall’s Lemma and (3.7) imply

‖∂tφ(t)‖2 +

∫ t

0

‖∂tφ(s)‖2
1 e

−α(t−s) ds ≤ Qε(D[φ0]+‖φ0‖2
H2 +‖u0‖2

1) e
−αt+Qε(‖g‖). (3.8)

Next, we multiply the first equation of (2.1) by −∆φ(t) and integrate again over Ω. This
yields, after straightforward simplifications,

1

2
‖∆φ(t)‖2 ≤ K‖∇φ(t)‖2 + C(‖∂tφ(t)‖2 + ‖u(t)‖2 + ‖g‖2).

Therefore, combining (3.7) and (3.8), we find

‖φ(t)‖2
H2 ≤ Qε(D[φ0] + ‖φ0‖2

H2 + ‖u0‖2
1) e

−αt + Qε(‖g‖). (3.9)

In order to obtain the u-part of the H2-estimate, we now multiply the equation

ε∂tu−∆u = −∂tφ

by −∆u(t)− ∂t∆u(t), and integrate over Ω. This yields

d
dt
{‖∆u(t)‖2 + ε‖∇u(t)‖2} + ‖∆u(t)‖2 + ε‖∇∂tu(t)‖2 ≤ 1

ε
‖∇∂tφ(t)‖2 + ‖∂tφ(t)‖2.

Thus, applying Gronwall’s Lemma and estimates (3.7), (3.8), (3.9), we have

‖u(t)‖2
H2+‖φ(t)‖2

H2+

∫ t

0

‖∇∂tu(s)‖2 e−α(t−s)ds ≤ Qε(D[φ0]+‖u0‖2
H2+‖φ0‖2

H2)e−αt+Qε(‖g‖).

(3.10)
Finally, we write

δ ∂tφ(t)−∆φ(t) + f(φ(t)) = hu(t) = u(t) + g,
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with

‖hu(t)‖L∞ ≤ c ‖u(t)‖H2 + ‖g‖L∞ ≤ Q(D[φ0] + ‖u0‖2
H2 + ‖φ0‖2

H2) e−αt +Q(‖g‖L∞).

Arguing as in [9] (the main argument being the comparison principle for second-order
parabolic PDEs), we conclude that

D[φ(t)] ≤ Q(D[φ0] + ‖φ0‖2
H2 + ‖u0‖2

H2)e−αt +Q(‖g‖∞) ∀t ≥ 0.

In particular, we have proven that

‖φ(t)‖L∞ ≤ 1− δ ∀t ≥ 0,

for some δ > 0 depending on D[φ0], ‖φ0‖H2 and ‖u0‖H2 . Hence every solution (φ(t), u(t))
of (3.5) is a priori strictly separated from the singularities r = ±1 of the nonlinearity
f . Thus the existence of a solution of problem (3.5) (or (2.1)) can be studied exactly as
in the case of regular nonlinearities (see, e.g., [13]). The uniqueness of the solution will
follow from Lemma 3.3 below. Furthermore, mimicking ([9], Theorem 1.2), we can also
prove the

Theorem 3.2 Under the assumptions of Theorem 3.1, every solution (φ(t), u(t)) of
problem (2.1) satisfies

D[φ(t)] + ‖φ(t)‖2
H2 + ‖u(t)‖2

H2 ≤ Qε(t
−1 + ‖u0‖2) e−αt +Qε(‖g‖L∞), t > 0.

Remark 3.1 We have established that the solutions of problem (2.1) are a priori strictly
separated from the singularities −1 and 1 (which implies the existence and uniqueness of
the solution) for the Caginalp system endowed with Neumann boundary conditions. Our
arguments still hold for Dirichlet boundary conditions (see [9]), or for the mixed conditions

φ/∂Ω = 0, ∂u
∂n/∂Ω

= 0.

However, our results are not valid in the case
u/∂Ω = 0, ∂φ

∂n/∂Ω
= 0.

Indeed, estimate (3.10) does not hold anymore, since we cannot apply Green’s formula to

the integral
∫

Ω

∂tφ∆(∂tu) dx.

Next, we give several estimates on the difference of two solutions which are useful for
proving the uniqueness ; they will also be essential in the following section in order to
define the solving semigroup and to establish the existence of an exponential attractor.

Lemma 3.1 Let f , g satisfy the assumptions of Theorem 3.1, and let (φ1, u1), (φ2, u2)
be two solutions of problem (2.1) with initial data (φi(0), ui(0)), i = 1, 2, satisfying (3.3).
Then the following estimate holds for t ≥ 0:

‖φ1(t)− φ2(t)‖2 + ‖u1(t)− u2(t)‖2 ≤ K2 e
K1t (‖φ1(0)− φ2(0)‖2 + ‖u1(0)− u2(0)‖2 ) ,

(3.11)
where the positive constants K1, K2 depend on ε, but are independent of the initial data.
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Proof: We set ψ = φ1 − φ2 and v = u1 − u2. Thus (ψ, v) is solution of
δ ∂tψ −∆ψ + l(t)ψ − v = 0,
ε ∂tv + ∂tψ −∆v = 0,
∂v
∂n/∂Ω

= 0, ∂ψ
∂n /∂Ω

= 0,

ψ/t=0 = φ1(0)− φ2(0), v/t=0 = u1(0)− u2(0),

(3.12)

where l(t) =
∫ 1

0
f ′(sφ1(t)+(1−s)φ2(t)) ds. Integrating the second equation of (3.12) over

Ω, we have
∂t(ε < v(t) > + < ψ(t) >) = 0. (3.13)

Hence, we can rewrite the second equation of (3.12) as

∂t{(εv(t) + ψ(t))− < εv(t) + ψ(t) >} −∆(v(t)− < v(t) >) = 0.

Multiplying this equation by (−∆)−1(εv(t) + ψ(t)− < εv(t) + ψ(t) >) and integrating
over Ω, we obtain

1

2

d
dt
‖εv(t)+ψ(t)− < εv(t)+ψ(t) > ‖2

H−1+((v(t)− < v(t) >, εv(t)+ψ(t)− < εv(t)+ψ(t) >)) = 0.

Thus we have

1
2

d
dt‖εv(t) + ψ(t)− < εv(t) + ψ(t) > ‖2

H−1 + ε‖v(t)− < v(t) > ‖2 + ((v(t), ψ))

− < v(t) >< ψ(t) > |Ω| = 0.

Furthermore, noting that

< εv(t) + ψ(t) >2 = ε2 < v(t) >2 + < ψ(t) >2 +2ε < v(t) >< ψ(t) >,

we find

< v(t) >< ψ(t) >=
1

2ε
< εv(t)+ψ(t) >2 −ε

2
< v(t) >2 − 1

2ε
< ψ(t) >2≤ 1

2ε
< εv(t)+ψ(t) >2 .

Then it follows from (3.13) that

1

2

d
dt
{‖εv(t) + ψ(t)− < εv(t) + ψ(t) > ‖2

H−1+ < εv(t) + ψ(t) >2}+ ε‖v(t)− < v(t) > ‖2

+((v(t), ψ(t))) ≤ |Ω|
2ε

< εv(t) + ψ(t) >2 .

Next, we multiply the first equation of (3.12) by ψ, the second one by ε(εv + ψ), we
sum these equations and integrate over Ω. Standard transformations, together with (2.2),
yield

1

2

d
dt
{δ‖ψ(t)‖2 +ε‖εv(t)+ψ(t)‖2}+

1

2
|∇ψ(t)|2− ((v(t), ψ(t)))+

ε2

2
‖∇v(t)‖2 ≤ K‖ψ(t)‖2.

Combining the last two inequalities, we deduce that
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d
dt{‖εv(t) + ψ(t)− < εv(t) + ψ(t) > ‖2

H−1+ < εv(t) + ψ(t) >2 +δ‖ψ(t)‖2 + ε‖εv(t) + ψ(t)‖2}

≤ |Ω|
ε
< εv(t) + ψ(t) >2 +2K‖ψ(t)‖2.

Thus, setting

E(t) = ‖εv(t)+ψ(t)− < εv(t)+ψ(t) > ‖2
H−1+ < εv(t)+ψ(t) >2 +δ‖ψ(t)‖2+ε‖εv(t)+ψ(t)‖2,

we have

d
dt
E(t) ≤ K1E(t)

and it follows from Gronwall’s Lemma that

‖ψ(t)‖2 + ε‖εv(t) + ψ(t)‖2 ≤ C eK1t (‖ψ(0)‖2 + ‖v(0)‖2).

Finally we conclude that

‖ψ(t)‖2 + ‖v(t)‖2 ≤ K2e
K1t (‖ψ(0)‖2 + ‖v(0)‖2),

where K1, K2 depend on ε. This finishes the proof of Lemma 3.1.

Lemma 3.2 Let f , g satisfy the assumptions of Theorem 3.1, and let (φ1, u1), (φ2, u2) be
two solutions of (2.1) with initial data satisfying (3.3). Then the following estimate holds
for t ≥ 0:

‖φ1(t)− φ2(t)‖2
H2 + ‖u1(t)− u2(t)‖2

H1 + ‖∂tφ1(t)− ∂tφ2(t)‖2

≤ L2 e
L1t
(
‖φ1(0)− φ2(0)‖2

H2 + ‖u1(0)− u2(0)‖2
H1

)
,

(3.14)

where L1, L2 depend on ‖φi(0)‖H2 , ‖ui(0)‖H2 , D[φi(0)], i = 1, 2, and ε.

Proof: We again set ψ = φ1 − φ2, v = u1 − u2, where (ψ, v) is solution of problem (3.12).
We multiply the first equation of (3.12) by ψ+∂tψ, the second one by v, sum and integrate
over Ω to find

1
2

d
dt{‖∇ψ(t)‖2 + δ‖ψ(t)‖2 + ε‖v(t)‖2}+ δ‖∂tψ(t)‖2 + ‖∇v(t)‖2 + ‖∇ψ(t)‖2

≤ (K + 1
2
)‖ψ(t)‖2 + 1

2
‖v(t)‖2 + | ((l(t)ψ(t), ∂tψ(t))) |.

Moreover, according to (3.4), we have, ∀t ≥ 0,

‖φi(t)‖L∞ ≤ 1− δi, δi = δi(‖φi(0)‖H2 , ‖ui(0)‖H2 , D[φi(0)], ε), i = 1, 2.

Then, setting δ0 = min(δ1, δ2), we deduce that

‖sφ1(t) + (1− s)φ2(t)‖L∞ ≤ 1− δ0 ∀ 0 ≤ s ≤ 1,

and, consequently,
‖l(t)‖L∞ ≤ C (= C (δ0)). (3.15)
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Hence we have
| ((l(t)ψ, ∂tψ))| ≤ C‖ψ‖ ‖∂tψ‖,

≤ δ
2
‖∂tψ‖2 + C ′‖ψ‖2.

Combining the above inequalities, we obtain

d
dt
{‖∇ψ(t)‖2 + δ‖ψ(t)‖2 + ε‖v(t)‖2} ≤ C ′

(
‖∇ψ(t)‖2 + δ‖ψ(t)‖2 + ε‖v(t)‖2

)
. (3.16)

Next, we differentiate the first equation of (3.12) with respect to t to find

δ
∂2ψ

∂t2
−∆∂tψ + ∂tl(t)ψ + l(t)∂tψ − ∂tv = 0.

Then we multiply this equation by ∂tψ, multiply the second equation of (3.12) by ∂tv,
sum and integrate over Ω. We know from (3.8) that

‖∂tl(t)‖2 ≤ C (‖∂tφ1(t)‖2+‖∂tφ2(t)‖2) ≤ C̃ (= C̃(D[φi(0)], ‖φi0‖H2 , ‖ui0‖H2 , ε) ), i = 1, 2.

Therefore, we have

1

2

d
dt
{δ‖∂tψ‖2 + ‖∇v‖2}+ ‖∇∂tψ‖2 + ε‖∂tv‖2 ≤ C‖∂tψ‖2 + C̃‖ψ∂tψ‖

≤ C‖∂tψ‖2 + C̃‖ψ‖L4 ‖∂tψ‖L4

≤ C‖∂tψ‖2 + C ′‖ψ‖1 ‖∂tψ‖1

≤ (C + 1
2
)‖∂tψ‖2 + 1

2
‖∇∂tψ‖2 + C ′′‖ψ‖2

1.

We thus deduce from (3.16) that

d
dt{‖∇ψ(t)‖2 + δ‖ψ(t)‖2 + ε‖v(t)‖2 + ‖∇v(t)‖2 + δ‖∂tψ(t)‖2 }

≤ L1 (‖∇ψ(t)‖2 + δ‖ψ(t)‖2 + ε‖v(t)‖2 + ‖∇v(t)‖2 + δ‖∂tψ(t)‖2 )

and, applying Gronwall’s Lemma, we infer

‖ψ(t)‖2
H1 + ‖v(t)‖2

H1 + ‖∂tψ(t)‖2 ≤ LeL1t
(
‖ψ(0)‖2

H1 + ‖v(0)‖2
H1 + ‖∂tψ(0)‖2

)
, (3.17)

where the constants L1, L depend on ‖φi(0)‖H2 , ‖ui(0)‖H2 , D[φi(0)], i = 1, 2, and ε.
Moreover, since δ∂tψ(0) = ∆ψ(0)− l(0)ψ(0) + v(0), we deduce that

‖δ∂tψ(0)‖L2 ≤ C ‖ψ(0)‖H2 + ‖v(0)‖L2 . (3.18)
In the same way, we can write

‖∆ψ(t)‖ ≤ δ‖∂tψ(t)‖L2 + ‖l(t)ψ(t)‖+ ‖v(t)‖,

which, together with (3.15), (3.17) and (3.18), allow to conclude that

‖ψ(t)‖2
H2 + ‖v(t)‖2

H1 + δ‖∂tψ(t)‖2 ≤ L2 e
L1t
(
‖ψ(0)‖2

H2 + ‖v(0)‖2
H1

)
,

which finishes the proof of Lemma 3.2.
Since we have shown that the solutions of problem (2.1) are strictly separated from the

singularities, everything holds as for a regular potential. Thus, mimicking ([13], Lemmata
2.6 and 2.7), we can derive the following smoothing estimates for the difference of two
solutions of (2.1). These will be necessary in order to construct an exponential attractor.
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Lemma 3.3 Let f , g satisfy the assumptions of Theorem 3.1, and let (φ1, u1), (φ2, u2) be
two solutions of (2.1) with initial data satisfying (3.3). Then, there holds for t ≥ 0

‖φ1(t)− φ2(t)‖2
H2 + ‖u1(t)− u2(t)‖2

H2 + ‖∂tφ1(t)− ∂tφ2(t)‖2

≤ K eLt
(
‖φ1(0)− φ2(0)‖2

H2 + ‖u1(0)− u2(0)‖2
H2

)
,

(3.19)

where K,L depend on ‖φi(0)‖H2 , ‖ui(0)‖H2 , D[φi(0)], i = 1, 2, and ε. Furthermore, we
also have the smoothing estimate

‖φ1(t)− φ2(t)‖2
H3 + ‖u1(t)− u2(t)‖2

H3

≤ K eLt t+1
t

(
‖φ1(0)− φ2(0)‖2

H2 + ‖u1(0)− u2(0)‖2
H2

)
, t > 0.

(3.20)

4 Existence of an exponential attractor

4.1 The solving semigroup
Theorem 3.1 allows to define the solving semigroup SMt associated with problem (2.1)

by the following expression:

SMt : ΦM → ΦM , SMt (φ0, u0) := (φ(t), u(t)),

where (φ(t), u(t)) is the unique solution of problem (2.1) with initial datum (φ0, u0),
and

ΦM = {(φ, u) ∈ H2
N(Ω)×H2

N(Ω), ‖φ‖L∞ < 1, | < εu+ φ > | ≤M},

‖(φ, u)‖ΦM
= (‖φ‖2

H2 + ‖u‖2
H2)

1
2 .

Moreover, applying Lemma 3.1, we can extend SMt to a semigroup (still denoted by SMt )
acting on the closure LM of ΦM in [L2(Ω)]2, i.e.

SMt : LM → LM ; LM = {(φ, u) ∈ L∞(Ω)×L2(Ω), ‖φ‖L∞ ≤ 1, | < εu+φ > | ≤M}.

When (φ0, u0) /∈ ΦM , we have, as usual,

SMt (φ0, u0) = [L2(Ω)]2 − lim
n→+∞

SMt (φn0 , u
n
0 ),

where (φn0 , u
n
0 ) ∈ ΦM is such that ‖un0 − u0‖+ ‖φn0 − φ0‖ −→

n→+∞
0.

Finally, we have, thanks to Theorem 3.2, the smoothing property

SMt : LM → ΦM ∀t > 0.

We conclude this section by an auxiliary lemma which will be needed in order to prove
the finite dimensionality of exponential attractors.
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Lemma 4.1 Let T be a strictly positive constant. Under the assumptions of Theorem
3.1, every solution (φ(t), u(t)) of equation (2.1) is Hölder continuous with respect to t, i.e
∀ t ∈ [0, T ] and 0 ≤ s ≤ 1, we have

‖φ(t+ s)− φ(t)‖H2 + ‖u(t+ s)− u(t)‖H2 ≤ Q(‖(φ0, u0)‖ΦM
)s

1
3 .

Proof: We infer from (3.8), (2.1) and (3.4) that

‖φ(t+ s)− φ(t)‖+ ‖u(t+ s)− u(t)‖ ≤ sC(‖(φ0, u0)‖ΦM
).

Thus, applying (3.20) and the following interpolation inequality:

‖v‖H2 ≤ ‖v‖
1
3

L2 ‖v‖
2
3

H3 ∀ v ∈ H3(Ω),

we finish the proof of Lemma 4.1.

4.2 Exponential attractors
We now state the main result of this section, namely the existence of an exponential

attractor associated with the semigroup SMt .

Theorem 4.1 Let the nonlinearity f satisfy assumption (H1), and g belong to L∞(Ω).
Then there exists a compact set MM ⊂ ΦM , called exponential attractor, which satisfies
the following properties:

(i) MM is semi-invariant with respect to the flow SMt associated with problem
(2.1), i.e.

SMt MM ⊂ MM ∀t ≥ 0.

(ii) The fractal dimension of the set MM is finite, i.e.

dimF (MM , ΦM) ≤ C < +∞.

(iii) MM attracts exponentially fast the bounded subsets of ΦM , i.e. there exists
α > 0 such that

distΦM
(SMt B,MM) ≤ Q(‖B‖φM

) e−αt ∀B bounded in ΦM ,

where distΦM
denotes the nonsymmetric Hausdorff distance between sets in ΦM .

For the proof of Theorem 4.1, we proceed as in [6], [7], [13], [9] and first construct an
exponential attractor for a discrete semigroup. For the sake of completeness, we briefly
outline the proof, recalling the main argument, namely the following existence result for
exponential attractors of discrete maps.
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Proposition 4.1 [6] Let Φ1, Φ be two Banach spaces such that Φ1 is compactly embedded
into Φ. Let B be a closed and bounded subset of Φ, and S∗ : B → B be such that, for
every b1, b2 ∈ B,

‖S∗b1 − S∗b
2‖Φ1 ≤ K‖b1 − b2‖Φ. (4.21)

Then, the map S∗ possesses an exponential attractor M∗ ⊂ Φ, i.e. a compact set with
finite fractal dimension which satisfies

S∗M∗ ⊂ M∗, (4.22)
distΦ (S(k)

∗ B,M∗) ≤ c e−γk with c > 0, γ > 0 and k ∈ N. (4.23)

Proof of Theorem 4.1: We set Φ = ΦM , B = {(φ, u) ∈ ΦM ; ‖(φ, u)‖ΦM
≤ 2Q(‖g‖L∞)}.

It follows from Theorem 3.1 that there exists t∗ large enough such that SMt∗ B ⊂ B. We
set S∗ = SMt∗ . Estimate (4.21) is then a direct consequence of (3.20). Thus Proposition
4.1 holds and we infer the existence of a discrete exponential attractor M∗ which satisfies
(4.22) and (4.23).

As usual, we now set
MM = ∪t∈[0,t∗] S

M
t M∗. (4.24)

It is rather standard to verify that the set MM is the desired continuous exponential
attractor. Indeed, (i) follows from (4.22). Furthermore, as a consequence of Lemma 4.1,
the semigroup SMt is Hölder continuous on [0, t∗]×M∗, hence

dimF (MM , ΦM) ≤ dimF (M∗, ΦM) + 3.

Thus, applying Proposition 4.1, we have (ii). Finally, (iii) follows from (4.23) and (3.19).

Remark 4.1 A direct consequence of Theorem 3.2 is the existence of the global attractor
AM , contained in MM . Moreover, according to (iii), we also have

distL2×L2 (SMt B,MM) ≤ C e−γt ∀B bounded in LM , ∀ t > 0.

5 Convergence to a spatially homogeneous equilibrium
when |I0| is large enough

We assume in this section that g = 0. Our aim is to prove that every solution of (2.1)
converges exponentially fast to the spatially homogeneous equilibrium defined by

û = f(φ̂), εû+ φ̂ = I0 (=< εu0 + φ0 >), (5.25)

provided that its initial data are such that |I0| is large enough. To this aim, we give a
preliminary Lemma which will be useful in what follows.

Lemma 5.1 Let the nonlinearity f satisfy assumption (H1), and let M0 < 1 be defined
by

M0 = max{|w|; ∃z ∈]− 1, 1[, f(z) = f(w) and f ′(z) = 0 }.
Then,

|I0| ≥M1 implies |φ̂| ≥ M0,

where φ̂ is defined by (5.25), and M1 = M0 + sup {|f(M0)|, |f(−M0)|}.
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Proof: We assume that |φ̂| < M0, with M0 defined in Lemma 5.1. Then the following
obvious inequality holds:

f(−M0) < f(φ̂) < f(M0).

Thus |f(φ̂)| < sup {|f(M0)|, |f(−M0)|}, and, consequently,

|I0| = |εf(φ̂) + φ̂| < |φ̂|+ |f(φ̂)| < sup {|f(M0)|, |f(−M0)|}+M0 = M1,

which finishes the proof of Lemma 5.1.

Next we recall a result established in [14].

Lemma 5.2 Let f satisfy assumption (H1), and m be a real number such that |m| ≥M0

(M0 being defined in Lemma 5.1). Then there holds

(f(m+ v)− f(m)).v ≥ 0 ∀v ∈ (−1−m, 1−m). (5.26)

Theorem 5.1 We assume that g = 0, and that f satisfies assumption (H1). Then every
solution of (2.1) with initial data such that |I0| ≥ M1 (M1 being given in Lemma 5.1)
satisfies

ε3‖u(t)− û‖2 + ‖φ(t)− φ̂‖2 ≤ C e−αt ∀t > 0,

where (û, φ̂) is given by (5.25), and the constant C depends on ‖u0‖, ‖φ0‖, φ̂, û.

Proof: Let (φ(t), u(t)) = SMt (φ0, u0). We set w(t) = u(t) − û, ϕ(t) = φ(t) − φ̂. Then
(w,ϕ) is solution of the problem

δ ∂tϕ−∆ϕ+ f(φ)− f(φ̂)− w = 0,
ε ∂tw + ∂tϕ−∆w = 0,
∂w
∂n /∂Ω

= 0, ∂ϕ
∂n /∂Ω

= 0,

ϕ/t=0 = φ0 − φ̂, w/t=0 = u0 − û.

(5.27)

From the second equation of (5.27), we infer the conservation law

ε < w(t) > + < ϕ(t) >= ε < w(0) > + < ϕ(0) >= I0 − ε û− φ̂ = 0.

We multiply the second equation of (5.27) by (−∆)−1(εw(t)+ϕ(t)), the first one by ϕ(t),
sum and integrate over Ω to obtain

1

2

d
dt
{‖εw(t)+ϕ(t)‖2

H−1 + δ‖ϕ(t)‖2}+ε‖w(t)‖2+‖∇ϕ(t)‖2+ ((f(φ(t))−f(φ̂), ϕ(t))) = 0.

(5.28)
Since |I0| ≥ M1, we infer from Lemma 5.1 that 1 > |φ̂| ≥ M0. This allows us to apply
(5.26) with v(t) = ϕ(t) ∈ (−1− φ̂, 1− φ̂) and m = φ̂ and we have

((f(φ(t))− f(φ̂), ϕ(t))) ≥ 0.
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Next, we multiply the second equation of (5.27) by ε(εw(t) + ϕ(t)), and integrate again
over Ω. This leads to

ε

2

d
dt
‖εw(t) + ϕ(t)‖2 +

ε2

2
‖∇w(t)‖2 ≤ 1

2
‖∇ϕ(t)‖2.

Combining (5.28) with the last two estimates yields

d
dt
{ε‖εw(t)+ϕ(t)‖2+δ‖ϕ(t)‖2+‖εw(t)+ϕ(t)‖2

−1 }+‖∇ϕ(t)‖2+ε2 ‖∇w(t)‖2+2ε‖w(t)‖2 ≤ 0.

(5.29)
On the other hand, taking into account the fact that 0 < ε < 1, we have

ε‖εw(t) + ϕ(t)‖2 + δ‖ϕ(t)‖2 + ‖εw(t) + ϕ(t)‖2
H−1 ≤ C (ε2‖w(t)‖2 + ‖ϕ(t)‖2). (5.30)

Furthermore, Friedrich’s inequality yields

‖w(t)‖2 ≤ C ′ (‖∇w(t)‖2+ < w(t) >2),
‖ϕ(t)‖2 ≤ C ′ (‖∇ϕ(t)‖2+ < ϕ(t) >2),

so that, applying the conservation law < ϕ(t) >2= ε2 < w(t) >2, we obtain

ε2‖w(t)‖2 + ‖ϕ(t)‖2 ≤ C ′ (‖∇ϕ(t)‖2 + ε2‖∇w(t)‖2 + 2ε2 < w(t) >2 ).

Thus, according to (5.30), we find

ε‖εw(t)+ϕ(t)‖2+δ‖ϕ(t)‖2+‖εw(t)+ϕ(t)‖2
H−1 ≤ C ′′(‖∇ϕ(t)‖2+ε2‖∇w(t)‖2+2ε‖w(t)‖2).

Consequently, we infer from (5.29) the existence of a constant α > 0 such that

d
dt{ε‖εw(t) + ϕ(t)‖2 + δ‖ϕ(t)‖2 + ‖εw(t) + ϕ(t)‖2

H−1 }

+α
(
ε‖εw(t) + ϕ(t)‖2 + δ‖ϕ(t)‖2 + ‖εw(t) + ϕ(t)‖2

H−1

)
≤ 0

and we finish the proof by employing Gronwall’s Lemma.

6 Convergence to an equilibrium
We assume in this section that g = 0. We again consider problem (2.1) and the

corresponding equilibrium problem
−∆φ̄+ f(φ̄)− ū = 0,
εū+ < φ̄ >= I0 (= ε < u0 > + < φ0 >),
∂φ̄
∂n/∂Ω

= 0.
(6.31)

Hereafter, the function f will be assumed to satisfy (H1) and

f is analytic in (−1, 1). (H2)

The main result of this section is given in the following Theorem.
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Theorem 6.1 Let fsatisfy assumptions (H1) and (H2), and let (φ, u) ∈ ΦM be a solution
of (2.1) with g = 0. Then, there exists a solution (φ̄, ū) of problem (6.31) such that

φ(x, t) → φ̄(x),
u(x, t) → ū,

strongly in H2(Ω) as t tends to +∞.

Remark 6.1 Here, contrary to the previous section, we are not able to say to which
equilibrium the solution converges in general ; furthermore, the convergence is not
exponential. Of course, when |I0| is large enough, then the solution converges to the
spatially homogeneous equilibrium exhibited in the previous section.

Our proof follows [17], where a similar result is established, but for the regular potential
f(v) = 1

2
(v3 − v). Thus our task consists in verifying that the result remains valid for a

singular potential satisfying (H1) and (H2). To this aim, we introduce the function

V (φ(t), u(t)) =

∫
Ω

(
1

2
‖∇φ(t)‖2 + F (φ(t)) +

ε

2
‖u(t)‖2

)
dx.

Our first step consists in proving that (ΦM , S
M
t , V ) is a gradient system (see the Appendix

; see also [17]), from which it follows that the ω-limit set ω(φ0, u0) consists of equilibria.

6.1 (ΦM , S
M
t , V ) is a gradient system

The function V is a Lyapounov function, since it satisfies

d
dt
V (φ(t), u(t)) = ((∇φ(t), ∇∂tφ(t))) +

∫
Ω

f(φ(t)) ∂tφ(t) dx+ ε((u(t), ∂tu(t)))

= ((−∆φ(t) + f(φ(t)), ∂tφ(t))) + ε ((u(t), ∂tu(t)))
= ((−δ∂tφ(t) + u(t), ∂tφ(t))) + ε((u(t), ∂tu(t)))
= −δ ‖∂tφ(t)‖2 + ((u(t), ∂tφ(t) + ε∂tu(t)))
= −δ ‖∂tφ(t)‖2 + ((u(t),∆u(t)))
= −δ ‖∂tφ(t)‖2 − ‖∇u(t)‖2 ≤ 0. (6.32)

Next, we verify the first point of the definition of a gradient system (see the Appendix).
Let t1 > 0 be such that V (S(t1)(φ0, u0)) = V (φ0, u0). Then, (6.32) implies

∂tφ(t) = 0, ∇u(t) = 0 ∀t ∈ [0, t1]

and it follows from the second equation of (2.1) that ∂tu(t) = 0 ∀t ∈ [0, t1]. As a
consequence, (φ0, u0) is a stationnary solution.

We then prove that, for every initial datum in ΦM , there exists a time t0 > 0 such
that the orbit actually lies in H3(Ω)×H3(Ω). Since H3(Ω) is compactly embedded into
H2(Ω), this yields the second point of the definition of a gradient system.

We have already stated in Theorem 3.1 that the solutions are strictly separated from
the singularities. Hence we have

‖f ′(φ(t))‖L∞ ≤ C, (6.33)
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where C depends on D[φ0], ‖φ0‖H2 , ‖u0‖H2 , ε. We first differentiate the first equation
of (2.1) with respect to t, multiply the resulting equation by ∂2

ttφ and integrate over Ω to
find

δ‖∂2
ttφ(t)‖2 +

1

2

d
dt
‖∇∂tφ(t)‖2 ≤ δ

2
‖∂2

ttφ(t)‖2 + C‖f ′(φ(t))∂tφ‖2 + C‖∂tu(t)‖2.

Thus
δ ‖∂2

ttφ(t)‖2 +
d
dt
‖∇∂tφ(t)‖2 ≤ C ′ (‖∂tφ(t)‖2 + ‖∂tu(t)‖2).

Moreover, we have∫ t

0

s
d

ds
‖∇∂tφ(s)‖2ds t ‖∇∂tφ(t)‖2 −

∫ t

0

‖∇∂tφ(s)‖2 ds.

Combining the last two estimates, we obtain

δ

∫ t

0

s ‖∂2
ttφ(s)‖2 ds+t ‖∇∂tφ(t)‖2 ≤ C t

∫ t

0

(‖∂tφ(s)‖2+‖∂tu(s)‖2) ds+

∫ t

0

‖∇∂tφ(s)‖2ds,

which yields, applying (3.7) and (3.8) with α = 0,

δ

∫ t

0

s ‖∂2
ttφ(s)‖2 ds+ t ‖∇∂tφ(t)‖2 ≤ C ′t+ C ′′, (6.34)

where the constants C ′, C ′′ depend on ‖φ0‖H2 , ‖u0‖1, D[φ0] and ε. Hence we conclude
that

‖∇∂tφ(t)‖2 ≤ C ′ +
C ′′

t
≤ C ′ +

C ′′

t0
= C0 ∀t ≥ t0 > 0.

Next, we differentiate the second equation of (2.1) with respect to t, multiply the resulting
equation by t ∂2

ttu and integrate over Ω. It follows that

ε t ‖∂2
ttu(t)‖2 +

t

2

d
dt
‖∇∂tu(t)‖2 ≤ εt

2
‖∂2

ttu(t)‖2 +
t

2ε
‖∂2

ttφ(t)‖2.

Thus, integrating over [0, t], we obtain∫ t

0

s
d
ds
‖∇∂tu(s)‖2ds+ ε

∫ t

0

s ‖∂2
ttu(s)‖2 ds ≤

∫ t

0

s

ε
‖∂2

ttφ(s)‖2 ds

and, therefore,

t ‖∇∂tu(t)‖2 + ε

∫ t

0

s ‖∂2
ttu(s)‖2ds ≤

∫ t

0

s

ε
‖∂2

ttφ(s)‖2 ds+

∫ t

0

‖∇∂tu(s)‖2 ds.

Estimates (3.10) and (6.34) then lead to

t ‖∇∂tu(t)‖2 + ε

∫ t

0

s ‖∂2
ttu(s)‖2ds ≤ C + C ′ t.

Hence, we have
‖∇∂tu(t)‖2 ≤ C

′

0 ∀t ≥ t0 > 0. (6.35)

Rewriting the first equation of (2.1) as
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∆φ(t) = δ∂tφ(t) + f(φ(t))− u,

and applying (3.4) and (6.34), we infer

‖∇(∆φ(t))‖ ≤ δ‖∇∂tφ(t)‖+ ‖∇f(φ(t))‖+ ‖∇u(t)‖
≤ C

′′
0 ∀t > t0.

We thus deduce that
‖φ(t)‖H3 ≤ C

′′′

0 ∀t ≥ t0,

where C ′′′
0 depends on D[φ0], ‖u0‖H2 , ‖φ0‖H2 , ε, and t0. In the same way, (6.34) and (6.35)

allow to conclude that

‖∇(∆u(t))‖ ≤ ε‖∇∂tu(t)‖+ ‖∇∂tφ(t)‖
≤ C

′′′
0 ∀t ≥ t0 > 0

and, finally, we deduce that ‖u(t)‖H3 is bounded for all t > t0, hence

Lemma 6.1 The orbit ∪t≥t0 S(t)(φ0, u0) is relatively compact in ΦM . Therefore,
(ΦM , S(t), V ) is a gradient system.

6.2 Proof of theorem 6.1
We proceed as in [17]. However, for the sake of completeness, we give the details

of the proof. Thanks to Lemma 6.1, we know that, for any given (φ0, u0) ∈ ΦM , the
ω− limit set ω(φ0, u0) consists of equilibria. Thus, by definition of the ω− limit set, there
exist (φ̄, ū) ∈ ω(φ0, u0) and a sequence tn → +∞ such that

φ(tn) → φ̄, u(tn) → ū in H2(Ω).

Using (6.32), we necessarily have

V (φ(t), u(t))− V (φ̄, ū) ≥ 0 ∀t ≥ 0.

We first assume that there exists t0 ∈ R+ such that V (φ(t), u(t))−V (φ̄, ū) = 0 ∀t ≥ t0.
Then, it follows from (6.32) that

u(t) = ū, φ(t) = φ̄ ∀t ≥ t0,

hence the result. We thus now assume that V (φ(t), u(t)) > V (φ̄, ū) ∀t ≥ 0. It follows
from (6.32) that

d
dt

(V (φ(t), u(t))− V (φ̄, ū)) + δ‖∂tφ(t)‖2 + ‖∇u(t)‖2 = 0.

Therefore,

− d
dt{(V (φ(t), u(t))− V (φ̄, ū))θ} = θ (V (φ(t), u(t))− V (φ̄, ū))θ−1 (‖∇u(t)‖2 + δ‖∂tφ(t)‖2)

≥ θ (V (φ(t), u(t))− V (φ̄, ū))θ−1 (
√

δ
2
‖∂tφ(t)‖+ 1√

2
‖∇u(t)‖)2.

(6.36)
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According to Lemma 7.2, there exists T > 0 such that

∀t ≥ T, ‖φ(t)− φ̄‖H2 ≤ σ, ‖u(t)− ū‖H2 ≤ σ,

with σ > 0 given in Lemma 7.1. Furthermore, we infer from Lemma 7.1 that

− d
dt
{
(V (φ(t), u(t))− V (φ̄, ū))θ

}
≥ θ

(√
δ

2
‖∂tφ(t)‖+

1√
2
‖∇u(t)‖

)
.

Thus, integrating over [T,+∞[, we obtain√
δ

2

∫ +∞

T

‖∂tφ(s)‖ds +
1√
2

∫ +∞

T

‖∇u(s)‖ds < +∞.

Since we have
‖φ(t)− φ̄‖ ≤ ‖φ(t)− φ(tn)‖+ ‖φ(tn)− φ̄‖

≤
∫ t

tn

‖∂tφ(s)‖ds+ ‖φ(tn)− φ̄‖H2 ,

and

‖u(t)− ū‖H−1 ≤
∫ t

tn

‖∂tu(s)‖H−1ds+ ‖u(tn)− ū‖H−1

≤ Cε

(∫ t

tn

{ ‖∇u(s)‖+ ‖∂tφ(s)‖ } ds+ ‖u(tn)− ū‖H2

)
,

we deduce that
(φ(t), u(t)) −→

t→+∞
(φ̄, ū) in L2(Ω)×H−1(Ω).

By the relative compactness of ∪t≥t0 S(t)(φ0, u0), we finally conclude that

(φ(t), u(t)) −→
t→+∞

(φ̄, ū) in H2(Ω)×H2(Ω),

which finishes the proof of Theorem 6.1.

7 Appendix
Definition 7.1 Assume that Φ is a complete metric space, S(t) is a nonlinear semigroup
defined on Φ and V (φ, u) is a Lyapounov function. Then the system (Φ, S(t), V ) is called
a gradient system if the following conditions are satisfied:
(i) Let (u0, φ0) ∈ Φ. If for all t > 0, V (S(t)(φ0, u0)) = V (φ0, u0), then (φ0, u0) is a fixed
point of the semigroup S(t).
(ii) For any (φ0, u0) ∈ Φ, there exists t0 > 0 such that ∪t≥t0 S(t)(φ0, u0) is relatively
compact in Φ.

Next we state two auxiliary Lemmas. The first one corresponds to a Lojasiewicz-Simon
type inequality. We omit its proof and refer the reader to [17], [15], [10]. Indeed, even
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though our potential is not regular as in [17], we established in Theorem 3.1 that every
solution (φ(t), u(t)) satisfies

‖φ(t)‖L∞ ≤ 1− δ,

and our function f is analytic over [−1 + δ, 1− δ]. Thus, as in [15], [10], we can introduce
a proper extension f̃ of f outside [−1 + δ, 1− δ], where f̃ ∈ C1(R) is such that

f̃(y) = f(y) ∀ y ∈ [−1 + δ, 1− δ],

|f̃(y)| ≤ c ∀y ∈ R, c > 0.

Lemma 7.1 Let (φ̄, ū) be a solution of (6.31). Then, there exist σ > 0, θ ∈ (0, 1
2
)

depending on (φ̄, ū) such that, ∀ (φ(t), u(t)) ∈ ΦM which satisfies the following two
conditions:

(i) ε < u(t) > + < φ(t) >= I0,

(ii) ‖φ(t)− φ̄‖H2 ≤ σ, ‖u(t)− ū‖H2 ≤ σ,

the following estimate holds:

|V (φ(t), u(t))− V (φ̄, ū)|1−θ ≤ 1√
2δ
‖∆φ(t)− f(φ(t)) + u(t)‖ +

1√
2
‖∇u(t)‖.

Lemma 7.2 Let (φ, u) ∈ ΦM be a solution of (2.1) with g = 0 and assume that there
exists a sequence tn → +∞ such that

φ(tn) −→ φ̄ and u(tn)−→ ū strongly in H2(Ω).
Then there exists T > 0 such that

‖φ(t)− φ̄‖H2 ≤ σ and ‖u(t)− ū‖H2 ≤ σ ∀t ≥ T,

with σ given in Lemma 7.1.

Proof of Lemma 7.2: By assumption, for every 0 < ν < σ, there exists N such that

∀n ≥ N, ‖u(tn)− ū‖H2 ≤ ν
2
, ‖φ(tn)− φ̄‖H2 ≤ ν

2

and C0(V (φ(tn), u(tn))− V (φ̄, ū))θ ≤ ν
2
, C0 =

√
2
θε

( 1√
δ

+ 1).
(7.37)

We set

t̃n = sup {t > tn / ‖u(s)− ū‖H2 < σ, ‖φ(s)− φ̄‖H2 < σ ; ∀s ∈ [tn, t]}.

Let us assume that t̃n < +∞ ∀n ≥ N. Then, ∀ t ∈ [tn, t̃n], (6.36) and Lemma 7.1 imply

− d
dt

(V (φ(t), u(t))− V (φ̄, ū))θ ≥ θ

(√
δ

2
‖∂tφ(t)‖+

1√
2
‖∇u(t)‖

)
.

Thus, integrating over [tn, t̃n], we have∫ t̃n

tn

‖∂tφ(s)‖ ds ≤ 1

θ

√
2

δ
(V (φ(tn), u(tn))− V (φ̄, ū))θ ≤ ν

2
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and, using (7.37), we infer

‖φ(t̃n)− φ̄‖ ≤ ‖φ(t̃n)− φ(tn)‖+ ‖φ(tn)− φ̄‖
≤

∫ t̃n
tn
‖∂tφ(s)‖ds + ‖φ(tn)− φ̄‖H2

≤ ν.

We thus deduce that
φ(t̃n) −→

n→+∞
φ̄ in L2(Ω).

In the same way, we can prove that u(t̃n) −→
n→+∞

ū in H−1(Ω). By the relative compactness

of the orbit, there exists a subsequence (φ(t̃n), u(t̃n)), still denoted by (φ(t̃n), u(t̃n)), such
that φ(t̃n) → φ̄ in H2(Ω). So, if n is big enough, we have

‖φ(t̃n)− φ̄‖H2 <
σ

2
and ‖u(t̃n)− ū‖H2 <

σ

2
,

which contradicts the definition of t̃n. Thus, there exists n0 > 0 such that t̃n0 = +∞ and
Lemma 7.2 is proven, with T = tn0 .
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