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INTRODUCTION.

Let AN be the complex affine space of dimension N . It is well known that all algebraic
embeddings of A1 in A2 are equivalent (see [1]). However, it is proven in [5] that it is no
longer true for analytic embeddings. In this paper, we consider fat points embeddings in
AN . By a fat point, we mean any scheme isomorphic to Spec B where B is a finite local
complex algebra. If one prefers, it is an affine scheme, whose algebra of functions is finite
and local. We will also consider embeddings of finite unions of fat points, which we call
constellations. In other words, a constellation is any scheme isomorphic to Spec B, where
B is a finite complex algebra. Indeed, any finite algebra is isomorphic to a finite product
of finite local algebras (these last algebras being the localisations of the algebra with
respect to its finitely many maximal ideals). Let us note that any analytic embedding of
a constellation in AN is in fact algebraic by Chow’s theorem or G.A.G.A. principle (see
[12]), since it can be seen as an embedding in the projective space PN . A Z-graduation
B = ⊕

k
Bk of an algebra B is called non-trivial if B0 6= B. Here are our three main results:

Theorem A. Up to analytic equivalence, a fat point has at most one embedding in AN .

Theorem B. Up to algebraic equivalence, a fat point whose algebra of functions admits
a non-trivial Z+-graduation has at most one embedding in AN .



Theorem C. There exists a fat point admitting algebraically non equivalent embeddings
in A2.

I. NOTATIONS AND PRELIMINARY RESULTS.

1. Mono-embeddability.

Definition. 1. Let us recall that two morphisms f1 and f2 : X → Y in a category C are
said to be equivalent if there exist automorphisms α (resp. β) of X (resp. Y ) such that
the following diagramm is commutative:

X
f1−−−→ Yyα

yβ

X
f2−−−→ Y

2. A scheme X is said to be algebraically mono-embeddable in a scheme Y if, in the
category of algebraic schemes, all (closed) embeddings of X in Y are equivalent. This is
equivalent to saying that if X1 and X2 are closed subschemes of Y which are isomorphic
to X, then there exists an automorphism β of Y such that β(X1) = X2.
3. A scheme X is said to be algebraically strongly mono-embeddable in a scheme Y if,
in the category of algebraic schemes, for all (closed) embeddings f1, f2 : X → Y there
exists an automorphism β of Y such that f2 = β ◦ f1. This is equivalent to saying that if
X1 and X2 are closed subschemes of Y which are isomorphic to X, then any isomorphism
f : X1 → X2 can be extended in an automorphism β of Y .

Remarks. 1. Strong mono-embeddability implies mono-embeddability.
2. Definitions 2 and 3 could also have been set in the analytic case.

Examples. 1. A1 is strongly algebraically mono-embeddable in A2 by [1], but not
analytically mono-embeddable by [5].
2. A1 is strongly algebraically mono-embeddable in AN for N ≥ 4 by [10].
3. One can find some other examples of curves which are algebraically mono-embeddable
in A2 in [2] and one can find some examples of curves which are not in [3] and [13].
4. Let us recall that any smooth affine (not necessarily irreducible) variety of dimension d
can be closely imbedded in A2d+1. If N > 2d+1, these varieties are strongly algebraically
mono-embeddable in AN by [15].

2. Jets.

Let Ê be the semigroup of analytic endomorphisms of the analytic germ (AN , 0) and let E

(resp. Ẽ) be the sub-semigroup of algebraic (resp. analytic) endomorphisms of the pointed
variety (AN , 0). Let R̂ := C{x1, . . . , xN} be the algebra of convergent power series in the
indeterminates x1, . . . , xN and let R (resp. R̃) be the subalgebra of polynomial (resp.
analytic) functions on AN . We have R = C[x1, . . . , xN ]. We will identify any element f

of Ê (resp. E, resp. Ẽ) with its coordinate functions f = (f1, . . . , fN) where each fL ∈ R̂
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(resp. R, resp. R̃) satisfies fL(0) = 0. If F is a semigroup, let us denote by F ∗ its group of
invertible elements. Let Â := Ê∗ be the group of analytic automorphisms of the analytic
germ (AN , 0) and let A := E∗ (resp. Ã := Ẽ∗) be the group of algebraic (resp. analytic)
automorphisms of the pointed variety (AN , 0). We have: R ⊂ R̃ ⊂ R̂, E ⊂ Ẽ ⊂ Ê and
A ≤ Ã ≤ Â, where the relation G1 ≤ G2 means that G1 is a subgroup of G2.

If f ∈ Ê and n ≥ 1, let Jnf :=
∑

0≤k≤n

1

k!
Dkf.xk denote its n-jet at the origin, where Dkf

denotes the k-th differential of f at the origin, x = (x1, . . . , xN) and xk = (x, . . . , x︸ ︷︷ ︸
k

). If

Jn(E) (resp. Jn(Ẽ), resp. Jn(Ê)) is the space of all Jnf when f describes E (resp. Ẽ, resp.
Ê), then Jn(E) = Jn(Ẽ) = Jn(Ê) is naturally a semigroup and Jn(E) ' ⊕

1≤k≤n
Ek, where

Ek is the subspace of k-homogeneous elements of E. The map Jn : Ê → Jn(Ê) = Jn(E)

being a semigroup morphism, we get: Jn(A) ≤ Jn(Ã) ≤ Jn(Â) ≤ Jn(E)∗.
Of course, if r ∈ R, we would easily define Jnr. The space of all Jnr when r describes
R will be denoted by Jn(R). We have Jn(R) ' ⊕

0≤k≤n
Rk, where Rk is the subspace of

k-homogeneous elements of R. The Jacobian map Jac : E → R induces a map Jn(E) →
Jn−1(R). If f belongs to a graduate object, let f(k) be its k-homogeneous component.
Let GL be the linear group of CN . By [6], we get Jn(A) = {j ∈ Jn(E), Jac j ∈ C∗} and
Jn(Ã) = Jn(Â) = Jn(E)∗ = {f ∈ Jn(E), J1f ∈ GL}.

3. A nice algebra.

Let us set Sn,N := C[x1, . . . , xN ]/(x1, . . . , xN)n+1, where n,N ≥ 1. If the dimension N
is understood, we will denote this last algebra by Sn. Let us recall a basic property of
commutative algebra to be also used in the proof of lemma 2.1 below. Let T be the
functor going from the category of finite local complex algebras to the category of finite
dimensional complex vector spaces, associating to the local algebra (B,N ) the vector
space T (B) := N/N 2. If u ∈ N , let u ∈ T (B) be the class of u modulo N 2. If
u1, . . . , um ∈ N , it is well known that the following assertions are equivalent:
(i) the ideal N is generated by u1, . . . , um;
(ii) the algebra B is generated by u1, . . . , um;
(iii) the vector space T (B) is generated by u1, . . . , um.
Therefore, it is clear that the embedding dimension of B (i.e. the minimal number of
generators of the algebra B) satisfies ed(B) = dim T (B).
If M is the maximal ideal of Sn, let u1, . . . , uN and v1, . . . , vN ∈ M. If u1, . . . , uN is a
basis of T (Sn), there exists a unique algebra morphism f : Sn → Sn such that f(uk) = vk

for each k. Furthermore, the three following assertions are equivalent:
(i) f is an algebra automorphism;
(ii) T (f) : T (Sn) → T (Sn) is a linear automorphism;
(iii) v1, . . . , vN is a basis of T (Sn).
This proves that Aut(Sn) is naturally isomorphic to Jn(Ã). Let us note that any finite
local complex algebra is the quotient of some Sn,N . Since the automorphism group of this
last algebra is simply described, it seems attractive to study any quotient Sn/I via the
nice Sn. The lifting lemma of next section will allow us to proceed in such a way.
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Let us finish this subsection by computing the unipotent radical of Jn(Ã). If G is a linear
algebraic group, we recall that its unipotent radical Ru(G) is by definition the largest
connected normal unipotent subgroup of G (see for example § 19.5 of [9]).

Lemma 1.1. We have Ru

(
Jn(Ã)

)
= {f ∈ Jn(Ã), J1f = id}.

Proof. Let us set G := Jn(Ã) and H := Ker(ϕ), where ϕ is the surjective morphism
ϕ : G → GL, j 7→ J1(j). Since G/H ' GL is reductive, we get Ru(G) ≤ H.
Conversely, it is rather clear that H is unipotent. Indeed, G is naturally a closed subgroup
of the linear group GL(Sn) of the vector space Sn. Let M := {xα, α ∈ NN , |α| ≤ n}
be the set of all monomials in x1, . . . , xN of degree less than or equal to n. Let us endow
M with any order ≺ satisfying |α| < |β| =⇒ xα ≺ xβ. If f ∈ H and xα ∈ M , we have
f(xα) − xα ∈ Span

(
xβ
)

xα ≺ xβ . Therefore, the matrix of f in the basis xα of Sn, where
the xα are taken with the order ≺, is lower triangular with ones on the diagonal. �

II. LIFTING LEMMA AND CONSEQUENCES.

Lemma 2.1 (lifting lemma). If I, J are ideals of Sn, then any algebra isomorphism
f : Sn/I → Sn/J can be lifted to an algebra automorphism f̂ : Sn → Sn satisfying
f̂(I) = J . If πI (resp. πJ) denotes the canonical surjection from Sn to Sn/I (resp. Sn/J),
this means that the following diagram is commutative:

Sn

bf−−−→ SnyπI

yπJ

Sn/I
f−−−→ Sn/J

Proof. We may of course assume that I and J are different from Sn, so that I,
J are included in M. Since Sn/I ' Sn/J , we have ed(Sn/I) = ed(Sn/J). But
ed(Sn/I) = dim T (Sn/I) and since πI : Sn → Sn/I is onto, the maximal ideal of
Sn/I is equal to πI(M). We have therefore

T (Sn/I) =
πI(M)

πI(M)2
=

πI(M)

πI(M2)
' π−1

I (πI(M))

π−1
I (πI(M2))

=
M+ I

M2 + I
=

M
M2 + I

.

But M2 ⊂ M2 + I ⊂ M, so that
ed(Sn/I) = dimM/(M2 + I) = dimM/M2 − dim (M2 + I)/M2.
By the same way ed(Sn/J) = dimM/M2 − dim (M2 + J)/M2, so that we can set
r := dim (M2 + I)/M2 = dim (M2 + J)/M2.
Thanks to the natural isomorphism (M2 +I)/M2 ' I/(M2∩I), there exit u1, . . . , ur ∈ I
such that u1, . . . , ur is a basis of (M2+I)/M2. By the same way, there exist v1, . . . , vr ∈ J
such that v1, . . . , vr is a basis of (M2+J)/M2. Let us choose ur+1, . . . , uN ∈M such that
u1, . . . , uN is a basis of M/M2 and for each k ≥ r+1, let us choose vk ∈ π−1

J (f (πI(uk))).
Let f̂ : Sn → Sn be the algebra morphism defined by f̂(uk) = vk for each k. By
construction, we have πJ(vk) = f (πI(uk)), i.e. πJ

(
f̂(uk)

)
= f (πI(uk)), so that πJ ◦ f̂ =

5



f ◦πI . Let us now check that f̂ is an automorphism. We have the following commutative
diagramm:

0 −−−→ (M2 + I)/M2 −−−→ M/M2 −−−→ M/(M2 + I) −−−→ 0ya

yT ( bf)

yT (f)

0 −−−→ (M2 + J)/M2 −−−→ M/M2 −−−→ M/(M2 + J) −−−→ 0

where a : (M2 + I)/M2 → (M2 + J)/M2 is the linear morphism sending the basis
u1, . . . , ur of (M2 + I)/M2 on the basis v1, . . . , vr of (M2 + J)/M2. Therefore, a is
a linear isomorphism. Furthermore, T (f) is also a linear isomorphism (since f is an
isomorphism). By the five’s lemma, we can conclude that T (f̂) is a linear automorphism
which shows that f̂ is an automorphism. �

We will now prove three theorems which are easily deduced from lemma 2.1. The first
will imply th. A:

Theorem 2.1. If N ≥ 2, any constellation is strongly analytically mono-embeddable
in AN .

Proof. If P [1], . . . , P [m] (resp. Q[1], . . . , Q[m]) are closed fat points of AN with distinct
supports and if g[k] : P [k] → Q[k] is an isomorphism (for 1 ≤ k ≤ m), then, by lemma 2.1,
g[k] is induced by an analytic automorphism f [k] of AN . If n ≥ 1, by th. D of [6], there
exists a (tame) analytic automorphism f such that the n-jets of f and f [k] coincide at the
support of the closed fat point P [k] (for 1 ≤ k ≤ m). If n has been chosen big enough, it
is clear that f will extend each g[k]. �

If u : AN → AN is an analytic endomorphism of AN , let u# : R̃ → R̃, r 7→ r ◦ u be the
algebra-morphism induced by u. Let I, J be ideals of R̃ of finite codimension. The last
theorem implies that:
• Any algebra isomorphism R̃/I → R̃/J is induced by some u#, where u is an analytic
automorphism of AN ;
• The algebras R̃/I and R̃/J are isomorphic if and only if u#(I) = J for some analytic
automorphism u of AN .

The next theorem gives a sufficient condition in order that the algebra Sn/I does not
admit any non-trivial Z-graduation. We begin with the:

Lemma 2.2. A finite complex algebra admits a non-trivial Z-graduation if and only if
its automorphism group contains the torus C∗.

Proof. Let B be a finite complex algebra. Its automorphism group Aut B being closed
in the linear group GL(B), it is naturally an algebraic group. If B = ⊕

k
Bk, then for

each t ∈ C∗, the map ϕt : B → B,
∑

k

bk 7→
∑

k

tkbk is an algebra automorphism.

Furthermore, if the graduation is non-trivial, the group-morphism C∗ → Aut B, t 7→ ϕt

is injective. Conversely, if we have an injective morphism C∗ → Aut B, t 7→ ϕt, then
B = ⊕

k
Bk, where Bk := {b ∈ B, ∀ t ∈ C∗, ϕt(b) = tkb}, is a non-trivial Z-graduation. �
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If I is an ideal of Sn, its stabilizer is Stab(I) := {f ∈ Aut(Sn) = Jn(Ã), f(I) = I}.

Theorem 2.2. If I is an ideal of Sn such that Stab(I) ≤ {f ∈ Jn(Ã), J1f = id}, then
Sn/I does not admit any non-trivial Z-graduation.

Proof. By lemma 1.1, we have Stab(I) ≤ Ru

(
Jn(Ã)

)
and by lemma 2.1, the natural

map Stab(I) → Aut(Sn/I) is onto. Since any quotient and subgroup of a unipotent group
is unipotent, Aut(Sn/I) is unipotent. This shows that Aut(Sn/I) does not contain any
torus C∗, so that we conclude by lemma 2.2. �

We end with a useful criterion to decide whether the fat point Spec Sn/I is algebraically
mono-embeddable in AN or not.

Theorem 2.3. If I is an ideal of Sn, the fat point Spec Sn/I is algebraically mono-
embeddable in AN if and only if Jn(Ã) = Jn(A) Stab(I).

Proof. Spec Sn/I is algebraically mono-embeddable in AN if and only if for any ideal
J of Sn such that Sn/I ' Sn/J there exists f ∈ Jn(A) such that f(I) = J . By lemma
2.1, we know that Sn/I ' Sn/J if and only if there exists g ∈ Aut(Sn) = Jn(Ã) such that
g(I) = J . Therefore Spec Sn/I is algebraically mono-embeddable in AN if and only if

∀ f ∈ Jn(Ã), ∃ g ∈ Jn(A), f(I) = g(I).
By considering the action of Jn(Ã) on the set of ideals of Sn, this can also be written
Jn(Ã).I = Jn(A).I and this is equivalent to our wanted statement. �

Corollary 2.1. If I is an ideal of Sn such that Stab(I) ≤ {f ∈ Jn(Ã), J2f = id} where
n ≥ 2, then Spec Sn/I is not mono-embeddable in AN .

Proof. If Spec Sn/I was mono-embeddable, we should have Jn(Ã) = Jn(A).Stab(I) and
at the level of 2-jets we should have J2(Ã) = J2(A) which is not true. �

If H, K ≤ G, then K is called a complement of H in G if G = HK and H ∩K = {1} (see
for example [11]). This is equivalent to: ∀ g ∈ G, ∃ ! (h, k) ∈ H ×K, g = hk.

Corollary 2.2. If I is an ideal of Sn such that Stab(I) contains a complement of Jn(A)

in Jn(Ã), then Spec Sn/I is mono-embeddable in AN .

III. COMPLEMENTS OF Jn(A) IN Jn(Ã).

In this section, we describe some nice complements of Jn(A) in Jn(Ã). In [6], we have
seen that:
• En = E0

n⊕E1
n, where E0

n := {f ∈ En, ∇f = 0}, E1
n := {p id, p ∈ Rn−1}, ∇f =

∑
L

∂fL

∂xL

.

• If j = id + k ∈ Jn(E), where n ≥ 2 and k ∈ En, then:
j ∈ Jn(A) ⇐⇒ Jac j = 1 in Jn−1(R) ⇐⇒ ∇k = 0 ⇐⇒ k ∈ E0

n.
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Therefore, if we set M := {p ∈ R̂, p(0) = 1} and H := {p id, p ∈ M} ≤ Â, the following
result seems natural:

Proposition 3.1. If n ≥ 1, then Jn(H) is a complement of Jn(A) in Jn(Ã).

Proof. By induction on n. For n = 1, it is clear since J1(A) = J1(Ã) = GL and
J1(H) = {id}. Let us now prove the result for n ≥ 2 assuming that it is true for n− 1.
• Let us prove that Jn(A) ∩ Jn(H) = {id}.
If j ∈ Jn(A)∩ Jn(H), then Jn−1(j) ∈ Jn−1(A)∩ Jn−1(H) = {id} by induction. Therefore,
j = id + k where k ∈ En. Since j ∈ Jn(A), we have k ∈ E0

n and since j ∈ Jn(H), we have
k ∈ E1

n, so that k = 0.

• Let us prove that Jn(Ã) = Jn(A)Jn(H).
If f ∈ Ã, by induction there exist g ∈ A and h ∈ H such that Jn−1 f = Jn−1 g ◦ Jn−1 h.
Therefore, Jn−1(g

−1 ◦ f ◦ h−1) = id, so that Jn(g−1 ◦ f ◦ h−1) = id + k where k ∈ En. If
k = k0 + k1, where k0 ∈ E0

n and k1 ∈ E1
n, then j0 := id + k0 ∈ Jn(A) and j1 := id + k1 ∈

Jn(H), so that Jn f = (Jn g ◦ j0) ◦ (j1 ◦ Jn h) ∈ Jn(A)Jn(H). �

We will now prove a more general version with weights. If d = (d1, . . . , dN) 6= 0 ∈ NN , let
us set |d| := d1 + . . . + dN and Hd := {(pd1x1, . . . , p

dN xN), p ∈ M} ≤ Â.

Lemma 3.1. If p ∈ M and h := (pd1x1, . . . , p
dN xN) ∈ Hd, then

Jac h = p|d|−1

(
p +

∑
1≤L≤N

dL xL
∂p

∂xL

)
.

Proof. The Jacobian matrix of h is equal to

h′ =

 pd1 0
. . .

0 pdN

+

 d1 x1 pd1−1

...
dNxNpdN−1

 .
[

∂p
∂x1

, . . . , ∂p
∂xN

]
.

Factorizing pdL−1 on the L-th row, we get Jac h = p|d|−N det V where

V := p IN +

 d1 x1
...

dNxN

 .
[

∂p
∂x1

, . . . , ∂p
∂xN

]
.

But if we set U := −

 d1 x1
...

dNxN

 .
[

∂p
∂x1

, . . . , ∂p
∂xN

]
, then rk U ≤ 1 and

Tr U = −
∑

L

dLxL
∂p

∂xL

, so that the characteristic polynomial of U is equal to

χU(t) = det(t IN − U) = tN−1

(
t +
∑

L

dLxL
∂p

∂xL

)
.
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Therefore det V = χU(p) = pN−1

(
p +

∑
L

dLxL
∂p

∂xL

)
and the resut follows. �

Lemma 3.2. The map α : M → M , p 7→ p|d|−1

(
p +

∑
1≤L≤N

dL xL
∂p

∂xL

)
is bijective.

Proof. We have α = γ ◦ β, where β : M → M , p 7→ p|d| and γ : M → M

q 7→ q +
∑

1≤L≤N

dL

|d|
xL

∂q

∂xL

. Let us check that β and γ are bijective.

• It is well known that β is bijective. This comes out from the fact that the map (C, 1) →
(C, 1), x 7→ x|d| is a local analytic diffeomorphism.

• Let us note that γ = Γ||M , where Γ : R̂ → R̂, q 7→ q +
∑

1≤L≤N

dL

|d|
xL

∂q

∂xL

is a linear

endomorphism satisfying: q ∈ M ⇐⇒ Γ(q) ∈ M .
Therefore, it is enough to show that Γ is bijective. But, for any r ∈ NN , we have

Γ(xr) = λrx
r, where λr := 1 +

1

|d|
< d, r > with < d, r >:=

∑
1≤L≤N

dLrL.

Since λr ≥ 1, it is now clear that Γ is one-to-one: If q =
∑

r

qrx
r ∈ C{x1, . . . , xN}, then

the only possible preimage of q by Γ is p :=
∑

r

qr

λr

xr ∈ C[[x1, . . . , xN ]]. It remains to

show that p ∈ C{x1, . . . , xN}. But if W is an open neighbourhood of the origin in AN

(for the transcendental topology) on which the series q =
∑

r

qrx
r is normally convergent,

then p will still be normally convergent on W since
∣∣∣∣ qr

λr

xr

∣∣∣∣ ≤ |qrx
r|. �

The next result is a consequence of the last two lemmas.

Lemma 3.3. The map Hd → M , h 7→ Jac h is bijective.

Lemma 3.4. Hd is a complement of K := {f ∈ Â, Jac f ∈ C∗} in Â.

Proof. If f ∈ Â and h ∈ Hd, then ∃ g ∈ K, f = g ◦ h ⇐⇒ Jac h =
Jac f

(Jac f)(0)
.

Therefore, the result follows from lemma 3.3. �

Since Jn(K) = Jn(A) and Jn(Â) = Jn(Ã), we get:

Proposition 3.2. If n ≥ 1, then Jn(Hd) is a complement of Jn(A) in Jn(Ã).

IV. PROOF OF THEOREM B.

Theorem 4.1. If d = (d1, . . . , dN) 6= 0 ∈ NN , let us graduate the algebra R =
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C[x1, . . . , xN ] by assigning each xL to be homogeneous of degree dL. If I is a homo-
geneous ideal of R such that R/I is a local finite algebra, then the fat point Spec R/I is
algebraically mono-embeddable in AN .

Proof. Let n be such that (x1, . . . , xN)n+1 ⊂ I. Since (x1, . . . , xN)n+1 is a homogeneous
ideal of R, the algebra Sn := R/(x1, . . . , xN)n+1 inherits a graduation such that the
canonical surjection π : R → Sn is a graduated morphism. If we set I = π(I), then
R/I ' Sn/I. But Jn(Hd) ≤ Stab(I) and Jn(Hd) is a complement of Jn(A) in Jn(Ã) by
prop. 3.2. The result follows from cor. 2.2. �

Corollary 4.1. If X is a fat point such that ed(X) < N − 1, then X is algebraically
mono-embeddable in AN .

Proof. We may assume that X = Spec C[x1, . . . , xN−1]/J where J is an ideal of
C[x1, . . . , xN−1]. Therefore, X ' R/I, where R = C[x1, . . . , xN ] and I = J.R + xN .R. If
we endow R with the graduation where x1, . . . , xN−1 are homogeneous of degree 0 and xN

is homogeneous of degree 1, it is enough to note that I is homogeneous. �

Proof of th. B. Let B = ⊕
k≥0

Bk be a finite local complex algebra endowed with a non-

trivial Z+-graduation. If N is the maximal ideal of B, let us begin to show that N is
homogeneous. If b ∈ N is written b =

∑
k≥0

bk, where each bk ∈ Bk, we want to show that

bk ∈ N . If k ≥ 1, it is clear since bk is nilpotent. Therefore b0 = b−
∑
k≥1

bk ∈ N also.

Let h1, . . . , hm be a homogeneous basis of the vector space N . The family h1, . . . , hm

generates the vector space N/N 2 so that we can extract from it a basis of N/N 2. We
may assume that ed(B) = N . Indeed, if ed(B) < N , we have already seen that Spec B is
mono-embeddable in AN and if ed(B) > N , then Spec B is clearly mono-embeddable in
AN since it cannot be embedded in AN , which shows that all its embeddings are equivalent
! Since we have found homogeneous elements u1, . . . , uN of B which generate the algebra
B, this shows that B can be written as in th. 4.1. �

V. RIGIDITY LEMMAS.

The three following rigidity lemmas will be used in the next section.

Lemma 5.1 (first rigidity lemma). If l1, . . . , lm ∈ R1 are linearly independant, then
for any integers k ≥ 0, d ≥ (m− 1)(k + 1), the following map is injective

ϕ : (Rk)
m → Rk+d

(ri)1≤ i≤m 7→
∑

i

ri (li)
d.

Proof. We may assume that li = x + λiy, where the λi are distinct complex numbers.
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Setting y = 1, it is enough to show that the following map is injective

Φ : ( Ck )m → Ck+d

(ri)1≤ i≤m 7→
∑

i

ri (x + λi)
d.

Since for each i, the family (x + λi)
j, 0 ≤ j ≤ k is a basis of Ck, this amounts to show

that the family (x + λi)
d+j, 1 ≤ i ≤ m, 0 ≤ j ≤ k is linearly independant.

By derivating with respect to x, it is enough to show the same result where d is replaced
by d− 1. Therefore, we may assume that d = (m− 1)(k + 1).
Setting n := k+1, we want to show that the family (x+λi)

mn−j, 1 ≤ i ≤ m, 1 ≤ j ≤ n
is linearly independant. But since dim Cmn−1 = mn, we will in fact show that this family
is a basis of Cmn−1, which comes from the next more general result. �

Proposition 5.1. Let λ1, . . . , λm be distinct complex numbers and let w1, . . . , wm be
nonnegative integers. If we set w :=

∑
i

wi, then the family (x + λi)
w−j, 1 ≤ i ≤ m,

1 ≤ j ≤ wi is a basis of Cw−1.

Proof. In fact, this result is a consequence of the Hermite’s interpolation theorem as-
serting that given any complex numbers βi,j there exists a unique polynomial p ∈ Cw−1

satisfying p(j−1)(λi) = βi,j for 1 ≤ i ≤ m, 1 ≤ j ≤ wi.

Writting p =
∑

1≤a≤w

pax
a−1, this is equivalent to

∑
1≤a≤w

pa

(
a− 1

j − 1

)
λa−j

i =
1

(j − 1)!
βi,j,

where we agree that
(

a

b

)
= 0 if we do not have 0 ≤ b ≤ a.

If 1 ≤ i ≤ m, let Pi ∈ Mw,wi
(C) be the matrix defined by its general term

(Pi)a,b =

(
a− 1

b− 1

)
λa−b

i , 1 ≤ a ≤ w, 1 ≤ b ≤ wi.

If P := [P1, P2, . . . , Pm] ∈ Mw(C), then P is invertible by Hermite’s theorem.

However, by multiplying the a-th row of Pi by
(

w−1
a−1

)
and by dividing the b-th column by(

w−1
b−1

)
, we obtain the matrix Qi ∈ Mw,wi

(C) with general term

(Qi)a,b =

(
a− 1

b− 1

)
λa−b

i ×

(
w − 1

a− 1

)
(

w − 1

b− 1

) =

(
w − b

w − a

)
λa−b

i , 1 ≤ a ≤ w, 1 ≤ b ≤ wi.

Therefore, the matrix Q = [Q1, . . . , Qm] ∈ Mw(C) is invertible.
But each Qi is the matrix of the family (x + λi)

w−1, . . . , (x + λi)
w−wi expressed in the

canonical basis (xw−1, xw−2, . . . , x, 1) of Cw−1. The invertibility of Q exactly means that
the family (x + λi)

w−j, 1 ≤ i ≤ m, 1 ≤ j ≤ wi is a basis of Cw−1. �

Remark. The above matrix P associated with the Hermite’s interpolation problem has
been very often introduced in the literature (see for example [8], [16]) and is a generaliza-
tion of the Vandermonde matrice. It is for example shown in [14] that
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det P =
∏

1≤i<j≤m

(λj − λi)
wiwj .

The proof is by reverse induction on the number m of blocks (with w fixed) beginning
with the usual Vandermonde matrix for m = w. Using this result, we obtain at once

det Q =

∏
1≤a≤w

(
w − 1

a− 1

)
∏

1≤i≤m

∏
1≤b≤wi

(
w − 1

b− 1

) ∏
1≤i<j≤m

(λj − λi)
wiwj 6= 0.

Lemma 5.2 (second rigidity lemma). If p, q ∈ Rn, the following assertions are
equivalent:
(i) there exists h ∈ Rn−1 such that p = xh, q = yh;
(ii) for any λ ∈ P1, x + λy divides p + λq;
(iii) for at least n + 2 values of λ ∈ P1, x + λy divides p + λq.

Remark. For λ = ∞, the relation x + λy divides p + λq means that y divides q.

Proof. (i) =⇒ (ii) =⇒ (iii) is obvious.
(iii) =⇒ (i). We may assume that (p, q) 6= (0, 0). Then (p, q) induces a morphism
f : P1 → P1 such that deg f ≤ n. However, (iii) means that f admits at least n+2 fixed
points, which implies f = idP1 . �

If a1, . . . , a4 are 4 distinct points of P1, let us recall that their cross-ratio is defined by
[a1, a2, a3, a4] = a3−a1

a3−a2
/a4−a1

a4−a2
∈ P1. If b1, . . . , b4 are 4 distinct points of P1, it is well known

that there exists a homography of P1 sending ak on bk for 1 ≤ k ≤ 4 if and only if
[a1, a2, a3, a4] = [b1, b2, b3, b4]. If we permute the ak, the cross-ratio λ = [a1, a2, a3, a4] may
change, but not the expression (λ2−λ+1)3

λ2(1−λ)2
. Therefore, one usually defines the j-invariant

of {a1, . . . , a4} by this formula. Furthermore, there exists a homography of P1 sending
{a1, . . . , a4} on {b1, . . . , b4} if and only if j ({a1, . . . , a4}) = j ({b1, . . . , b4}) (see the defi-
nition of the j-invariant of an elliptic curve in § IV.4 of [7] or § 6.3.3 of [4]). If X is any
set, let us denote by P4(X) the set of all subsets of X with exactly 4 elements.

Definition 5.1. We will say that X ⊂ P1 is j-separated if j : P4(X) → P1 is injective.

The next result is almost obvious.

Lemma 5.3 (third rigidity lemma). If A is a j-separated subset of P1 with at least
5 elements and if h is a homography of P1 satisfying h(A) = A, then h = idP1 .

Proof. Let a1, . . . , a5 be five distinct points of A. If we set Ai := {a1, . . . , a5} \ {ai}, we
must have h(Ai) = Ai thanks to the j-separatedness. This clearly implies h(ai) = ai and
since h fixes at least 3 points h = idP1 . �

Lemma 5.4 (adjunction lemma). If A is a finite j-separated subset of P1 and if B is
an infinite subset of P1, then there exists b ∈ B such that A′ := A ∪ {b} is j-separated.
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Proof. If f ∈ C(x) is a non constant rational function and if c ∈ P1, then there exist
only finitely many b ∈ P1 such that f(b) = c. �

Using this adjunction lemma, we can make the following

Definition 5.2. We define the sequence (αn)n∈N inductively by α0 = 0 and for each
n ≥ 1, αn is the least integer such that
(i) αn > αn−1 and (ii) {α0, . . . , αn} is j-separated.

With the help of a computer, one finds easily α0 = 0, α1 = 1, α2 = 2, α3 = 3, α4 = 5,
α5 = 12, α6 = 15, α7 = 32, α8 = 38, α9 = 43, α10 = 58.

VI. PROOF OF THEOREM C.

In this section, we will give examples of fat points with embedding dimensions 2, without
any non-trivial Z+-graduation and which are (resp. which are not) algebraically mono-
embeddable in A2. From now on, we set N = 2, so that R = C[x, y] and Sn = R/(x, y)n+1

for n ≥ 1. If k is an integer, we recall that Rk denotes the set of k-homogeneous polynomi-
als of R. We will also denote by Ck the space of complex polynomials in the indeterminate
x whose degree is less than or equal to k. The αi used in the next result are given in def.
5.2.

Theorem 6.1. If k ≥ 1, let m, d, n be such that m ≥ max(k+1, 4), d ≥ (m+1)(k+2)+1,
n ≥ d + k. If I is the ideal of Sn generated by xd − yd+1 and (x− αiy)d, 1 ≤ i ≤ m, then
Stab(I) ≤ {f ∈ Jn(Ã), Jkf = id}.

Remark. Roughly speaking
• the homogeneous elements (x − αiy)d, 1 ≤ i ≤ m, imply that Jk f is a generalized
dilatation, i.e. Jk f = λ id where λ ∈ R satisfies deg λ ≤ k − 1;
• the non homogeneous element xd − yd+1 implies λ = 1.

Proof. If f fixes I, it also fixes I +(x, y)d+k+1. Therefore, we may assume that n = d+k.
If p ∈ Sn, let us define its initial term, denoted in(p), as its homogeneous term of smallest
degree. We define in(I) as the (homogeneous) ideal of Sn generated by the in(p), p ∈ I.
For 0 ≤ l ≤ k, we have d ≥ m(k + 1) ≥ m(l + 1). Using lemma 5.1 with the m + 1 linear
forms x− αiy, 0 ≤ i ≤ m, the map

ϕ : (Rl)
m+1 → Rl+d

(ri)0≤ i≤m 7→
∑

0≤i≤m

ri (x− αiy)d

is injective. This shows that the ideal in(I) is generated by the (x− αiy)d, 0 ≤ i ≤ m.

First step. Let us show that the linear part of f is a dilatation, i.e. L(f) = λ.id, where
λ ∈ C∗.
Since f(xd − yd+1) ∈ I and since in

(
f(xd − yd+1)

)
= (L(f)(x))d, we get (L(f)(x))d ∈

in(I). By the same way, we could show that (L(f)(x− αiy))d ∈ in(I), for 0 ≤ i ≤ m.
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Let h be the homography of P1 induced by the invertible linear automorphism L(f). Since
h fixes {α0, . . . , αm} and since m ≥ 4, using lemma 5.3, we get h = idP1 .

Second step. Let us show that J1(f) = id.
By the first step, there exist λ ∈ C∗ and p ∈ R2 such that f1 ≡ λx + p mod M3 and
f2 ≡ λy mod M2. This implies that
1
λd f(xd − yd+1)− (xd − yd+1) ≡ d

λ
pxd−1 + (1− λ)yd+1 mod Md+2.

Since 1
λd f(xd−yd+1)−(xd−yd+1) ∈ I and since d

λ
pxd−1+(1−λ)yd+1 is (d+1)-homogeneous,

we get d
λ
pxd−1 + (1 − λ)yd+1 ∈ in(I), so that there exist a0, . . . , am ∈ R2 such that

(1− λ)y2yd−1 +
∑

0≤i≤m

ai (x− αiy)d−1 = 0.

Since d−1 ≥ 3(m+1), using lemma 5.1 with the m+2 linear forms y, x−α0y, . . . , x−αmy,
we get (1− λ)y2 = a0 = . . . = am = 0, whence λ = 1.

If k = 1, the theorem is proven. If k ≥ 2, let l be an integer such that 2 ≤ l ≤ k and
let us assume that f1 ≡ x + p mod Ml+1, f2 ≡ y + q mod Ml+1 where p, q ∈ Rl. It is
enough to prove that p = q = 0.

Third step. Let us show that there exists h ∈ Rl−1 such that p = xh, q = xh.
If 1 ≤ i ≤ m, we have f

(
(x− αiy)d

)
− (x−αiy)d ≡ [(x−αiy)+ (p−αiq)]

d− (x−αiy)d ≡
d(p− αiq)(x− αiy)d−1 mod Md+l, so that (p− αiq)(x− αiy)d−1 ∈ in(I).
Therefore, there exist a0, . . . , am ∈ Rl−1 such that

(p− αiq)(x− αiy)d−1 =
∑

0≤j≤m

aj(x− αjy)d.

Since d − 1 ≥ m(k + 1) ≥ m(l + 1), using lemma 4.1 with the m + 1 linear forms
x− α0y, . . . , x− αmy, we get p− αiq = ai(x− αiy), so that x− αiy divides p− αiq.
If i = 0, we have f(xd − yd+1)− (xd − yd+1) ≡ dpxd−1 mod Md+l so that x divides p by
the same way.
Therefore, x− αiy divides p− αiq for 0 ≤ i ≤ m and since m + 1 ≥ k + 2 ≥ l + 2, we are
done by lemma 5.2.

Fourth step. Let us show that h = 0.
We have f1 ≡ x + xh mod Ml+1, f2 ≡ y + yh mod Ml+1, where h ∈ Rl−1, 2 ≤ l ≤ k.
Let us note that 1 + h is invertible in Sn and that f1

1+h
≡ x mod Ml+1. Let r ∈ Rl+1 be

such that f1

1+h
≡ x + r mod Ml+2.

We have 1
(1+h)d f(xd − yd+1) − (xd − yd+1) ≡ (x + r)d − (1 + h)yd+1 − (xd − yd+1) ≡

drxd−1 − hyd+1 mod Md+l+1.
Since 1

(1+h)d f(xd−yd+1)−(xd−yd+1) ∈ I and since drxd−1−hyd+1 is (d+ l)-homogeneous,
we get drxd−1 − hyd+1 ∈ in(I).
Therefore, there exist a0, . . . , am ∈ Rl+1 such that hy2yd−1 +

∑
0≤i≤m

ai(x− αiy)d−1 = 0.

Since d− 1 ≥ (m+1)(k +2) ≥ (m+1)(l +2), by lemma 5.1 applied with the m+2 linear
forms y, x− α0y, . . . , x− αmy, we get hy2 = a0 = . . . = am = 0, so that h = 0. �

Corollary 6.1. Let I be the ideal of S17 generated by x16 − y17 and (x − αy)16, α ∈
{1, 2, 3, 5}, then S17/I does not admit any non trivial Z-graduation, but Spec S17/I is
algebraically mono-embeddable in A2.
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Proof. We have J17(H) ≤ Stab(I) ≤ {f ∈ J17(Ã), J1(f) = id}. Since J17(H) is a
complement of J17(A) in J17(Ã) by prop. 3.1, the first inclusion shows us that Spec S17/I
is mono-embeddable in A2 (see cor. 2.2). The second inclusion shows us that S17/I does
not admit any non-trivial Z-graduation (see th. 2.2). �

Remark. We may of course find some "smaller" examples. We leave as an exercice
to the reader the fact that if I is the ideal of S8 generated by x7 − y8, x3y4, (x + y)7,
then S8/I does not admit any non-trivial Z-graduation, but Spec S8/I is algebraically
mono-embeddable in A2.

Corollary 6.2. Let I be the ideal of S23 generated by x21 − y22 and (x − αy)21, α ∈
{1, 2, 3, 5}, then Spec S23/I is not algebraically mono-embeddable in A2.

Proof. We have Stab(I) ≤ {f ∈ J23(Ã), J2(f) = id} by th. 6.1. The result follows from
cor. 2.1. �

VII. APPENDIX.

If X is a fat point such that ed(X) < N , it is quite easy to show that X is strongly
algebraically mono-embeddable in AN . Indeed, by cor. 4.1, X is algebraically mono-
embeddable in AN . Therefore, we may assume that X is embedded in AN−1 ⊂ AN , where
AN−1 = {(x1, . . . , xN) ∈ An, xN = 0}, and it is sufficient to show that any automorphism
f : X → X can be extended in an algebraic automorphism β : AN → AN . We may
also assume that X is embedded in Y = Spec C[x1, . . . , xN−1]/(x1, . . . , xN−1)

n+1 ⊂ AN−1

for some n. By lemma 2.1, f is induced by some automorphism f̂ of Y . By th. 6.1 of [6],
f̂ is induced by some algebraic automorphism β of AN . By the same way, we could even
show that if X is any constellation such that ed(X) < N , then X is strongly algebraically
mono-embeddable in AN .

However, it is easy to find a fat point which is not strongly algebraically mono-embeddable
in AN . If we set X := Spec C[x1, . . . , xN ]/(x1, . . . , xN)3 and if we consider f := (x1 +

x2
1, x2, . . . , xN) ∈ Aut(X) ' J2(Ã), then f cannot be extended in a polynomial automor-

phism of AN , since Jac f = 1 + 2x1 ∈ J1(R) is not a constant.

We end with a few comments about the algebraic mono-embeddability of constellations.
Let X = ∪

1≤k≤m
X [k] be a constellation, where the X [k]s are distinct fat points. We leave as

an easy exercice for the reader, the fact that if X is algebraically mono-embeddable in AN ,
then the X [k]s also. Unfortunately, the converse is not true. Indeed, if I is the ideal of S17

given in cor. 6.1, we have seen that any f ∈ Stab(I) satisfies J1f = id and that the fat
point F := Spec S17/I is algebraically mono-embeddable in A2. However, the constellation
X obtained by taking two distinct copies of F is not algebraically mono-embeddable in
A2. Indeed, let P be a closed fat point of A2 isomorphic to F and whose support is at
the origin of A2. Let Aut(A2) denote the group of algebraic automorphisms of A2. Let
h := (2x, 2y) ∈ Aut(A2) be the dilatation of ratio 2 and let τ := (x + 1, y) ∈ Aut(A2) be
the translation of vector (1, 0). Then, the closed subschemes X1 := F ∪ τ(F ) and X2 :=
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h(F ) ∪ τ(F ) of A2 are both isomorphic to X, but there does not exist any f ∈ Aut(A2)
such that f(X1) = X2: such an f should both satisfy Jac f = 1 and Jac f = 4.
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