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Abstract.

If F is a polynomial endomorphism of CN , let C(X)F denote the field of rational functions
r ∈ C(x1, . . . , xN) such that r ◦ F = r. We will say that F is quasi-locally finite if there
exists a nonzero p ∈ C(X)F [T ] such that p(F ) = 0. This terminology comes out from
the fact that this definition is less restrictive than the one of locally finite endomorphisms
made in [6]. Indeed, F was called locally finite if there exists a nonzero p ∈ C[T ] such
that p(F ) = 0. In the present paper, we will show that F is quasi-locally finite if and only
if for each a ∈ CN the sequence n 7→ F n(a) is a linear recurrent sequence. We will also
give a few basic results on such endomorphisms. For example: they satisfy the Jacobian
Conjecture.
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INTRODUCTION.

Let us denote by AN = CN the complex affine space of dimension N and by End the
set of polynomial endomorphisms of AN . As usual, we identify an element F of End
to the N -uple of its coordinate functions F = (F1, . . . , FN) where each FL belongs to
the ring C[X] := C[x1, . . . , xN ] of regular functions on AN . We will therefore write
End = C[X]N . Let us set C(X) := C(x1, . . . , xN), C(X)F := {r ∈ C(X), r ◦ F = r} and
C[X]F := C(X)F ∩ C[X]. We recall that F is called dynamically trivial if its dynamical
degree dd(F ) := lim

n→∞
(deg F n)

1
n is equal to one (see [4]). In the case where F is an

automorphism, this is equivalent to saying that its topological entropy h(F ) is zero (see
[9]). A first subclass of dynamically trivial polynomial endomorphisms was introduced in
[6]. It is the set of polynomial endomorphism F which are locally finite (LF for short)
in the following sense: the complex vector space generated by the r ◦ F n, n ≥ 0, is finite
dimensional for each r ∈ C[X]. In the last quoted paper, it is shown that this property
is equivalent to saying that the sequence n 7→ deg F n is upper bounded or to saying that
there exists a nonzero p ∈ C[T ] such that p(F ) = 0. Here, we will be interested by the
wider class of polynomial endomorphisms F which are quasi-locally finite (QLF for short)
in the following sense: there exists a nonzero p ∈ C(X)F [T ] such that p(F ) = 0.



Section I is devoted to generalites. We introduce the minimal polynomial νF ∈ C(X)F [T ]
of a QLF polynomial endomorphism F and show in prop. 1.3 that in fact νF ∈ C[X]F [T ].
In prop. 1.5 we show that for any QLF polynomial endomorphism F the sequence
n 7→ deg F n has at most linear growth. Therefore, as announced, any QLF polynomial
endomorphism is dynamically trivial. In section II, we prove our main theorem assert-
ing that F is QLF if and only if the sequence n 7→ F n(a) is a linear recurrent sequence
for any a ∈ AN . In section III, we give two criteria for invertibility of QLF polynomial
endomorphisms.

I. GENERALITIES.

Let F ∈ End. In [6], we noticed that IF := {p ∈ C[T ], p(F ) = 0} is an ideal of C[T ].
Indeed, it is a complex vector subspace of C[T ] which is stable by multiplication by T .
In the case where F is LF, i.e. when IF 6= {0}, we will denote by µF the (unique) monic
polynomial generating this ideal. By the same way, I ′F := {p ∈ C(X)F [T ], p(F ) = 0} is
an ideal of C(X)F [T ]. In the case where F is QLF, i.e. when I ′F 6= {0}, we will denote
by νF the (unique) monic polynomial generating this ideal.

Proposition 1.1. If F ∈ End is QLF, the following assertions are equivalent:
(i) F is LF; (ii) νF ∈ C[T ].

Furthermore, if these assertions are satisfied, we have µF = νF .

Proof. If F is LF, it is clear that νF divides µF in C(X)F [T ]. But since µF ∈ C[T ], we
clearly have νF ∈ C[T ]. Conversely, if νF ∈ C[T ], then F is obviously LF. �

We introduce the language of linear recurrent sequences (LRS for short) and we refer to
[2] for a nice overview of this subject. Let K be any field and let V be any vector space
over K. The set of sequences u : N → V will be denoted by V N. If p =

∑
k

pkT
k ∈ K[T ],

we define p(u) ∈ V N by the formula ∀n ∈ N,
(
p(u)

)
(n) =

∑
k

pk u(n + k) and we set

Iu := {p ∈ K[T ], p(u) = 0}. It is easy to show that Iu is an ideal of K[T ]. We say that
u ∈ V N is a LRS if Iu 6= {0}. In this case, we define the minimal polynomial of u as
the (unique) monic polynomial µu generating the ideal Iu. By a LRS of K, we will mean
a LRS of the vector space K over K. If a LRS of K takes values in a subfield K ′, it is
well known that its minimal polynomial belongs to K ′[T ]. More generally, we have the
following result.

Lemma. If u is a LRS of a field K taking values in a subring A which is noetherian and
factorial, then µu ∈ A[T ].

Proof. We may assume that K is the field of fractions of A. Since A is factorial, it is
sufficient to prove that Iu = {p ∈ K[T ], p(u) = 0} contains a monic polynomial with
coefficients in A. If v = (vn)n∈N ∈ AN, let us denote by E(v) the sequence (vn+1)n∈N. Let
M be the A-module generated by the Ek(u), k ∈ N. If p is a nonzero element of Iu, it is
clear that ∀ v ∈ M, p(v) = 0. Therefore, if d := deg p, the map M → Ad, v 7→ (vk)0≤k≤d−1
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is injective. Since A is noetherian, this shows that M is a finite A-module. Let m ≥ 0 be
such that the Ek(u), 0 ≤ k ≤ m, generate M . There exist λk ∈ A, 0 ≤ k ≤ m, such that
Em+1(u) =

∑
0≤k≤m

λkE
k(u). In other words, Tm+1 −

∑
0≤k≤m

λkT
k ∈ Iu. �

Example. Any LRS with values in Z admits a minimal polynomial in Z[T ].

The next trivial result relates QLF polynomial endomorphisms and LRS.

Proposition 1.2. If F ∈ End, the following assertions are equivalent:
(i) F is QLF;
(ii) the sequence n 7→ F n is a LRS of C(X)N considered as a vector space over C(X)F .
Furthermore, if these assertions are satisfied, the associated minimal polynomials are
equal.

Proof. If p =
∑

k

pkT
k ∈ C(X)F [T ],

∑
k

pk F k = 0 ⇐⇒ ∀n ∈ N,
∑

k

pk F k+n = 0. �

Proposition 1.3. If F ∈ End is QLF, then νF ∈ C[X]F [T ].

Proof. It follows from prop. 1.2 that the sequence n 7→ F n is a LRS of the vector space
C(X)N over C(X). If 1 ≤ L ≤ N , let us denote by ΠL : C(X)N → C(X) the L-th
projection. Each sequence n 7→ ΠL(F n) being a LRS of the field C(X) with values in
C[X], its minimal polynomial µL,F has coefficients in C[X]. Since νF = lcm

1≤L≤N
µL,F , we

are done. �

Proposition 1.4. If F ∈ End, the following assertions are equivalent:
(i) F is QLF;
(ii) the sequence n 7→ F n is a LRS of C(X)N considered as a vector space over C(X).
Furthermore, if these assertions are satisfied, the associated minimal polynomials are
equal.

Proof. (i) =⇒ (ii) is a direct consequence of prop. 1.2. Let us show (ii) =⇒ (i). Let
p ∈ C(X)[T ] be the minimal polynomial of the sequence n 7→ F n considered as a LRS of
the vector space C(X)N over C(X). The proof of prop. 1.3 shows us that p ∈ C[X][T ]. It
is sufficient to show that p ∈ C[X]F [T ]. If q =

∑
k

qkT
k ∈ C[X][T ], where the qk ∈ C[X],

let us set q̃ :=
∑

k

q̃k T k, where q̃k := qk ◦ F . Since p is a vanishing polynomial of the

sequence n 7→ F n, we have ∀n ∈ N,
∑

k

pk(X)F k+n(X) = 0 and by substituting F (X) to

X, we get ∀n ∈ N,
∑

k

p̃kF
k+1+n = 0 which shows that T p̃(T ) is a vanishing polynomial

of the sequence n 7→ F n, so that p |T p̃ in C(X)[T ]. If we write p(T ) = Tmq(T ) with
q(0) 6= 0, we have Tmq |Tm+1q̃, so that q |T q̃ and finally q | q̃. Therefore, we have p | p̃
and since p and p̃ are monic polynomials of the same degre, we have p = p̃. �
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Remark. In the previous proof, it was useful to show that the coefficients pk of p belong
to C[X] in order to justify the fact that the composition pk ◦ F is well defined.

Proposition 1.5. If F ∈ End is QLF, there exist A, B ≥ 0 such that:
∀n ∈ N, deg F n ≤ A n + B.

Proof. Let a0, . . . , ad−1 ∈ C[X]F be such that F d = ad−1F
d−1 + . . . + a0F

0. Since
F n+d = ad−1F

n+d−1 + . . . + a0F
n, we have deg F n+d ≤ max

0≤k≤d−1
deg akF

n+k. If we set

dn := max
0≤k≤d−1

deg F n+k, A := max
0≤k≤d−1

deg ak and B := d0, we get deg F n+d ≤ A + dn, so

that dn+1 ≤ A + dn and deg F n ≤ dn ≤ A n + B. �

Question. Is the converse true ?

Remark. If N = 2, let us recall that an automorphism F of A2 is dynamically trivial if
and only if it is conjugate (by a polynomial automorphism) to a triangular automorphism
(ax1 +p(x2), bx2 + c), where p(x2) ∈ C[x2] and a, b, c ∈ C are such that ab 6= 0 (see [4] and
[5]). Furthermore, this is equivalent to saying that F is LF (see [6]). Therefore, this is
still equivalent to saying that F is QLF. However, for large values of N , one could check
that these four notions (applied to automorphisms) are indeed different.

Let C[Y ] := C[y1, . . . , ym] and C[Z] := C[z1, . . . , zn] for m,n ≥ 1. We finish this section
by showing that for any P := Tm −

∑
0≤k≤m−1

akT
k ∈ C[Z][T ], where the ak ∈ C[Z], the exists

a QLF endomorphism F whose minimal polynomial νF is equal to P .

Let CP :=


0 . . . 0 a0

1 0 a1

. . . ...
0 1 am−1

 ∈ Mm(C[Z]) be the Companion matrix to P .

It is well known that the minimal polynomial of CP is equal to P . Therefore, if F1, . . . , Fm ∈
C[Y, Z] are defined by t[F1, . . . , Fm] = CP .t[y1, . . . , ym], it is easy to check that F :
(Y, Z) 7→ (F1(Y, Z), . . . , Fm(Y, Z), Z) is a QLF polynomial endomorphism of Cm+n satis-
fying νF = P .

II. MAIN THEOREM.

Here is our main result.

Theorem. Let F ∈ End. The following assertions are equivalent:
(i) for any a ∈ AN the sequence n 7→ F n(a) is a LRS (of the complex vector space CN);
(ii) there exists a non empty Zariski open subset U of AN such that for any a ∈ U the
sequence n 7→ F n(a) is a LRS;
(iii) there exists a non empty open subset U of AN (for the transcendental topology) such
that for any a ∈ U the sequence n 7→ F n(a) is a LRS;
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(iv) F is QLF.

Proof. (i) =⇒ (ii) =⇒ (iii) is obvious and (iv) =⇒ (i) is a direct consequence of prop.
1.3. Let us show that (iii) =⇒ (iv). If 1 ≤ L ≤ N and α ∈ NN , let ΠL,α(F ) be the
coefficient of xα of the polynomial FL. Let C := {ΠL,α(F ), L ∈ {1, . . . , N}, α ∈ NN} be
the set of coefficients of F and let K := Q(C) be the field extension of Q generated by C.

First claim. There exists a = (a1, . . . , aN) ∈ U such that a1, . . . , aN ∈ C are algebraically
independant over K.

Let R > 0 and u = (u1, . . . , uN) ∈ U be such that:
D := {(z1, . . . , zN) ∈ CN , 1 ≤ L ≤ N =⇒ |zL − uL| < R} ⊂ U .
If we set DL := {z ∈ C, |z−uL| < R}, we have D = D1× . . .×DN . Let us construct, by
finite induction on L, a complex sequence (aL)1≤L≤N such that for each L: aL ∈ DL and
aL is transcendental over K(a1, . . . , aL−1). Let us assume that a1, . . . , aL−1 are already
constructed and that they satisfy the wanted hypothesis. Let us note that the algebraic
closure KL of K(a1, . . . , aL−1) in C is countable (since K(a1, . . . , aL−1) is countable). Since
DL is uncountable, there exists aL ∈ DL \KL.

Using prop. 1.4, it is sufficient to show our

Second claim. There exists a nonnegative integer d and rational functions α0, . . . , αd−1 ∈
C(X) such that ∀ n ∈ N, F n+d = αd−1F

n+d−1 + . . . + α0F
n.

We begin to note that for each n the coefficients of F n belong to the field K. Let us
set K ′ := K(a1, . . . , aN). The sequence (F n(a))n∈N is a LRS of (K ′)N considered as a
vector space over K ′. If 1 ≤ L ≤ N , let ΠL : (K ′)N → K ′ be the L-th projection.
The sequence n 7→ ΠL (F n(a)) being a LRS of K ′, its minimal polynomial µL belongs to
K ′[T ]. Since the minimal polynomial µ of the sequence n 7→ F n(a) satisfies µ = lcm

L
µL,

we have µ ∈ K ′[T ]. Let us write µ = T d − βd−1T
d−1 + . . . β0, where the βk ∈ K ′. Let

αk ∈ K(x1, . . . , xN) be such that βk = αk(a1, . . . , aN). We have:
∀n ∈ N, F n+d(a1, . . . , aN) =

∑
0≤k≤d−1

αk(a1, . . . , aN) F n+k(a1, . . . , aN)

and since a1, . . . , aN are algebraically independant over K, we obtain:
∀n ∈ N, F n+d(X) =

∑
0≤k≤d−1

αk(X) F n+k(X). �

Remarks. 1. Let us recall that the rank of a LRS u is the degree of its minimal
polynomial. If u is a complex sequence, its Hankel matrix is defined by

H(u) :=


u0 u1 . . . un . . .
u1 u2 . . . un+1 . . .
...

...
...

un un+1 . . . u2n . . .
...

...
...

 and we have:

rk u ≤ m ⇐⇒ all the k × k minors of H(u) are zero for k ≥ m + 1.
If F ∈ End is QLF, let ϕF : AN → N be the map associating to a ∈ AN , the rank
of the LRS n 7→ F n(a). Using the previous point, is is easy to show that ϕF is lower
semicontinuous. This means that for each m ≥ 0, the set Fm := {a ∈ AN , ϕF (a) ≤ m} is
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a (Zariski) closed subset of AN .
2. The proof of the last theorem shows us that deg νF = max

a∈AN
ϕF (a). However, let us

show that ϕF is upper bounded by using the semicontinuity. The equality AN = ∪
n≥0

Fn

implies that AN = Fn for some n ≥ 0. Otherwise, the Un := AN \Fn would be dense open
subsets of AN satisfying ∩

n≥0
Un = ∅ and this would contradict the Baire property.

III. CRITERIA FOR INVERTIBILITY.

Let us denote by I := (x1, . . . , xN) the identity morphism of AN .

Proposition 3.1. If F ∈ End is QLF, then F is an automorphism if and only if νF (0) ∈
C∗.

Proof. Let us write νF =
∑

0≤k≤n

akT
k, where the ak ∈ C[X] and an = 1. If F is an

automorphism, we cannot have a0 = 0, because otherwise p(T ) := νF (T ) T−1 ∈ C[X]F [T ]
and p(F )◦F = 0. Since F is onto, this would imply p(F ) = 0 contradicting the definition
of νF . One would easily check that νF−1 = a−1

0 T n νF (T−1). By prop. 1.3, each coefficient
of νF−1 belongs to C[X]. In particular, the constant coefficient a−1

0 . Since a0 and a−1
0 ∈

C[X], a0 is an invertible element of C[X] so that a0 ∈ C∗. Conversely, if a0 ∈ C∗, then
q(T ) := a0−νF (T )

a0T
∈ C[X]F [T ] satisfies q(T )T ≡ 1 mod νF (T ), so that q(F ) ◦ F = I and F

is an automorphism. �

The Jacobian determinant of an endomorphism F will be denoted by Jac F .

Proposition 3.2. If F ∈ End is QLF, then the Jacobian Conjecture holds for F , i.e. F
is an automorphism if and only if Jac F ∈ C∗.

Proof. If F is an automorphism it is well known and obvious that Jac F ∈ C∗. Con-
versely, if F ∈ End is QLF and satisfies Jac F ∈ C∗, let us show that F is an automor-
phism. If we write νF =

∑
0≤k≤n

akT
k, where the ak ∈ C[X] and an = 1, it is sufficient to

show that a0 ∈ C∗. First and foremost, we cannot have a0 = 0. Indeed, otherwise, we
would have p(F ) ◦ F = 0, where p := νF (T ) T−1 ∈ C[X]F [T ]. If r ∈ C[X] denotes a
nonzero coordinate of p(F ), we would get r(F ) = 0, showing that F1, . . . , FN are alge-
braically dependant over C. This is well known to be equivalent to Jac F = 0 (see [8])
which is impossible. If we set q(T ) := a0−νF (T )

a0T
∈ C(X)F [T ], then q(T )T ≡ 1 mod νF (T ),

so that q(F )◦F = I. This shows that F is a birational automorphism. Since Jac F ∈ C∗,
this is well known to imply that F is an automorphism (see th. 2.1 of [1], cor. 1.1.35 of
[3] or [7]). �
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