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Abstract.

We describe some classes of subgroups of the n-jet group of analytic automorphisms of
CN fixing the origin. We apply the results to show that any subgroup of the algebraic
automorphism group strictly containing the affine one is dense for the Krull topology. We
also show that any algebraic or analytic automorphism can be interpolated at any order
and at any finite set of points, by a tame one.
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INTRODUCTION.

Let N ≥ 2. Let AN be the vector space V = CN when it is seen as an affine space,
let (e1, . . . , eN) be the canonical basis of V and let (x1, . . . , xN) be the dual basis of V ∗.
Let E (resp. Ẽ) be the space of algebraic (resp. analytic) endomorphisms of CN . We
will identify any element f of E (resp. Ẽ) to the N -uple of its coordinate functions
f = (f1, . . . , fN) where each fL belongs to the ring R = C[x1, . . . , xN ] of regular functions
on AN (resp. the ring R̃ of analytic functions on AN). We will denote by id := (x1, . . . , xN)

the identity element of E. If f ∈ Ẽ, we will denote by f(k) its homogeneous part of degree
k. Let A (resp. Ã) be the group of algebraic (resp. analytic) automorphisms of CN

and let SL (resp. GL, resp. GA) denote the special linear (resp. linear, resp. affine)
group of CN . Let T be the group of algebraic tame automorphisms, i.e. the subgroup
of A generated by GA and by the elementary automorphisms id + p(x)eL, where p is a
polynomial independant of xL. Let T̃ be the group of analytic tame automorphims, i.e.
the subgroup of Ã generated by GA and by the overshears (x′, p(x′) + q(x′)xN), where
x′ = (x1, . . . , xN−1), p, q : CN−1 → C are analytic and q does not vanish (or similar ones
obtained by permuting the variables). The relation G1 ≤ G2 means that G1 is a subgroup
of G2. For k ≥ 0, we set Ek := {f ∈ E, ∀λ ∈ C,∀ a ∈ CN , f(λa) = λk f(a)} and for
K ⊂ N, we set EK := ⊕

k∈K
Ek ⊂ E and AK := A ∩ EK . If S is a sub-semigroup of N,

it is shown in § III.2 below (see prop. 3.1) that A1+S ≤ A (we call monoidal such a
subgroup). If G ≤ Ã, let us agree, that Jn(G) denotes the group of n-jets at the origin
of the elements of G fixing the origin. We have Jn(A1+S) ≤ Jn(A). Our first result is the



following.

Theorem A. Any group G such that GL ≤ G ≤ Jn(A) is equal to some Jn(A1+S) where
S is a sub-semigroup of N.

For a more general description of the groups G such that SL ≤ G ≤ Jn(A), see th. 4.2.
If 1 ≤ k ≤ n, let Jn,k : Jn(Ã) → Jk(Ã) be the natural group-morphism associating to a
n-jet its restricted k-jet. Since Jk(A) ≤ Jk(Ã), we get J−1

n,k (Jk(A)) ≤ Jn(Ã). Actually:

Theorem B. Any group G such that Jn(A) ≤ G ≤ Jn(Ã) is equal to some J−1
n,k (Jk(A))

where 1 ≤ k ≤ n.

Let us agree that the Krull topology on E is the one making it a topological vector space
and such that a basis of open neighbourhoods of the origin is composed by the sets Un
(n ≥ 1) of endomorphisms whose n-jet at the origin is zero. With the induced topology,
A is a topological group. In [3], the author shows that T is dense in A for the Krull
topology and concludes with these words: "very little of the full strength of T is needed
in order to approximate any element of A". The next result completes this statement.

Theorem C. Any subgroup of A strictly larger than GA is dense for the Krull topology.

The last assertion (to be used in [13]) gives the conditions under which it is possible to
interpolate finitely many analytic (resp. algebraic) automorphisms by an analytic (resp.
algebraic) tame automorphism.

Theorem D. Let n ≥ 1, let u[1], . . . , u[m] be distinct points of CN and let f [1], . . . , f [m] be
analytic (resp. algebraic) automorphisms of CN . There exists an analytic (resp. algebraic)
tame automorphism f such that the n-jets of f and f [k] coincide at each u[k] if and only
if the f [k](u[k]) are distinct (resp. the f [k](u[k]) are distinct and the Jacobians of the f [k]

are equal).

Corollary. For any analytic (resp. algebraic) automorphism f , any finite set of points
and any n ≥ 1, there exists a tame analytic (resp. algebraic) automorphism g such that
the n-jets of f and g coincide at these points.

Our paper is divided into six sections. Sections I and II are devoted to establish prelimi-
nary results on the vector space E considered either as a GL-module or as a Lie algebra.
In section III, we introduce the notations and tools that we use in section IV (resp. section
V) to prove th. A,B,C (resp. th. D). Finally, in section VI, we apply some of the previous
notions to variables (or coordinates) and recover a result of [9].

I. THE SPACE E AS A GL-MODULE.

The main aim of this paragraph is to give the decomposition into irreducible submodules
of the GL-module Em, essentially showing that Em splits into two irreducible submod-
ules Em = E0

m ⊕ E1
m, where E0

m := {f ∈ Em,∇f = 0} and E1
m := {∆ r, r ∈ Rm−1},
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with ∇f =
∑

1≤L≤N

∂fL
∂xL

and ∆ r = r id = (r x1, . . . , r xN). However, we will study this

subject in detail. Let SV ∗ ' C[x1, . . . , xN ] be the symmetric algebra of V ∗. The isomor-
phism ϕ : SV ∗ ⊗ V → E, p ⊗ v 7→ pv will be the main thread, allowing to identify
f = (f1, . . . , fN) =

∑
1≤L≤N

fLeL ∈ E with ϕ−1(f) =
∑

1≤L≤N

fL ⊗ eL ∈ SV ∗ ⊗ V . Since V is

naturally a GL module, so is E ' SV ∗⊗V , the action being the following: GL×E → E,
(g, f) 7→ g ◦ f ◦ g−1.

We begin to describe two direct sum decompositions of the GL-module E. The first one
is the obvious E = ⊕

m≥0
Em which corresponds via ϕ to SV ∗ ⊗ V = ⊕

m≥0
SmV ∗ ⊗ V . The

second is closely linked with the natural maps of contraction c : SV ∗ ⊗ V → SV ∗ and
multiplication m : SV ∗ → SV ∗ ⊗ V which we now introduce. The contraction map
c : SV ∗ ⊗ V → SV ∗ is defined by its restriction

Sm+1V ∗ ⊗ V → SmV ∗

v∗1 . . . v
∗
m+1 ⊗ v 7→

∑
i

< v, v∗i > v∗1 . . . v̂
∗
i . . . v

∗
m+1

and the induced map (using ϕ) on E is nothing else than the operator ∇ : E → R.
Indeed, if α = (α1, . . . , αN) ∈ NN and L ∈ {1, . . . , N}, we have

c(xα ⊗ eL) = c(xα1
1 . . . xαN

N ⊗ eL) =
N∑

M=1

αM∑
s=1

< eL, xM >
xα

xM
= αL

xα

xL
= ∇(xαeL).

The multiplication map m : SV ∗ → SV ∗⊗V is the multiplication by the identity element
id ∈ V ∗ ⊗ V = Hom(V, V ). Its restriction SmV ∗ → Sm+1V ∗ ⊗ V is the composition of
the two maps:

SmV ∗ → SmV ∗ ⊗ V ∗ ⊗ V
t 7→ t ⊗ id

and SmV ∗ ⊗ V ∗ ⊗ V → Sm+1V ∗ ⊗ V
t ⊗ u ⊗ v 7→ tu ⊗ v

The induced map (using ϕ) on R = SV ∗ is the operator ∆ : R→ E.

Lemma 1.1. The maps ∇ : E → R and ∆ : R→ E are GL-morphisms.

Proof. Since ∇ and ∆ correspond to the natural maps c : SV ∗ ⊗ V → SV ∗ and
m : SV ∗ → SV ∗⊗ V , the checking is straightforward. Let us for example show that c is
a GL-morphism. It is enough to prove that if g ∈ GL, f = v∗1 . . . v

∗
m+1⊗ v ∈ Sm+1V ∗⊗V ,

then c(g.f) = g.c(f). We obtain:

c(g.f) = c
(
g.(v∗1 . . . v

∗
m+1 ⊗ v)

)
= c

(
v∗1 ◦ g−1 . . . v∗m+1 ◦ g−1 ⊗ g(v)

)
=
∑
i

< g(v), v∗i ◦ g−1 > v∗1 ◦ g−1 . . . ̂v∗i ◦ g−1 . . . v∗m+1 ◦ g−1

=
∑
i

< v, v∗i > v∗1 ◦ g−1 . . . ̂v∗i ◦ g−1 . . . v∗m+1 ◦ g−1 = g.c(f). �

Remark. One may of course check directly that if g ∈ GL, f ∈ E, r ∈ R then
(i) ∇(g.f) = g.∇f , i.e. ∇(g ◦ f ◦ g−1) = (∇f) ◦ g−1;
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(ii) ∆(g.r) = g.∆(r), i.e. ∆(r ◦ g−1) = g ◦∆(r) ◦ g−1.

For (i), we use the facts that ∇f = Tr f ′ and that g′(x) does not depand on x (since g is
linear). We have

(g ◦ f ◦ g−1)′(x) = g′ (f ◦ g−1(x))× f ′ (g−1(x))× (g−1)′(x)

= g′(x)× f ′ (g−1(x))× g′(x)−1

and the result follows by taking the trace.

For (ii), since ∆(r)(x) = r(x)x, we obtain

(g ◦∆(r) ◦ g−1) (x) = g (r ◦ g−1(x) g−1(x)) = r ◦ g−1(x) g (g−1(x)) since g is linear
= r ◦ g−1(x) x = (∆(r ◦ g−1)) (x).

Lemma 1.1 shows us that E0 := Ker ∇ and E1 := Im ∆ are GL-submodules of E.

Lemma 1.2. E = E0 ⊕ E1.

Proof. ∀ r ∈ Rm, ∇ ◦∆(r) = ∇(r id) =
∑
L

∂

∂xL
(r xL) =

∑
L

(
xL

∂r

∂xL
+ r

)
= (N +m)r.

Therefore 1
N+m

∆ is a section of ∇ : Em+1 → Rm and the split short exact sequence:

0→ E0
m+1 → Em+1

∇−−−−→←−−−−
1

N+m
∆
Rm → 0 shows us that Em+1 = E0

m+1 ⊕ E1
m+1. �

Two direct sum decompositions F = ⊕
i
Gi and F = ⊕

j
Hj of a vector space F are called

compatible if the following equivalent assertions are satisfied:
(i) ∀ i, Gi =

⊕
j

Gi ∩Hj; (ii) ∀ j, Hj =
⊕
i

Gi ∩Hj; (iii) F =
⊕
i,j

Gi ∩Hj.

It is clear that E = ⊕
m≥0

Em and E = ⊕
n=0,1

En are compatible, so that E =
⊕

(m,n)∈N×{0,1}

En
m, where

En
m := Em ∩ En is a GL-module. In fact:

Theorem 1.1. (i) The GL-representations En
m, (m,n) ∈ N× {0, 1}, are irreducible and

pairwise non isomorphic;
(ii) If N ≥ 3, the restricted SL-representations are still pairwise non isomorphic;
(iii) If N = 2, the restricted SL-representations E0

m, m ∈ N, are still pairwise non
isomorphic, but the restricted SL-representations E0

m and E1
m+2 are now isomorphic.

Remarks. 1. According to their definition of irreducible representations, some readers
may prefer to except the case (m,n) = (0, 1) where E1

0 is the null space.
2. A GL-representation is irreducible if and only if its restricted SL-representation is.
Furthermore, it is well known that two irreducible GL-representations are isomorphic if
and only if their restrictions to SL and to C∗ ≤ GL are isomorphic.

Proof. Let us begin to show that the restricted SL-representations are irreducible.
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The case m = 0 being obvious since E0
0 ' V and E1

0 = {0}, let us assume that m ≥ 1.
One could show directly that En

m is an irreducible SL-module by choosing a maximal
torus of SL and by studying the weights of the representation En

m. Also, if n = 1, the SL-
morphism ∆ shows us that E1

m ' Rm−1 ' Sm−1V ∗ and this last SL-module is well-known
to be irreducible. But if n = 0, we did not find such an easy argument.

However, Em ' SmV ∗ ⊗ V and Em = E0
m ⊕ E1

m. Therefore, to show that E0
m and

E1
m are irreducible, it is sufficient to show that SmV ∗ ⊗ V is the direct sum of exactly

two irreducible representations. For technical reasons, we will rather show that the dual
representation (SmV ∗ ⊗ V )∗ ' SmV ⊗ V ∗ is the sum of two irreducible ones.

The main points are the following ones (see [12]):

• The representations SmV and V ∗ are irreducible;

• Any irreducible representation of SL is isomorphic to some Weyl module SλV , where
λ = (λ1, . . . , λr) is a partition of an integer d ≥ 1 (d = λ1+. . .+λr with λ1 ≥ . . . ≥ λr ≥ 1)
and Sλ denotes the Schur functor associated to λ;

• The Weyl module SλV is an irreducible SL-module and it is nonzero if and only if
r ≤ N (i.e. the partition has at most N parts). Moreover, if λ = (λ1, . . . , λr) (resp.
µ = (µ1, . . . , µs)) is the partition of an integer d (resp. e), the SL-modules SλV and SµV
are isomorphic if and only if λk − µk is constant, independant of k, for 1 ≤ k ≤ N , where
we agree that λk = 0 (resp. µk = 0) if k > r (resp. k > s). Therefore, if we want a
unique Schur functor for each representation, we can restrict to those λ with λN = 0 (i.e.
partitions of an integer d in at most N − 1 parts) which we will call reduced;

• If λ (resp. µ) is the partition of an integer d (resp. e), the plethysm relations for
SL tells us that SλV ⊗ SµV '

⊕
ν

Nλ,µ,ν SνV (as SL-modules) where the sum is over

all partitions ν of d + e and the multiplicities Nλ,µ,ν are computed by the Littlewood-
Richardson rule. In fact, we will use this rule in the special case where µ is of the shape
µ = (1, . . . , 1︸ ︷︷ ︸

k

), i.e. SµV '
∧k V . Then, the Littlewood-Richardson rule simplifies in the

simpler Pieri formula which asserts that SλV ⊗
∧k V '

⊕
ν

SνV where the sum is over

all partitions ν whose Young diagram is obtained from that of λ by adding k boxes, with
no two in the same row.

Let us recall that the Young diagram of the partition λ = (λ1, . . . , λr) is the following
picture

λ1
λ2

λr

with λi boxes in the i-th row, the rows of boxes lined up on the left. In our case,

SmV ' SλV where λ = (m) is represented by the single row with m boxes:

m︷ ︸︸ ︷
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Furthermore
∧N V is the trivial representation (it would not be the case if SL was replaced

by GL), so that the non degenerate pairing
V ⊗

∧N−1 V →
∧N V ' C

u ⊗ v 7→ u ∧ v
shows us that V ∗ '

∧N−1 V .

Therefore SmV ⊗ V ∗ ' SmV ⊗
∧N−1 V ' Sν1V ⊕ Sν2V where ν1 = (m, 1, . . . , 1︸ ︷︷ ︸

N−1

) and

ν2 = (m+ 1, 1, . . . , 1︸ ︷︷ ︸
N−2

) are represented by the hooks:

m︷ ︸︸ ︷
N

{
and

m+1︷ ︸︸ ︷
N − 1

{
so that we have shown the irreducibility of the En

m.

Finally, Sν1V ' Sν′1V where ν ′1 = (m − 1) is represented by the single row with m − 1

boxes:

m−1︷ ︸︸ ︷
so that ν ′1 and ν2 are the reduced partitions such that

(E0
m)

∗ ' Sν′1V and (E1
m)

∗ ' Sν2V .

This shows (ii) and (iii).
It remains to show that ifN = 2 theGL-representations E0

m and E1
m+2 are non isomorphic.

But this is clear since their restriction to C∗ ⊂ GL are non isomorphic. Indeed, λ ∈ C∗

acts on E0
m as the dilatation of ratio λm−1 and on E1

m+2 as the dilatation of ratio λm+1.
�

If N = 2, the next result provides us a SL-isomorphism between E0
m and Rm+1:

Lemma 1.3. If N = 2, the map α : R → E0

r 7→ ( ∂r
∂x2
,− ∂r

∂x1
)

is a SL-morphism.

Proof. If g ∈ GL, an easy computation shows that
α(r ◦ g−1) = (det g)−1 g ◦ α(r) ◦ g−1, i.e. α(g.r) = (det g)−1 g.α(r)

which proves that α is a SL-morphism (but not a GL-morphism !). �

II. THE SPACE E AS A LIE ALGEBRA.

In this section, it is important to stress that even if the endomorphism f ∈ E is usually
written as the line-vector f = (f1, . . . , fN) in the literature (and in this paper !), it should
actually be thought of as the column-vector f = t(f1, . . . , fN). Indeed, this point is
fundamental to grasp the Lie bracket formula on E given further. In the proof of lemma
2.2 below, it is also necessary to know that id ∈ E is a column-vector and that s′ is a
line-vector (when s ∈ R), in order to understand that id× s′ is a N ×N matrix and that
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s′ × id is a scalar.

Let us denote by Der R the set of C-derivations of R, i.e. the set of complex linear maps
D : R → R satisfying D(rs) = D(r)s + rD(s) for all r, s ∈ R. We will analyze the Lie
algebra structure of E (which comes from the isomorphism E ' Der R). In th. 2.1, we
compute [En

m, E
q
p ].

The isomorphism ψ : E → DerR, f = (f1, . . . , fN) 7→ Df =
∑

1≤L≤N

fL
∂

∂xL
comes from

the usual identification between eL and the derivation
∂

∂xL
: R→ R. By pulling-back

the Lie bracket [D1, D2] = D1 ◦D2−D2 ◦D1 defined on DerR, we obtain the Lie bracket
[f, g] = g′(x)× f(x)− f ′(x)× g(x) = g′ × f − f ′ × g defined on E, where we agree that
f ′ = f ′(x) =

(
∂fL

∂xM

)
1≤L,M ≤N

is the Jacobian matrix of f .

Let us show this formula. If f = (f1, . . . , fN) and g = (g1, . . . , gN) ∈ E, we have:

[Df , Dg]xM =
N∑
L=1

fL
∂gM
∂xL

−
N∑
L=1

fL
∂fM
∂xL

= Dh xM , 1 ≤M ≤ N

where h = g′ × f − f ′ × g, hence [Df , Dg] = Dh.

If a, b are additive subgroups of a Lie algebra g, the subgroup generated by all brackets
[a, b], (a, b) ∈ a× b is denoted by [a, b]. If a, b are subspaces, then [a, b] also.

Remarks. 1. We have [Em, En] ⊂ Em+n−1, therefore, if we set Lm = Em+1, then
E =

⊕
m≥−1

Lm is a graduated Lie algebra. However, even if we will always use this fact,

we prefer to use our old notation Em instead of the new one Lm which would have the big
drawback of introducing a tiresome shift between degrees as polynomial endomorphisms
and degrees as graduated objects.
2. We may have defined the Lie bracket on E ' SV ∗ ⊗ V by using the contraction map
c : SV ∗ ⊗ V → SV ∗. We let the reader check that the Lie bracket is then given by the
following map:

(Sm+1V ∗ ⊗ V ) ⊗ (Sn+1V ∗ ⊗ V ) → Sm+n+1V ∗ ⊗ V
(t ⊗ u) ⊗ (z ⊗ v) 7→ t c(z ⊗ u)⊗ v − z c(t⊗ v)⊗ u.

This allows us to see directly that ∀ g ∈ GL, ∀ u, v ∈ E, g.[u, v] = [g.u, g.v]
which is otherwise the following computation:

g.[u, v] = g ◦
(
v′(x)× u(x)− u′(x)× v(x)

)
◦ g−1

=
(
g′ (v(x))× v′(x)× u(x)− g′ (u(x))× u′(x)× v(x)

)
◦ g−1

= g′(v ◦ g−1(x))× v′(g−1(x))× u(g−1(x))
−g′(u ◦ g−1(x))× u′(g−1(x))× v(g−1(x))

= g′(v ◦ g−1(x))× v′(g−1(x))× (g−1)′(x)× g (u(g−1(x)))
−g′(u ◦ g−1(x))× u′(g−1(x))× (g−1)′(x)× g (v(g−1(x)))

= (g ◦ v ◦ g−1)′(x) × g ◦ u ◦ g−1(x)− (g ◦ u ◦ g−1)′(x) × g ◦ v ◦ g−1(x)
= [g ◦ u ◦ g−1, g ◦ v ◦ g−1] = [g.u, g.v].
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We have used the fact that if g is linear (i.e. g ∈ E1), then the Jacobian matrix g′ = g′(x)
of g has constant coefficients. In particular, for all u = u(x) ∈ E, we have g′(u(x)) = g′(x)
and for all v = v(x) ∈ E, we have g(v(x)) = g′(x)× v(x) = g′(u(x))× v(x). Therefore, if
g ∈ GL, we have (g−1)′(x)×g(u(x)) = g−1 (g(u(x))) = u(x) and this explains the equality
(g−1)′(x)× g (u(g−1(x))) = u(g−1(x)).

As a consequence, if a, b are GL-submodules of E, then [a, b] also.

3. The Lie algebra structure on E contains in some sense the GL-module structure.
Indeed, let us denote by gl = E1 the Lie algebra of GL.

Lemma 2.1. The Lie algebra representation: gl × E → E
(g , f) 7→ [f, g]

is the one associ-

ated with the Lie group representation: GL × E → E
(g , f) 7→ g ◦ f ◦ g−1.

Proof. If f ∈ E, we just want to show that the differential at the point id of the map
GL→ E, g 7→ g ◦ f ◦ g−1 is the map gl→ E, g 7→ [f, g].
If g ∈ gl, it is enough to compute the differential at the origin of the following map
(defined on a small centered neighborhood of the origin):

θ : ]− ε, ε[ → E
t 7→ (id+ t g) ◦ f ◦ (id+ t g)−1

We have θ(t) = (id+ t g) ◦ f ◦ (id− t g + o(t)) = (id+ t g) ◦ (f − t f ′ × g + o(t))
= f + t (g ◦ f − f ′ × g) + o(t) = f + t (g′ × f − f ′ × g) + o(t)

since g is linear, so θ′(0) = [f, g]. �

If sl (resp. c) denotes the Lie subalgebra of gl corresponding to the subgroup SL (resp.
C∗) of GL, then the decomposition E1 = E0

1 ⊕ E1
1 is the same as the classical Levy

decomposition gl = sl ⊕ c. Furthermore, if W is a representation of a reductive Lie
algebra g, it is well known that g.W is equal to the sum of the non trivial irreducible
subrepresentations of W (indeed, if we assume in addition that W is irreducible, it is
clear that g.W = {0} if W is trivial and that g.W = W otherwise). If m ≥ 2 and
n = 0, 1, we know that:
• the sl-representation En

m is irreducible and non trivial;
• the c-representation En

m corresponds to the C∗-representation of En
m where λ ∈ C∗ acts

on En
m as the dilatation of ratio λm−1.

As a result:

Corollary 2.1. [E0
1 , E

0
1 ] = [E0

1 , E1] = [E1, E1] = E0
1 ;

[E1
1 , E

0
1 ] = [E1

1 , E
1
1 ] = [E1

1 , E1] = {0};
[E0

1 , E
n
m] = [E1

1 , E
n
m] = [E1, E

n
m] = En

m for m ≥ 2 and n = 0, 1.

The next result will show that E0 and E1 are Lie subalgebra of E.

Lemma 2.2. (i) ∀ f, g ∈ E, ∇ ( [f, g] ) = (∇g)′ × f − (∇f)′ × g;
(ii) ∀ (r, s) ∈ Rm ×Rn, [r id, s id] = (n−m) rs id.
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Proof. We have:

∇(g′ × f) =
∑
L

∂

∂xL
(g′.f)L =

∑
L

∂

∂xL

(∑
M

∂gL
∂xM

fM

)

=
∑
L,M

∂2gL
∂xL∂xM

fM +
∑
L,M

∂gL
∂xM

∂fM
∂xL

=
∑
M

∂

∂xM
(∇g) fM +

∑
L

(g′ × f ′)L,L = (∇g)′ × f + Tr(g′ × f ′).

and (i) follows.

We have (s id)′ = id × s′ + s IN where IN is the N × N identity matrix, so that
(s id)′ × (r id) = r . id (s′ × id) + rs id = n rs id + rs id = (n+ 1) rs id and (ii) follows.
We have used the fact that s′ × id = n s by the Euler formula. �

Corollary 2.2. E0 and E1 are Lie subalgebra of E.

Even if E = E0⊕E1 as vector spaces, the sum is not direct as Lie algebra since [E0, E1] 6=
{0}. In fact, E0 and E1 are even not Lie ideals of E:

Theorem 2.1. Let m,n ≥ 1.

(i) [E0
m, E

0
n] = E0

m+n−1; (ii) [E1
m, E

1
n] = E1

m+n−1 if m 6= n;
= {0} if m = n;

(iii) [Em, En] = Em+n−1 if m or n ≥ 2; (iv) [E0
m, E

1
n] = Em+n−1 if m,n ≥ 2;

= E0
1 if m = n = 1; = E1

n if m = 1, n ≥ 2;
= E0

m if m ≥ 2, n = 1;
= {0} if m = n = 1.

Proof. We recall that [xαeL, x
βeM ] = ∂

∂xM
(xα)xβeL − ∂

∂xL
(xβ)xαeM .

(i) Since [E0
m, E

0
n] is a sub GL-module of the irreducible GL-module E0

m+n−1, it is suffi-
cient to show that [E0

m, E
0
n] 6= {0}. Indeed, xm2 e1 ∈ E0

m, xn1e2 ∈ E0
n and [xm2 e1, x

n
1e2] =

mxn1x
m−1
2 e1 − nxm−1

1 xn2 e2 6= 0.

(ii) Point (ii) of lemma 2.2 shows us that [E1
m, E

1
n] = {0} if and only if m = n. When

m 6= n, since [E1
m, E

1
n] is a sub GL-module of the irreducible GL-module E1

m+n−1, we can
conclude to the equality.

(iv) We can assume that m,n ≥ 2. Let us set u = [xm2 e1, x
n−1
1 id] ∈ [E0

m, E
1
n].

u = [xm2 e1, x
n−1
1

∑
L≥1

xLeL ] = [xm2 e1, x
n
1e1] + [xm2 e1, x

n−1
1 x2e2] +

∑
L≥3

[xm2 e1, x
n−1
1 xLeL]

= (m− n)xn−1
1 xm2 e1 − (n− 1)xn−2

1 xm+1
2 e2 − (n− 1)xn−2

1 xm2
∑
L≥3

xLeL
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= (m− n)xn−1
1 xm2 e1 − (n− 1)xn−2

1 xm2
∑
L≥2

xLeL

= (m− 1)xn−1
1 xm2 e1 − (n− 1)xn−2

1 xm2 id so that u /∈ E1
m+n−1 and

∇u = (n− 1)(m− 1)xn−2
1 xm2 − (n− 1)(N +m+ n− 2)xn−2

1 xm2
= −(n− 1)(N + n− 1)xn−2

1 xm2 6= 0 so that u /∈ E0
m+n−1.

Since [E0
m, E

1
n] is a sub GL-module of Em+n−1, we must have [E0

m, E
1
n] = Em+n−1.

(iii) It is a consequence of (i), (ii) and (iv). �

III. NOTATIONS AND PRELIMINARY RESULTS.

1. Jets.

If r ∈ R̃ and a ∈ AN , we will distinguish between the (classical) n-jet of r at a:

Jn,a r :=
∑

0≤k≤n

1

k!
Dk
ar . x

k and the centered n-jet of r at a: Jn,a r :=
∑

1≤k≤n

1

k!
Dk
ar . x

k.

Of course, Dk
ar denotes the k-th differential of r at the point a and we recall that

Dk
ar . x

k =
∑
α∈NN

|α|=k

(
k

α

)
∂kr

∂xα
(a) xα, where

(
k

α

)
=
k!

α!
=

k!

α1! . . . αN !
.

The classical and centered n-jets are related by the formula Jn,a r = r(a) + Jn,a r.

By the same way, if f ∈ Ẽ and a ∈ AN , we will denote by

Jn,a f :=
∑

0≤k≤n

1

k!
Dk
af . x

k (resp. Jn,a f :=
∑

1≤k≤n

1

k!
Dk
af . x

k)

the classical (resp. centered) n-jet of f at the point a. If f = (f1, . . . , fN), we could also
have set Jn,a f =

(
Jn,a f1, . . . , Jn,a fN

)
and Jn,a f =

(
Jn,a f1, . . . , Jn,a fN

)
.

If a is the origin of the affine space AN , we will simply write Jn (resp. Jn) instead of
Jn,0 (resp. Jn,0). We will denote by Jn(R) (resp. Jn(R)) the space of classical (resp.
centered) n-jets of polynomials in N indeterminates and by Jn(E) (resp. Jn(E)) the
space of classical (resp. centered) n-jets of polynomial endomorphisms of AN .
Observe that Jn(R) (resp. Jn(R), resp. Jn(E), resp. Jn(E)) are naturally isomorphic to
R ≤n := ⊕

k≤n
Rk (resp. R1 ≤ . ≤ n := ⊕

1≤k≤n
Rk, resp. E ≤n := ⊕

k≤n
Ek, resp. E1 ≤ . ≤ n := ⊕

1≤k≤n
Ek).

Remark. The algebraic and analytic n-jet spaces are naturally isomorphic so that we
will write Jn(R) = Jn(R̃), Jn(R) = Jn(R̃), Jn(E) = Jn(Ẽ), Jn(E) = Jn(Ẽ).

Furthermore, one could easily check that the Jacobian map Jac : E → R (or Jac :

Ẽ → R̃) induces a map Jn(E) = Jn(Ẽ)→ Jn−1(R) = Jn−1(R̃) that we will still call Jac.
Therefore, the Jacobian of an endomorphism n-jet is naturally a (n− 1)-jet.

Finally, let us recall that Jn(E) = Jn(Ẽ) is naturally a semi-group and that the formula
Da(f ◦ g) = Dg(a)(f) ◦Da(g) for differentials is generalized by the formula Jn,a(f ◦ g) =
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Jn,g(a)(f)◦Jn,a(g) for centered n-jets (the latter formula generalizes the former since Da(g)
is identified with J1,a(g)).

Let Jn(E)∗ be the group of invertible centered n-jets. We recall that j ∈ Jn(E) is invertible
if and only if j(1) ∈ GL⇐⇒ Jac j is an invertible element of Jn−1(R)⇐⇒ (Jac j)(0) 6= 0.

2. Monoidal subgroups.

Our first lemma is obtained by an easy computation.

Lemma 3.1. If S is any sub-semigroup of N, then E1+S is a sub-semigroup of E.

Proof. Since E1+S = (C[X]1+S)
N , it is enough to show that

∏
1≤L≤N

fαL
L ∈ C[X]1+S for

any xα ∈ C[X]1+S and any f1, . . . , fN ∈ C[X]1+S. By decomposing each fL as a sum of
homogeneous polynomials, it is enough to show that

∏
1≤j≤r

g
βj

j ∈ C[X]1+S for any homo-

geneous polynomials g1, . . . , gr ∈ C[X]1+S and for any β = (β1, . . . , βr) ∈ Nr such that
|β| =

∑
j

βj ∈ 1 + S. Let sj ∈ S be such that deg gj = 1 + sj. We have

deg
∏
j

g
βj

j =
∑
j

βj(1 + sj) =
∑
j

βj +
∑
j

βjsj ∈ 1 + S + S ⊂ 1 + S. �

It is well known that any nonempty finite subset of a group which is stable by composition
is a subgroup. Our second lemma is the generalization of this result for algebraic groups.

Lemma 3.2. Any nonempty closed subset of an algebraic group which is stable by
composition is a subgroup.

Proof. Let G be the algebraic group and H the subset. For any h ∈ H, the map
mh : H → H, k 7→ hk being an injective endomorphism, it is surjective (see prop. 17.9.6
p. 80 in [15] for the original idea, but the precise result is proven in [4], [7], [5], [8] or
[24]), so that 1 ∈ H and h−1 ∈ H. �

Our last lemma is an obvious consequence of the first two.

Lemma 3.3. If S is any sub-semigroup of N, then Jn(A1+S) is a subgroup of Jn(A).

Proposition 3.1. If S is any sub-semigroup of N, then A1+S is a subgroup of A.

Proof. It easily follows from lemma 3.3. Indeed, if f ∈ A1+S, we want to show that
f−1 ∈ A1+S. However, for any n ≥ 1, Jn(f) ∈ Jn(A1+S), so that Jn(f−1) = Jn(f)−1 ∈
Jn(A1+S). This is sufficient for showing that f−1 ∈ A1+S. �

Example. If S = N, then A1+N is the group of automorphisms fixing the origin. If
S = 2N, then A1+2N is the group of odd automorphisms, i.e. automorphisms f satisfying
f(−x) = −f(x). More generally, if n ≥ 2 and ωn := e

2πi
n , then A1+nN is the group of
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automorphisms f satisfying f(ωnx) = ωnf(x).

3. A useful lemma in representation theory.

Lemma 3.4. Let G be a connected reductive complex algebraic group and let W be
a finite dimensional G-reprensentation which does not contain the trivial representation.
Then, any G-stable subgroup of (W,+) is a vector subspace.

Proof. We will argue by induction on dim W . If dim W = 0, there is nothing to prove.
Let us now assume that dim W > 0 and that F is a G-stable subgroup of W . Of course,
we may assume that Span(F ) = W . Let T be a maximal torus of G. If T∗ is the character
group of T (the set of algebraic group-morphisms χ : T→ C∗) and TQ := {t ∈ T, ∀ χ ∈
T∗, χ(t) ∈ Q} is the subset of rational points of T, it is a classical fact that T∗ ' Zm and
TQ ' (Q∗)m (as groups). If χ ∈ T∗, Wχ := {u ∈ W, ∀ t ∈ T, t.u = χ(t)u} will denote
the eigenspace of W associated to the eigenvalue χ. Since W =

⊕
χ∈T∗

Wχ, any u ∈ W can

be uniquely written u =
∑
χ∈T∗

uχ, uχ ∈ Wχ. By representation theory, W is a non trivial

T-module. Hence, there exists a non trivial ψ ∈ T∗ for which Wψ 6= {0}.

Main claim. F ∩Wψ 6= {0}.

Since Span(F ) = W , there exists u ∈ F with uψ 6= 0. Let u =
n∑
k=1

uχk
be the decom-

position of u in sum of eigenvectors where χ1, . . . , χn are distinct and χ1 = ψ. The
maps χk |TQ

, 1 ≤ k ≤ n, are still distinct (TQ being a dense subset of T). We now use
the fact that if G is any group and K any field, then the set Hom(G,K∗) of all group-
morphisms G → K∗ is a linearly independant subset of KG the space of all K-valued
functions on G (see lemma 16.1 of [16]). Therefore, there exist t1, . . . , tn ∈ TQ such that
the n × n matrix M := (χk(tl))1≤k,l≤n is invertible. Let r = t(r1, . . . , rn) ∈ Qn be such
that M.r = t(1, 0, . . . , 0) and let µ be a nonzero integer such that µr1, . . . , µrn are integers
(we can just take for µ the least common multiple of the denominators of the rk). Let us

check that v := µ
n∑
k=1

rk tk.u ∈ F ∩Wψ. Indeed v =
n∑
k=1

(µrk)tk.u ∈ F and

v = µ

n∑
k=1

rk tk.

(
n∑
l=1

uχl

)
= µ

n∑
k=1

rk

n∑
l=1

χl(tk)uχl
= µ

n∑
l=1

(
n∑
k=1

rkχl(tk)

)
uχl

= µ uχ1 = µ uψ ∈ Wψ \ {0} and the claim is proven.

Let us now show that F contains the G-subrepresentation W1 := Span
g∈G

g.v.

We have ∀ t ∈ T, t.v = ψ(t)v ∈ F and ψ : T → C∗ is onto since non trivial. Therefore

λv ∈ F for any λ ∈ C. Any w ∈ W1 can be written w =
r∑

k=1

λk gk.v, where λk ∈ C,

gk ∈ G. The equality w =
r∑

k=1

gk.(λkv) shows us that w ∈ F .
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If W2 is a G-subrepresentation of W such that W = W1 ⊕W2, it is clear that W2 does
not contain the trivial G-representation and that W2 ∩ F is a G-stable subgroup of W2.
Therefore, by induction hypothesis, it is a subspace of W2. It is easy to show that the
subspace W1 ⊕ (W2 ∩ F ) is equal to F . �

Corollary 3.1. If m ≥ 2, the SL-stable subgroups of Em are {0}, Em, E0
m and E1

m.

Proof. The SL-representations E0
m and E1

m are irreducible, non trivial and non isomor-
phic. �

4. Initial groups.

Let N<n := {0, 1, . . . , n− 1}. If G ≤ Jn(E)∗ and k ∈ N<n, we define the k-th initial group
of G by Hk(G) := {f(k+1), f ∈ G, Jkf = Jk(id)}. It turns out that H0(G) = J1(G)
is a multiplicative subgroup of GL, whereas Hk(G) is an additive subgroup of Ek+1 for
k ≥ 1. Indeed, if u2, u2 ∈ Ek+1 and jm = id + um ∈ Jk+1(E)∗ for m = 1, 2, then
j1 ◦ j ±1

2 = id + u1 ± u2.
Furthermore, let f, g ∈ Ã be such that Jmf = id+u, u ∈ Em and Jng = id+v, v ∈ En. If
[f, g] := f ◦ g ◦ f−1 ◦ g−1 ∈ Ã, it is shown in [3] that Jm+n−1 [f, g] = id− [u, v]. Therefore,
we get:

Lemma 3.5. If k, l > 0 are such that k + l < n, then [Hk(G), Hl(G)] ⊂ Hk+l(G).

These Hk(G) look like the initial ideals used in Gröbner bases theory. They satisfy an
analogous fundamental property (see lemma 15.5 in [10]):

Lemma 3.6. If G1 ≤ G2 ≤ Jn(E)∗, then G1 = G2 ⇐⇒ ∀ k ∈ N<n, Hk(G1) = Hk(G2) .

Proof. If G1 6= G2, let k be the biggest integer such that there exists f ∈ G2 \ G1 with
Jkf = Jk(id). Since Hk(G1) = Hk(G2), we may write Jk+1f = Jk+1g with g ∈ G1. But
then f ◦ g−1 ∈ G2 \G1 and Jk+1 f ◦ g−1 = Jk+1(id); a contradiction. �

In the sequel, we will always assume that G is SL-invariant. Therefore, Hk(G) is SL-
invariant too and using cor. 3.1, we get Hk(G) = {0}, Ek+1, E0

k+1 or E1
k+1 for k ≥ 1. This

incites us to set H l
k(G) := Hk(G) ∩ El

k+1 for l = 0, 1 and k ∈ N<n, k ≥ 1. It is clear that
H l
k(G) = {0} or El

k+1 and that Hk(G) = ⊕
l=0,1

H l
k(G). Therefore, the Hk(G) for k ≥ 1 are

encoded by the sets Il(G) := {0} ∪ {k ∈ N<n, k ≥ 1, H l
k(G) 6= {0}}. Lemma 3.5 and th.

2.1 imply the following result:

Lemma 3.7. If k, l ≥ 0 are such that k + l < n, then k, l ∈ I0(G) =⇒ k + l ∈ I0(G) and
k ∈ I0(G), l ∈ I1(G) =⇒ k + l ∈ I1(G).

Corollary. If G ≤ Jn(E)∗ is SL-invariant, then:
(i) I0(G) = N<n ⇐⇒ 1 ∈ I0(G);
(ii) I0(G) = I1(G) = N<n ⇐⇒ 1 ∈ I0(G) ∩ I1(G).
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If I ⊂ N, < I > will denote the sub-semigroup of N generated by I. Let T be the
set of subsets I of N<n which are the traces of sub-semigroups of N, i.e. such that
I =< I > ∩N<n. Lemma 3.7 shows us that I0(G) ∈ T .

Proposition 3.2. Jn(A) = Jn(T ) = {f ∈ Jn(E), Jac f ∈ C∗}.

Proof. If G1 := Jn(A), G2 = Jn(T ) and G3 := {f ∈ Jn(E), Jac f ∈ C∗}, it is clear
that G2 ≤ G1 ≤ G3, so it is enough to show that G2 = G3. If k ∈ N<n, k ≥ 1
and u ∈ Hk(G3) ⊂ Ek+1, then f := id + u ∈ Jk+1(E) satisfies Jac f = 1. However,
Jac f = 1 + ∇u, so that ∇u = 0, u ∈ E0

k+1 and H1
k(G3) = {0}. This shows that

I1(G3) = {0}. But id+x2
2e1 ∈ G2, so that x2

2e1 ∈ H0
1 (G2), 1 ∈ I0(G2) and I0(G2) = N<n.

Finally, it is clear that I0(G2) = I0(G3) = N<n, that I1(G2) = I1(G3) = {0} and that
H0(G2) = H0(G3) = GL, so that G2 = G3 by lemma 3.6. �

In some sense, at the level of n-jets, the equality Jn(A) = {f ∈ Jn(E), Jac f ∈ C∗} solves
the Jacobian problem (see [19], [6] and [11]) and the equality Jn(A) = Jn(T ) solves the
tameness problem for algebraic automorphisms (see [18], [20], [21], [25] and [26]).

Proposition 3.3. Jn(Ã) = Jn(T̃ ) = Jn(E)∗.

Proof. If G1 := Jn(Ã), G2 = Jn(T̃ ) and G3 := Jn(E)∗, it is clear that G2 ≤ G1 ≤ G3,
so it is enough to show that G2 = G3. Since f := (ex2x1, x2, . . . , xN) ∈ T̃ , we get
x1x2 e1 ∈ H1(G2), so that H1(G2) = E2, 1 ∈ I0(G2)∩I1(G2) and I0(G2) = I1(G2) = N<n.
Finally, it is clear that I0(G2) = I0(G3) = N<n, that I1(G2) = I1(G3) = N<n and that
H0(G2) = H0(G3) = GL, so that G2 = G3 by lemma 3.6. �

IV. PROOFS OF THEOREMS A,B,C.

Let Jn(A)id := {f ∈ Jn(A), J1 f = id} and let S be the set of subgroups of Jn(A)id which
are SL-invariant. If I ∈ T , we set G(I) := Jn(A1+<I>) ∩ Jn(A)id.

Lemma 4.1. (i) If G1 ≤ G2 belong to S, then G1 = G2 ⇐⇒ I0(G1) = I0(G2).
(ii) If I ∈ T , then G(I) ∈ S and G(I) is the subgroup generated by the g ◦ f [k] ◦ g−1,
g ∈ SL, k ∈ I, where f [k] := id+xk+1

2 e1. If J ⊂ N<n satisfies I =< J > ∩N<n, then G(I)
is also generated by the g ◦ f [k] ◦ g−1, g ∈ SL, k ∈ J .

Proof. (i). Since H0(G) = {id} and I1(G) = {0} for G ∈ S, it is a direct consequence of
lemma 3.6.
(ii). The fact that G(I) ∈ S is obvious. Let G1 :=< g ◦ f [k] ◦ g−1, g ∈ SL, k ∈ J >,
G2 := G(I) and let us show that G1 = G2 by applying the last point.
We clearly have G1 ≤ G2 and I0(G2) = I. It remains to show that I0(G1) = I. The
relation G1 ≤ G2 implies I0(G1) ⊂ I0(G2) = I. On the converse, since J ⊂ I0(G1) and
I0(G1) ∈ T , we have < J > ∩N<n = I ⊂ I0(G1). �

If I ∈ T , it is clear that I0(G(I)) = I. It turns out that if G ∈ S, the equality G(I0(G)) =
G is also true, but does not look so clear for us. Indeed, if I = I0(G), G1 = G and
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G2 = G(I0(G)), it is clear that G1, G2 ∈ S and that I0(G1) = I0(G2) = I. Unfortunately,
we cannot apply right now point (i) of lemma 4.1, since we do not know yet that G1 ≤ G2

or G2 ≤ G1.

Theorem 4.1. The map I0 : S → T , G 7→ I0(G) is bijective with inverse the map
I 7→ G(I).

Proof. The main point is to show that for any G ∈ S we have G = G(I0(G)). If
we set I = I0(G), it is sufficient to show that G = G(I), i.e. (by (ii) of lemma 4.1)
G =< g ◦ f [k] ◦ g−1, g ∈ SL, k ∈ I >. We argue by induction on n.
If n = 1, it is obvious. If n ≥ 2 and if J = I0(Jn−1G), then by induction hypothesis we
have Jn−1G =< g ◦ f [k] ◦ g−1, g ∈ SL, k ∈ J >.
For each such k, there exists u[k] ∈ G such that Jn−1f

[k] = Jn−1u
[k]. Therefore, if we set

h[k] := (f [k])−1 ◦ u[k] ∈ Jn(A), then Jn−1h
[k] = id and f [k] ◦ h[k] ∈ G.

First case. n− 1 ∈ I, i.e. I = J ∪ {n− 1}.
This implies Hn−1(G) = E0

n, so that for any u ∈ E0
n, id + u ∈ G. Therefore, f [n−1] ∈ G

and ∀ k ∈ J , f [k] and h[k] ∈ G. It is clear that G = G(I).

Second case. n− 1 /∈ I, i.e. I = J .
This implies Hn−1(G) = {0} and n − 1 /∈< J >. It is enough to show that h[k] = id
for each k ∈ J . This comes from the next assertion. First and foremost, let us recall
that G(J)Q denotes the set of elements belonging to G(J) whose coordinates belong to Q
and that G({0, n− 1}) denotes the subgroup of Jn(A)id whose elements are of the shape
h = id + h(n) where h(n) ∈ E0

n. It follows that G({0, n− 1}) is included into the center of
Jn(A)id. Indeed, if f ∈ Jn(A)id and h = id+h(n) ∈ G({0, n−1}), f ◦ h = h ◦ f = f + h(n).
In particular, the groups G(J) and G({0, n− 1}) commute.

Assertion. ∀ f ∈ G(J)Q, ∀h ∈ G({0, n− 1}), f ◦ h ∈ G =⇒ h = id.
If the assertion is false, let k be the biggest integer such that there exists a counterexample
(f, h) with Jkf = id. Since h(n) 6= 0 and since E0

n is an irreducible SL-module, there exist
g1, . . . , gr ∈ SLQ such that the gi ◦ h(n) ◦ g−1

i , 1 ≤ i ≤ r constitue a C-basis of E0
n.

Indeed, if W is an irreducible SL-module of dimension r and if w ∈ W is nonzero, there
exist g1, . . . , gr ∈ SLQ such that the gi.w, 1 ≤ i ≤ r constitute a C-basis of W : the
map ϕ : (SL)r →

∧dW , (gi)1≤i≤r 7→
∧
i

gi.w being nonzero, it has to be nonzero on

(SLQ)r since SLQ is (Zariski) dense in SL. However, dim E0
k+1 < dim E0

n, so that the
gi ◦ f(k+1) ◦ g−1

i , 1 ≤ i ≤ r, are C-linearly dependant. These last elements belonging to(
E0
k+1

)
Q, they are even Q-linearly dependant, showing the existence of integers mi, non

all zero, such that
∑

1≤i≤r

mi gi ◦ f(k+1) ◦ g−1
i = 0. If a1, . . . , ar ∈ Jn(A), let us agree that

r∏
i=1

ai denotes the composition a1 ◦ a2 ◦ . . . ◦ ar in that order. If we set

f̃ :=
r∏
i=1

gi ◦ fmi ◦ g−1
i ∈ G(J)Q and h̃ :=

r∏
i=1

gi ◦ hmi ◦ g−1
i ∈ G({0, n− 1}), then

• f̃ ◦ h̃ =
r∏
i=1

gi ◦ (f ◦ h)mi ◦ g−1
i ∈ G;
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• (f̃)(k+1) =
r∑
i=1

mi gi ◦ f(k+1) ◦ g−1
i = 0, so that Jk+1f̃ = id;

• (h̃)(n) =
r∑
i=1

mi gi ◦ h(n) ◦ g−1
i 6= 0, so that h̃ 6= id.

This is a contradiction. �

Corollary 4.1. If G ∈ S, then I0(G) = {k ∈ N<n, ∃ f ∈ G, f(k+1) 6= 0}.

Remark. We could give a more simple proof of the theorem using cor. 4.1. Unfortunately,
we were not able to prove it without using the theorem.

Theorem 4.2. Any group G such that SL ≤ G ≤ Jn(A) is equal to some G(I) o K,
where SL ≤ K ≤ GL.

Proof. It is sufficient to show that H0(G) ≤ G. If l ∈ H0(G), let us show by contradiction
that n is the biggest integer k for which there exists some f ∈ G satisfying Jkf = l.
If we had k < n, then f = l + f(k+1) + . . . where f(k+1) 6= 0.
We begin to show that Hk(G ∩ Jn(A)id) 6= {0}.
Since f = l ◦ (id + l−1 ◦ f(k+1) + . . .), a := l−1 ◦ f(k+1) ∈ E0

k+1 and since a is a nonzero
element of the irreducible non trivial SL representation E0

k+1, there exists u ∈ SL such
that a 6= u ◦ a ◦ u−1.
If g := f ◦ u ◦ f−1, one can check that g(k+1) = l ◦ (a − u ◦ a ◦ u−1) ◦ u ◦ l−1 6= 0, while
g ∈ G and Jac g = 1. Therefore h := g−1

(1) ◦ g ∈ G ∩ Jn(A)id and h(k+1) 6= 0, so that
Hk(G ∩ Jn(A)id) 6= {0}.
Since Hk(G ∩ Jn(A)id) = E0

k+1, there exists h̃ ∈ G ∩ Jn(A)id such that Jk+1 h̃ = id − a.
Therefore f̃ := f ◦ h̃ ∈ G and Jk+1 f̃ = l, a contradiction. �

Remark. We recall that any group K such that SL ≤ K ≤ GL is equal to some det−1 K̃
where det : GL→ C∗ and K̃ ≤ C∗.

Corollary 4.2. Any group G such that GL ≤ G ≤ Jn(A) is equal to some G(I) o GL,
i.e. Jn(A1+<I>).

Corollary 4.3. Any group G such that SL ≤ G ≤ Jn(A)1 is equal to some G(I) o SL,
i.e. Jn(A1+<I>) ∩ Jn(A)1.

Corollary 4.4. If n ≥ 2 and j ∈ Jn(A)1, the following assertions are equivalent:
(i) < SL, j >= Jn(A)1;
(ii) j(2) 6= 0.

Proof. If we set G :=< SL, j >, then G = Jn(A)1 if and only if I0(G) = N<n, which is
still equivalent to 1 ∈ I0(G), i.e. H1(G) 6= {0}, i.e. j(2) 6= 0. �

Proof of th. B. Assume that Jn(A) ≤ G ≤ Jn(Ã). Since 1 ∈ I0(G), lemma 3.7 implies
that I1(G) is equal to some {0} ∪ {k, k + 1, . . . , n− 1} where 1 ≤ k ≤ n.
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Applying lemma 3.6 with G1 :=< Jn(A), g[k] >, where g[k] := (1 + xk1)id ∈ Jn(Ã), and
G2 := J−1

n,k (Jk(A)), one could show as in lemma 4.1 that J−1
n,k (Jk(A)) =< Jn(A), g[k] >.

Remark: if k = n, we agree that g[n] = id. Using these preliminaries, let us show that
G =< Jn(A), g[k] >. As above, the proof is by induction on n. The case n = 1 being
obvious, we may assume that n ≥ 2.

First case. k < n, i.e. n− 1 ∈ I1(G).
By induction hypothesis, the groups G and H :=< Jn(A), g[k] > coincide at the level
of n − 1 jets, i.e. Jn−1G = Jn−1H. However, since G and H both contain the group
{id + u, u ∈ En} ≤ Jn(Ã), it is clear that the last equality can be lifted up at the level of
n-jets to show that G = H.

Second case. k = n, i.e. I1(G) = {0}.
Since Jn(A) ≤ G and I1 (Jn(A)) = Il(G) = {0}, we get Jn(A) = G by lemma 3.6. �

Corollary 4.5. If n ≥ 2 and j ∈ Jn(E)∗, the following assertions are equivalent:
(i) < Jn(A), j >= Jn(E)∗;
(ii) J2 j /∈ J2(A).

Proof. If we set G :=< Jn(A), j >, then G = Jn(E)∗ if and only if I1(G) = N<n, which
is still equivalent to 1 ∈ I1(G), i.e. H1

1 (G) 6= {0}, i.e. J2 j /∈ J2(A). �

Proof of th. C. Let f ∈ A\GA. Let us show that there exists a ∈ AN such that if we set
g := f ◦ τa (where τa = id + a is the translation of vector a), then the quadratic part g(2)

of g is nonzero. Since f = (f1, . . . , fN) is not affine, there exists a component fL of f such
that deg fL ≥ 2. Therefore, it is sufficient to show that if p ∈ R = C[x1, . . . , xN ] satisfies
deg p ≥ 2, then there exists a ∈ AN = CN such that q(x) := p(a + x) satisfies q(2) 6= 0.

But it is clear that there exist integers L,M such that
∂2p

∂xL∂xM
is a nonzero polynomial.

Therefore, there exists a ∈ CN such that
∂2p

∂xL∂xM
(a) 6= 0. By Taylor formula, we have

q(x) = p(a+ x) =
∑
α∈NN

∂αp

∂xα
(a)

xα

α!
so that q(2) 6= 0. By replacing g (where g ∈ G satisfies

g(2) 6= 0) by h ◦ g (where h is a well chosen affine map), we may assume moreover that
g(0) = 0 and that Jac g = 1. Now, by cor. 4.5, we have < SL, Jn(g) >= Jn(A)1 and it
is clear that Jn(G) = Jn(A). �

V. PROOF OF THEOREM D.

1. The Algebraic case.

We have seen in prop. 3.2 above that for any j ∈ Jn(E) whose Jacobian is a nonzero
constant there exists a tame automorphism f such that j = Jn(f). The following gener-
alization is equivalent to the algebraic case of th. D:

Theorem 5.1 (interpolation of n-jets by an algebraic tame automorphism).
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Let n ≥ 1, let u[1], . . . , u[m] be distinct points of AN and let j[1], . . . , j[m] ∈ Jn(E) be n-jets
whose Jacobians are nonzero constants. The two following assertions are equivalent:

(i) ∃ f ∈ T, Jn,u[k] f = j[k], 1 ≤ k ≤ m; (ii)

{
1. the points j[k](0)1≤k≤m are distinct;
2. ∃ λ ∈ C∗, Jac j[k] = λ, 1 ≤ k ≤ m.

Proof. (i) =⇒ (ii). We have f(u[k]) = j[k](0), so that (1) comes from the injectivity of f .
Since f is a polynomial automorphism, Jac f ≡ λ ∈ C∗, i.e. ∀ a ∈ AN , det f ′(a) = λ
and we get Jac j[k] = det (j[k])′(0) = det f ′(u[k]) = λ.

(ii) =⇒ (i). It is enough to prove that given: u[1], . . . , u[m] distinct points of AN ; v[1], . . . , v[m]

distinct points of AN ; λ ∈ C∗; j[1], . . . , j[m] centered n-jets of Jn(E) such that Jac j[k] = λ
(for 1 ≤ k ≤ m) there exists f ∈ T such that f(u[k]) = v[k] and Jn,u[k] f = j[k] (for
1 ≤ k ≤ m).

Let G be the group of tame automorphisms f such that f(u[k]) = u[k] (for 1 ≤ k ≤ m)
and such that Jac f = 1 and let J := Jn(A)1. Using lemma 5.1 below, it is sufficient
to show that the group-morphism ϕ : G → Jm, f 7→

(
Jn,u[k] f

)
1≤k≤m is onto. This is a

direct consequence of lemma 5.2 below. �

Lemma 5.1. If u[1], . . . , u[m] and v[1], . . . , v[m] are two families of m pairwise distinct
points of AN and if λ ∈ C∗, then there exists a tame automorphism f with Jacobian
equal to λ such that f(u[k]) = v[k] for 1 ≤ k ≤ m.

Proof. It is proven as a watermark in [17] that T acts m-transitively on AN . It is
also a consequence of th. 2 of [27] asserting that if X1, X2 are smooth closed algebraic
subsets of AN of dimension d with N ≥ 2d + 2, then any isomorphism from X1 to X2

can be extended into a tame automorphism of AN (see also § 5.3 of [11] for an overview).
Therefore, if we set w[k] := k eN ∈ AN (for 1 ≤ k ≤ m), there exist g, h ∈ T such that
g(u[k]) = w[k] and h(w[k]) = v[k] (for 1 ≤ k ≤ m). If we set µ := λ/(Jac g × Jac h) ∈ C∗

and dµ := (µx1, x2, . . . , xN) ∈ T , then f := h ◦ dµ ◦ g satisfies the required conditions. �

Lemma 5.2. If u[0], . . . , u[m] are m + 1 pairwise distinct points of AN , let G0 be the
group of tame automorphisms f satisfying f(u[k]) = u[k] for 0 ≤ k ≤ m, Jn,u[k] f = id for
1 ≤ k ≤ m and Jac f = 1. As above, let J := Jn(A)1 be the group of centered n-jets
of automorphisms with Jacobian equal to 1. Then, the group-morphism ψ : G0 → J ,
f 7→ Jn,u[0] f is onto.

Proof. Let us set u = (1, . . . , 1︸ ︷︷ ︸
N

) ∈ AN . Since there exists a tame automorphism sending

u[k] on k u (for 0 ≤ k ≤ m), we may assume that u[k] = k u (for 0 ≤ k ≤ m). Using cor.
4.4, it is sufficient to show that: (i) id + x2

2 e1 ∈ Im ψ and (ii) SL ⊂ Im ψ.

Proof of (i). Let p(ξ) ∈ C[ξ] be such that p(ξ) ≡ ξ2 mod ξn+1 and p(k+ ξ) ≡ 0 mod ξn+1,
1 ≤ k ≤ m. Then f := id + p(x2)e1 ∈ G0 and ψ(f) = Jn f = id + x2

2e1.

Proof of (ii). We know that SL is generated by the elementary transvections tα,L,M := id+

αxM eL (where α ∈ C and L 6= M ∈ {1, . . . , N}). It is enough to show that tα,L,M ∈ Im ψ.
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Let p(ξ) ∈ C[ξ] be such that p(ξ) ≡ αξ mod ξn+1 and p(k+ ξ) ≡ 0 mod ξn+1, 1 ≤ k ≤ m.
Then f := id + p(xM)eL ∈ G0 and ψ(f) = Jn f = tα,L,M . �

2. The Analytic case.

We have seen in prop. 3.3 above that for any j ∈ Jn(E)∗, there exists a tame analytic
automorphism f such that j = Jn f . The following generalization is equivalent to the
analytic case of th. D:

Theorem 5.2 (interpolation of n-jets by an analytic tame automorphism).
Let n ≥ 1, let u[1], . . . , u[m] be distinct points of AN , let v[1], . . . , v[m] be points of AN and
let j[1], . . . , j[m] ∈ Jn(E)∗ be invertible centered n-jets. The two following assertions are
equivalent:

(i) ∃ f ∈ T̃ , Jn,u[k] f = v[k] + j[k], 1 ≤ k ≤ m; (ii) the points
(
v[k]
)
1≤k≤m are distinct.

Proof. We follow the same path as in the algebraic case. The implication (i) =⇒ (ii) is
obvious and (ii) =⇒ (i) is a consequence of the following lemma. �

Lemma 5.3. If u[0], . . . , u[m] are m + 1 distinct points of AN , let G̃ be the group of
tame analytic automorphisms f such that f(u[k]) = u[k], 0 ≤ k ≤ m and Jn,u[k] f = id,
1 ≤ k ≤ m. Let J̃ := Jn(E)∗ be the group of invertible centered n-jets. Then, the
group-morphism ψ̃ : G̃→ J̃ , f 7→ Jn,u[0] f is onto.

Proof. We may assume that u[k] = k u (0 ≤ k ≤ m) where u = (1, . . . , 1︸ ︷︷ ︸
N

) ∈ AN . Using

cor. 4.5, it is enough to show that: (i) Jn(A) ⊂ Im ψ̃ and (ii) id + x1x2 e1 ∈ Im ψ̃.

Proof of (i). We already know that Jn(A)1 ⊂ ψ(G) ⊂ ψ̃(G̃). Therefore, it is sufficient to
show that for any λ ∈ C∗, dλ := (λx1, x2, . . . , xN) ∈ Im ψ̃. Let us choose µ ∈ C such
that eµ = λ and let us choose p(ξ) ∈ C[ξ] such that p(ξ) ≡ µ mod ξn+1 and p(k + ξ) ≡
0 mod ξn+1, 1 ≤ k ≤ m. Then f := (ep(x2)x1, x2, . . . , xN) ∈ G̃ and ψ̃(f) = Jn f = dλ.

Proof of (ii). Let p(ξ) ∈ C[ξ] be such that p(ξ) ≡ ln(1 + ξ) mod ξn+1 or equivalently

p(ξ) ≡
∑

1≤k≤n

(−1)k+1 ξ
k

k
mod ξn+1 and p(k + ξ) ≡ 0 mod ξn+1, 1 ≤ k ≤ m. Then

f := (ep(x2)x1, x2, . . . , xN) ∈ G̃ and ψ̃(f) = Jn f = id + x1x2 e1. �

VI. CONSEQUENCES ON VARIABLES.

We recall that f1 ∈ R is called a variable, if there exist f2, . . . , fN ∈ R such that
(f1, . . . , fN) is an algebraic automorphism.

Theorem 6.1. If n ≥ 1 and jL ∈ Jn(R) for 1 ≤ L ≤ N , the following assertions are
equivalent:
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(i) the linear parts L(jL) of the jL, 1 ≤ L ≤ N − 1 are linearly independant;
(ii) there exists jN ∈ Jn(R) such that (j1, . . . , jN) ∈ Jn(A);
(iii) there exists jN ∈ Jn(R) such that Jac(j1, . . . , jN) = 1 ∈ Jn−1(R).

Furthermore, if these assertions are satisfied and if we choose any linear form l ∈ V ∗ such
that L(j1), . . . ,L(jN−1), l is a basis of V ∗, then there exists a unique p ∈ Jn−1(R) such
that jN := lp ∈ Jn(R) satisfies Jac(j1, . . . , jN) = 1 ∈ Jn−1(R).

Proof. (iii) =⇒ (ii) =⇒ (i) is obvious. Let us now choose l such that L(j1), . . . ,L(jN−1), l
is a basis of V ∗. Let us show that there exists a unique p ∈ Jn−1(R) such that jN :=
lp satisfies Jac(j1, . . . , jN) = 1 ∈ Jn−1(R). If ϕ : Jn−1(R) → Jn−1(R) is the finite
dimensional linear endomorphism defined by ϕ(p) = Jac(j1, . . . , jN−1, lp), it is sufficient
to show that ϕ is an automorphism, which is equivalent to saying that Ker ϕ = {0}.
If p 6= 0 ∈ Ker ϕ, let h 6= 0 be the homogeneous part of smallest degree of p. Let
l1, . . . , lN−1 be the linear parts of j1, . . . , jN−1. The equality Jac(j1, . . . , jN−1, lp) = 0
implies Jac(l1, . . . , lN−1, lh) = 0 which is absurd by the following lemma. �

Lemma 6.1. If l1, . . . , lN is a basis of V ∗, then the map ψ : h 7→ Jac(l1, . . . , lN−1, lNh)
is a linear automorphism of R.

Proof. Injectivity. It is well known that h ∈ Ker ψ ⇐⇒ the family l1, . . . , lN−1, lNh is
C-algebraically dependant (see [22], [14] or [11]). Therefore, we may assume that lL = xL

for all L, so that ψ(h) = 0 ⇐⇒ ∂(xNh)

∂xN
= 0 ⇐⇒ xNh ∈ C[x1, . . . , xN−1] ⇐⇒ h = 0.

Surjectivity. For any n ≥ 0, ψ induces a linear endomorphism of the finite dimensional
subspace R≤n which is injective hence surjective. �

The next result on variables, already proven in [9], is an easy consequence of th. 6.1.

Theorem 6.2. If n ≥ 1, then j ∈ Jn(R) is the n-jet of a variable if and only if j(1) 6= 0.
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