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Abstract.

If F is a polynomial endomorphism of CV, let C(X)¥ denote the field of rational functions
r € C(zy,...,zx) such that r o F = r. We will say that F' is quasi-locally finite if there
exists a nonzero p € C(X)¥[T] such that p(F) = 0. This terminology comes out from
the fact that this definition is less restrictive than the one of locally finite endomorphisms
made in [6]. Indeed, F' was called locally finite if there exists a nonzero p € C[T] such
that p(F') = 0. In the present paper, we will show that F' is quasi-locally finite if and only
if for each a € CV the sequence n +— F"(a) is a linear recurrent sequence. We will also
give a few basic results on such endomorphisms. For example: they satisfy the Jacobian
Conjecture.
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INTRODUCTION.

Let us denote by AY = CV the complex affine space of dimension N and by End the
set of polynomial endomorphisms of AY. As usual, we identify an element F of End
to the N-uple of its coordinate functions F' = (Fy,..., Fy) where each Fj belongs to
the ring C[X] := C[zy,...,zy] of regular functions on AY. We will therefore write
End = C[X]V. Let us set C(X) := C(x1,...,2xn), C(X)' :={r e C(X), 70 F =7} and
C[X]F := C(X)F N C[X]. We recall that F is called dynamically trivial if its dynamical
degree dd(F') := lim (deg F")% is equal to one (see [4]). In the case where F is an

automorphism, this is equivalent to saying that its topological entropy h(F') is zero (see
[9]). A first subclass of dynamically trivial polynomial endomorphisms was introduced in
[6]. It is the set of polynomial endomorphism F' which are locally finite (LF for short)
in the following sense: the complex vector space generated by the r o ™ n > 0, is finite
dimensional for each r € C[X]. In the last quoted paper, it is shown that this property
is equivalent to saying that the sequence n — deg F'™ is upper bounded or to saying that
there exists a nonzero p € C[T] such that p(F)) = 0. Here, we will be interested by the
wider class of polynomial endomorphisms F' which are quasi-locally finite (QLF for short)
in the following sense: there exists a nonzero p € C(X)¥[T] such that p(F) = 0.



Section I is devoted to generalites. We introduce the minimal polynomial vz € C(X)¥[T]
of a QLF polynomial endomorphism F' and show in prop. 1.3 that in fact vp € C[X]¥[T].
In prop. 1.5 we show that for any QLF polynomial endomorphism F' the sequence
n +— deg F™ has at most linear growth. Therefore, as announced, any QLF polynomial
endomorphism is dynamically trivial. In section II, we prove our main theorem assert-
ing that F' is QLF if and only if the sequence n +— F"(a) is a linear recurrent sequence
for any a € AY. In section III, we give two criteria for invertibility of QLF polynomial
endomorphisms.

I. GENERALITIES.

Let F' € End. In [6], we noticed that Zp := {p € C[T], p(F) = 0} is an ideal of C[T.
Indeed, it is a complex vector subspace of C[T] which is stable by multiplication by 7.
In the case where F' is LF, i.e. when Zp # {0}, we will denote by up the (unique) monic
polynomial generating this ideal. By the same way, Iy, := {p € C(X)¥'[T], p(F) = 0} is
an ideal of C(X)¥[T]. In the case where F is QLF, i.e. when I} # {0}, we will denote
by vr the (unique) monic polynomial generating this ideal.

Proposition 1.1. If F' € End is QLF, the following assertions are equivalent:
(i) F is LF; (ii) vp € C[T.

Furthermore, if these assertions are satisfied, we have up = vp.

Proof. If F is LF, it is clear that vp divides up in C(X)¥[T]. But since up € C[T], we
clearly have vr € C[T]. Conversely, if vp € C[T], then F is obviously LF. O

We introduce the language of linear recurrent sequences (LRS for short) and we refer to
[2] for a nice overview of this subject. Let K be any field and let V' be any vector space

over K. The set of sequences v : N — V will be denoted by VN. If p = Z T € KT,
k

we define p(u) € V¥ by the formula Vn € N, (p(u)) (n) = Zpk u(n + k) and we set

k
7, :={p € K[T}], p(u) = 0}. It is easy to show that Z, is an ideal of K[T']. We say that
u e VNis a LRS if Z, # {0}. In this case, we define the minimal polynomial of u as
the (unique) monic polynomial y, generating the ideal Z,,. By a LRS of K, we will mean
a LRS of the vector space K over K. If a LRS of K takes values in a subfield K’ it is
well known that its minimal polynomial belongs to K'[T]. More generally, we have the
following result.

Lemma. If u is a LRS of a field K taking values in a subring A which is noetherian and
factorial, then pu, € A[T].

Proof. We may assume that K is the field of fractions of A. Since A is factorial, it is
sufficient to prove that Z, = {p € K[T], p(u) = 0} contains a monic polynomial with
coefficients in A. If v = (v,)neny € AY, let us denote by E(v) the sequence (vp11)nen. Let
M be the A-module generated by the E*(u), k € N. If p is a nonzero element of Z,,, it is
clear that Vv € M, p(v) = 0. Therefore, if d := degp, the map M — A% v — (vg)o<r<d_1



is injective. Since A is noetherian, this shows that M is a finite A-module. Let m > 0 be
such that the E*(u), 0 < k; < m, generate M. There exist A\, € A, 0 < k < m, such that

E™ (u Z MeE*(u). In other words, T+ — Z MNTF €T, O

0<k<m 0<k<m
Example. Any LRS with values in Z admits a minimal polynomial in Z[T.
The next trivial result relates QLF polynomial endomorphisms and LRS.

Proposition 1.2. If F' € End, the following assertions are equivalent:
(i) F is QLF;
(ii) the sequence n +— F™ is a LRS of C(X)¥ considered as a vector space over C(X)*".

Furthermore, if these assertions are satisfied, the associated minimal polynomials are
equal.

Proof. If p=>Y pT* € C(X)"[T], Y mF'=0<=VneN > pF*=0 0O
k k k

Proposition 1.3. If F € End is QLF, then vp € C[X]¥[T].

Proof. It follows from prop. 1.2 that the sequence n — F" is a LRS of the vector space
C(X)N over C(X). If 1 < L < N, let us denote by I, : C(X)¥ — C(X) the L-th
projection. Each sequence n +— Il (F™) being a LRS of the field C(X) with values in
C[X], its minimal polynomial py ¢ has coefficients in C[X]. Since vp = lichgN pLF, We

are done. 0

Proposition 1.4. If F' € End, the following assertions are equivalent:
(i) F is QLF;
(i) the sequence n — F™ is a LRS of C(X)" considered as a vector space over C(X).

Furthermore, if these assertions are satisfied, the associated minimal polynomials are
equal.

Proof. (i) = (ii) is a direct consequence of prop. 1.2. Let us show (ii) = (i). Let
p € C(X)[T] be the minimal polynomial of the sequence n — F™ considered as a LRS of
the vector space C(X )" over C(X). The proof of prop. 1.3 shows us that p € C[X][T]. Tt

is sufficient to show that p € C[X|¥[T]. If ¢ = quT’“ € C[X][T], where the ¢, € C[X],
k

let us set q := Z%Tk , where ¢ := ¢, o F'. Since p is a vanishing polynomial of the
k
sequence n — F™ we have Vn € N, Zpk(X)FH”(X) = 0 and by substituting F'(X) to
k
X, we get Vn € N, Zﬁ}gF’””" = 0 which shows that T'p(T") is a vanishing polynomial

k
of the sequence n +— F" so that p|Tp in C(X)[T]. If we write p(T") = T™q(T) with

q(0) # 0, we have T™q| Tm+1q, so that ¢|Tq and finally ¢|q. Therefore, we have p|p
and since p and p are monic polynomials of the same degre, we have p = p. Il



Remark. In the previous proof, it was useful to show that the coefficients py of p belong
to C[X] in order to justify the fact that the composition py o F' is well defined.

Proposition 1.5. If F' € End is QLF, there exist A, B > 0 such that:
VnéeN, degF" < An+ B.

Proof. Let ag,...,as_1 € C[X]¥ be such that F¢ = a4 1F4 1 + ... + aoF°. Since

Frtd = qq (F*H=1 4 4 qoF™, we have deg F"T? < | nax 1deg apF"E I we set

d, = max degF"* A:= max dega, and B := dy, we get deg F"* < A+d,, so
0<k<d—1 0<k<d—1
that d,,1 < A+d, anddegF" < d, < An+ B. O

Question. Is the converse true ?

Remark. If N = 2, let us recall that an automorphism F of A? is dynamically trivial if
and only if it is conjugate (by a polynomial automorphism) to a triangular automorphism
(az1 4 p(xs), brs+ ), where p(xs) € Clxs] and a, b, ¢ € C are such that ab # 0 (see [4] and
[5]). Furthermore, this is equivalent to saying that F' is LF (see [6]). Therefore, this is
still equivalent to saying that F' is QLF. However, for large values of N, one could check
that these four notions (applied to automorphisms) are indeed different.

Let ClY] := Clyi,...,ym| and C[Z] := C|z1, ..., 2, for m,n > 1. We finish this section
by showing that for any P := T — ZakT"’ € C[Z][T], where the a; € C[Z], the exists

0<k<m—1
a QLF endomorphism F whose minimal polynomial vg is equal to P.

0 ... 0 agp

1 0 a
Let Cp := . ! € M,,(C[Z]) be the Companion matrix to P.

0 1 Qyy—1

It is well known that the minimal polynomial of Cp is equal to P. Therefore, if Fi, ..., F,, €
ClY, Z] are defined by ‘[F1,...,F,] = Cp.'[y1,...,ym], it is easy to check that I :
Y, Z2)— (F\(Y,Z),...,F,(Y,Z),Z) is a QLF polynomial endomorphism of C™" satis-
tying vp = P.

II. MAIN THEOREM.
Here is our main result.

Theorem. Let F' € End. The following assertions are equivalent:
(i) for any a € AN the sequence n +— F"(a) is a LRS (of the complex vector space CV);

(i) there exists a non empty Zariski open subset U of AN such that for any a € U the
sequence n +— F"(a) is a LRS;

(iii) there exists a non empty open subset U of A" (for the transcendental topology) such
that for any a € U the sequence n — F"(a) is a LRS;



(iv) F is QLF.

Proof. (i) = (ii) = (iii) is obvious and (iv) = (i) is a direct consequence of prop.
1.3. Let us show that (iii) = (iv). If 1 < L < N and a € NV, let I} ,(F) be the
coefficient of z of the polynomial Fy. Let C := {1l o(F), L € {1,...,N}, a € NV} be
the set of coefficients of F' and let K := Q(C) be the field extension of Q generated by C.

First claim. There exists a = (ay,...,ay) € U such that ay,...,ay € C are algebraically
independant over K.

Let R > 0 and u = (uq,...,uy) € U be such that:

D:={(z1,...,2v) €ECN 1< L<N= |2 —ug| <R} CU.

If weset Dy :={z€C, |z—ur| < R}, we have D = D; x ... x Dy. Let us construct, by
finite induction on L, a complex sequence (ar)1<r<ny such that for each L: a; € Dy and
ar, is transcendental over K(ay,...,ar_1). Let us assume that a;,...,a;_;1 are already
constructed and that they satisfy the wanted hypothesis. Let us note that the algebraic
closure Ky, of K(ay,...,ar—1) in Cis countable (since K (ay, ..., ar_;) is countable). Since
Dy, is uncountable, there exists ar, € Dy, \ K.

Using prop. 1.4, it is sufficient to show our

Second claim. There exists a nonnegative integer d and rational functions «y,...,aq 1 €
C(X) such that Vn € N, Ftd = a4 (Frrd=t 4 4 agF™.

We begin to note that for each n the coefficients of F" belong to the field K. Let us
set K' := K(ay,...,ay). The sequence (F"(a)), oy is a LRS of (K')Y considered as a
vector space over K'. If 1 < L < N, let II; : (K')Y — K’ be the L-th projection.
The sequence n +— II, (F™(a)) being a LRS of K, its minimal polynomial y;, belongs to
K'[T]. Since the minimal polynomial x of the sequence n — F"(a) satisfies u = chm Lo,

we have u € K'[T]. Let us write yp = T¢ — 34174t + ... B, where the 3, € K'. Let
ar € K(x1,...,xy) be such that gy = ax(ay,...,ay). We have:
VneN, F'"ay, ... ay) :Zak(al, coan) F" ™ ay, . ay)

0<k<d—1
and since aq,...,ay are algebraically independant over K, we obtain:
VneN, F'(X) =) ap(X) F"H(X). O

0<k<d—1

Remarks. 1. Let us recall that the rank of a LRS u is the degree of its minimal
polynomial. If u is a complex sequence, its Hankel matrix is defined by

[ Uo Uy ce Unpn }
Uy (5] cee Uptr
Hu):=| : : : and we have:
Up Upr1 .. U2y

rku < m <= all the k x k minors of H(u) are zero for k > m + 1.

If F € Endis QLF, let ¢ : AY — N be the map associating to a € A", the rank
of the LRS n +— F"(a). Using the previous point, is is easy to show that ¢p is lower
semicontinuous. This means that for each m > 0, the set F,,, := {a € AN, pp(a) < m} is



a (Zariski) closed subset of AV,
2. The proof of the last theorem shows us that degrp = max ¢r(a). However, let us
acA

show that ¢y is upper bounded by using the semicontinuity. The equality AY = go F,

implies that AY = F,, for some n > 0. Otherwise, the U, := AV \ F}, would be dense open
subsets of AV satisfying Qo U, = () and this would contradict the Baire property.

II1. CRITERIA FOR INVERTIBILITY.

Let us denote by I := (z1,...,2zy) the identity morphism of AV,

Proposition 3.1. If F € End is QLF, then F is an automorphism if and only if vr(0) €
C*.

Proof. Let us write vp = Z arT*, where the a; € C[X] and a,, = 1. If F is an
0<k<n
automorphism, we cannot have ag = 0, because otherwise p(T) := vp(T) T~ € C[X]¥[T]
and p(F')o F' = 0. Since F' is onto, this would imply p(F') = 0 contradicting the definition
of vx. One would easily check that vp—1 = ay ' T" vp(T~1). By prop. 1.3, each coefficient
of vp-1 belongs to C[X]. In particular, the constant coefficient a,'. Since ag and a,"' €
C[X], ag is an invertible element of C[X] so that ag € C*. Conversely, if ay € C*, then
q(T) = %?(T) € CIX]¥[T] satisfies ¢(T)T = 1 mod vp(T), so that ¢(F)o F =TI and F
is an automorphism. O

The Jacobian determinant of an endomorphism F' will be denoted by Jac F'.

Proposition 3.2. If F € End is QLF, then the Jacobian Conjecture holds for F', i.e. F
is an automorphism if and only if Jac F' € C*.

Proof. If F is an automorphism it is well known and obvious that JacF' € C*. Con-
versely, if F' € End is QLF and satisfies Jac F' € C*, let us show that F' is an automor-
phism. If we write vp = Z a,T*, where the a;, € C[X] and a,, = 1, it is sufficient to
0<k<n
show that ag € C*. First and foremost, we cannot have aq = 0. Indeed, otherwise, we
would have p(F) o F = 0, where p := vp(T)T~! € CIX|F[T]. If r € C[X] denotes a
nonzero coordinate of p(F'), we would get r(F') = 0, showing that F,..., Fy are alge-
braically dependant over C. This is well known to be equivalent to Jac F = 0 (see [§])
which is impossible. If we set ¢(T) := %1;@) € C(X)F[T], then q(T)T =1 mod vg(T),
so that ¢(F')o F' = I. This shows that F' is a birational automorphism. Since Jac F' € C*,
this is well known to imply that F' is an automorphism (see th. 2.1 of [1], cor. 1.1.35 of
[3] or [7]). O
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