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Abstract

We study the regularity of random series representing shoit noise series or Pois-
son integrals. We give conditions for the absolute continuity of their law with
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1 Shot noise series and Poisson integrals
Let (∆i)i≥1 be an independent and identically distributed (i.i.d.) sequence of random
variables with common law σ without atom in 0 and let (Ti)i≥1 be a sequence of partial
sums of independent E(α)-random variables, independent of (∆i)i≥1. Given a measurable
function h : R+ ×R −→ R, we are interested in the regularity of the law of the random
series

I =
+∞∑
i=1

h(Ti, ∆i). (1)

Namely, we give conditions on h and on the law σ for the absolute continuity (with
respect to the Lebesgue measure λ) of the law of (1) on R and on R \ {0}. We study
also the continuity of the law for the total variation norm with respect to the integrand
h. Typically, our conditions are stated in terms of image measure (λ ⊗ σ)h−1 and we
refer to Section 4 in [DLS] and to [ABP, D] for sufficient explicit conditions on h and on σ.
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The interest of such random series lies for instance in their connection with shot noise
series and more generally with Lévy-type integrals. Indeed, the series (1) can be seen as
the total effect of a repeated signal ∆i under a "filter" h. More precisely, as explained in
[R], h(Ti, ∆i) can be viewed as an effect at time zero of a shot ∆i that happened Ti time
units ago. In this case, it is standard to suppose that t 7→ |h(t, x)| is non-increasing for
all x, so that the magnitude of the effect decreases as the time elapsed from the moment
of the shot increases. In this setting, the series (1) represents the total shot noise at
time zero (note from Remark 4.1 in [R] that the monotonicity condition is not required
for the convergence of (1)).

When N is a Poisson measure with control measure ν, the series (1) is a representation
for Poisson integral. More precisely, let Z(t) =

∫ t

0

∫
|x|≥1

xN(ds, dx) be the Poisson point
process associated to N . Note (Ti)i≥0 the sequence of ordered jump-times of Z in
Bc

1 = {|x| ≥ 1}, that is T0 = 0 and Ti = inf{t > Ti−1 | |∆Zt| > 1} for i ≥ 1. The
variable Ti is a sum of i independent E(1/ν(Bc

1))-distributed random variables (see [S,
p. 137]). In particular, its law is equivalent to λR+ . Moreover, it is well known that the
∆i := ∆ZTi

form an i.i.d. sequence with law ν̄1 := ν(· ∩ Bc
1)/ν(Bc

1), independent of the
jump-times (Ti)i≥0. In this case, take

h(t, x) = f(t, x)1|x|≥1, α = 1/ν(Bc
1), σ = ν̄1 (2)

and the series in (1) becomes a representation for∫ +∞

0

∫
|x|≥1

f(t, x)N(dt, dx). (3)

When ν(R \ {0}) < +∞, we can consider Poisson integral directly on R+× (R \ {0})
rather than on R+×Bc

1. In this case, the Ti’s are sums of i independent E(1/ν(R\{0}))-
distributed random variables and σ = ν/ν(R \ {0}).

When h(s, x) = f(s, x)1|x|≥11[0,t](s), the Poisson integrals is taken on [0, t]×Bc
1 and

there are almost surely (a.s.) a finite number of summand in (1).
Moreover when f(t, x) = xg(t), the Poisson integral in (3) is the non-compensated

part of the Lévy-type integrals∫ +∞

0

g(s)dYs =

∫ +∞

0

∫
|x|<1

xg(s)Ñ(ds, dx) +

∫ +∞

0

∫
|x|≥1

xg(s)N(ds, dx) (4)

where Yt is the Lévy process
∫ t

0

∫
|x|<1

xÑ(ds, dx) +
∫ t

0

∫
|x|≥1

xN(ds, dx). Since the in-
tegrals in the right hand side of (4) are independent, the regularity of the law of∫ +∞

0

∫
|x|≥1

xg(s)N(ds, dx) ensures the regularity of
∫ +∞

0
g(s)dYs. Note that if there were

a Gaussian part in the Lévy-type integral, its contribution would ensure the regularity
of the law. The importance of the contribution of the Poisson integrals in the law occurs
only when Y has no Gaussian component.
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In [R], Rosinski gives (necessary and sufficient) condition for the almost sure conver-
gence of (1), namely ∫ +∞

0

∫
R\{0}

(|h(t, x)|2 ∧ 1)dtσ(dx) < +∞ (5)

and the following limit exists

a := lim
s→+∞

∫ s

0

∫
R\{0}

h(t, x)1|h(t,x)|≤1dtσ(dx). (6)

For instance, the series in (1) is well defined for h ∈ L1(λ⊗ σ) and

E[|I|] ≤
∫ +∞

0

∫
|h(t, x)|dtσ(dx).

Moreover, [R] recalls the law of the shot noise series (1) is infinitely divisible with
characteristic function

φI(u) = exp

(
iau +

∫ +∞

0

∫
(R\{0})

(eiuh(t,x) − 1− iuh(t, x)1|h(t,x)|≤1)dtσ(dx)

)
. (7)

In our study of shot noise series I, a key argument in the sequel is the conditioning by
T2. In fact, we shall consider (without restriction) that the probability space (Ω,F , P)
is disintegrated as follows:(

Ω̄2 × [0, T2(ω̄)]× (R \ {0}),F∗
2 × B([0, T2(ω̄)])× B(R \ {0}), P̄2 ⊗ λω̄

[0,T2(ω̄)] ⊗ σ
)

(8)

where we note F∗
2 = σ(Ti, ∆Ti | i ≥ 2) and λ̄[0,T2(ω̄)] = 1

T2(ω̄)
λ[0,T2(ω̄)] for the normalized

Lebesgue measure on [0, T2(ω̄)]. For any random functional F on this space and every
Borelian A, we have:

P(F ∈ A) = P(F (ω̄, T1, ∆1) ∈ A) = Ē2

[
1

T2(ω̄)

∫
[0,T2(ω̄)]×(R\{0})

1{F (ω̄,t,x)∈A}dtσ(dx)

]
where Ē2 stands for the expectation with respect to P̄2.

The paper is organized as follows. Section 2 is devoted to the study of the absolute
continuity of the law of shot noise series I in (1) and of the truncated shot noise series:

I(t) =
∑
n≥1
Tn≤t

f(Tn, ∆n). (9)

Note that, according to our interpretation, this corresponds to the total effect of random
shot than happened less than t units of times before zero. In Section 3, we study the
convergence in variation of the laws of I and of I(t). With the same argument based on

3



the disintegrated probability space (8), we deal finally in Section 4 with the solutions
of drifted stochastic differential equations (SDE) driven by a Lévy process (without
Gaussian part). In [NS], Nourdin and Simon shows the regularizing effect of the drift
term on the law of the solution. We continue their study showing the regularizing effect
actually goes further on the law of the solution. Namely, the law of the solution depends
continuously on the drift term with respect to the norm of total variation (see Prop.
4.1). In the sequel, we note L(X) for the law of a random variable X and µ1 � µ2

means the measures µ1 and µ2 are equivalent, that is µ1 � µ2 and µ2 � µ1.

2 Absolute continuity of the law of shot noise series
In this section, we give conditions for the absolute continuity of the law of I in (1). Note
that, it is easy to see that the law of I(t) in (9) has an atom in 0 since on the non-
negligible event {T1 > t}, the sum in (9) is empty and I(t) = 0. However,we will give
sufficient condition for the absolute continuity of the laws on R\{0}. This is interesting
in particular for I(t) since in this case we give enlightment on the laws of processes
defined as Poisson integrals on [0, t].

For I, the sum in (1) is not empty and there is no obvious atom in 0. Since the law of
Tn is equivalent to λR+ , the condition

(λR+ ⊗ σ)h−1 � λ. (10)

ensures the absolute continuity of the law of each summands h(Tn, ∆n) in (1). But since
the summands are not independent, (10) does not imply directly the absolute continuity
of the law of I. However, this is sufficient as proved in 1) of the next proposition because
of the conditional independence of the summands.

Proposition 2.1 1) Under the condition (10), the law of I has a density.
2) Moreover, under the weaker condition

((λR+ ⊗ σ)h−1)|R\{0} � λ, (11)

the law of I is absolutely continuous with respect to λ on R \ {0}, with possibly an atom
at 0.

Remark 2.1 • Note that when σ � λ, Theorem 4.3 in [DLS] gives a sufficient
condition for (10) to hold: it is sufficient that h is almost everywhere (a.e.) Fréchet
differentiable and (λR+ ⊗ λ){(t, x) | det Dh(t, x) = 0} = 0.

• When the shot noise series is of the form I(t) in (9), that is h(s, x) = 0 for all
s > t, the condition (10) does not, of course, hold: (λR+ ⊗ σ)h−1{0} = +∞ while
λ{0} = 0. In this case, as explained previously, I(t) has obviously an atom in 0.
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• Anyway, (11) is a sufficient condition for the absolute continuity of the law of I
on R \ {0}. In particular, when the random series is of the form I(t), this gives a
positive result for the regularity of the law of I(t) apart the atom in 0.

• With the choices in (2), I becomes the Poisson integral in (3) and Prop. 2.1 gives
condition for the regularity of the law of Poisson integrals.

Proof. Working on the disintegrated probability space in (8), the law µ of I rewrites
as a mixture of conditional measures µω̄:

µ =

∫
Ω̄2

µω̄ P̄2(dω̄). (12)

It is thus enough to show that for, P̄2-almost all ω̄, µω̄ is absolutely continuous. Note
that the conditional law of T1 is uniform on [0, T2(ω̄)]:

L(T1|F∗
2 ) = L(T1|T2(ω̄)) = λ̄[0,T2(ω̄)].

Conditioning on F∗
2 , we have

µω̄ = L(I|F∗
2 )(ω̄) = L

(
h(T ′

1, ∆1) + Σ2(ω̄)
)

where T ′
1
L
= L(T1|F∗

2 )(ω̄) is uniform and Σ2(ω̄) =
∑

n≥2 h(Tn, ∆n) is known when ω̄ ∈ Ω̄2

is given. The law µω̄ is absolutely continuous iff L(h(T ′
1, ∆1)) = (λ̄[0,T2(ω̄)] ⊗ σ)h−1 is.

The condition (10) is sufficient for the absolute continuity of µω̄ for P̄2-almost all ω̄.
With (12), this proves 1).

For 2), consider the sequence of random variables Ni(ω) = min{n ≥ Ni−1|f(Tn, ∆n) 6=
0}, with the convention min{∅} = +∞. They are stopping times for the σ-algebras
σ(Ti − Ti−1, ∆i | i ≤ k), k ∈ N \ {0}.

Let A0 = {N1 = +∞}, A1 = {N1 < N2 = +∞}, A2 = {N2 < +∞} and µk := P(I ∈
·|Ak) for 0 ≤ k ≤ 2. Split the law µ of I as follows

µ = P(A0)µ0 + P(A1)µ1 + P(A2)µ2. (13)

On A0, the sum defining I in (1) is empty, so that µ0 = δ0.
On A1, the sum defining I in (1) reduces to h(TN1 , ∆N1). For any A ∈ B(R) with
λ(A) = 0, we have:

µ1(A) = P(h(TN1 , ∆N1) ∈ A | A1)

=
+∞∑
n1=1

P(h(Tn1 , ∆n1) ∈ A \ {0}, h(Tk, ∆k) = 0 ∀k 6= n1)/P(A1)

≤
+∞∑
n1=1

P(h(Tn1 , ∆n1) ∈ A \ {0})/P(A1). (14)
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But L(h(Tn1 , ∆n1)) � (λR+ ⊗ σ)h−1, the condition (11) entails µ1 � λ.
Next on A2, we start by conditioning by N2 = n2

µ2 =
+∞∑
n2=2

P(N2 = n2)

P(A2)
µn2

where µn2 = L(I|N2 = n2). Next, we condition by Tn2 :

µn2 =

∫
µ̃n2 dPTn2

where the measure µ̃n2 is the law of

n2∑
k=1

h(T ′
k, ∆

′
k) +

+∞∑
k=n2

h(Tn2 + T ′
k, ∆k) = h(T ′

N1
, ∆′

N1
) +

+∞∑
k=n2

h(Tn2 + T ′
k, ∆k)

where L(T ′
N1

, ∆′
N1

) = L((TN1 , ∆N1)|N2 = n2, Tn2) and for k ≥ n2, T ′
k = Tk − Tn2 is

independent of σ(Tk, ∆k; k ≤ n2− 1). Thus µ̃n2 is absolutely continuous with respect to
λ if L(h(TN1 , ∆N1)|N2 = n2, Tn2) is. But for A ∈ B(R) with λ(A) = 0, we have

P(h(TN1 , ∆N1) ∈ A|N2 = n2, Tn2)

=

n2−1∑
n1=1

P(h(Tn1 , ∆n1) ∈ A, N1 = n1|N2 = n2, Tn2)

=

n2−1∑
n1=1

P(f(Tn1 , ∆n1) ∈ A \ {0}, h(Tk, ∆k) = 0 ∀k < n2, k 6= n1|N2 = n2, Tn2)

≤
n2−1∑
n1=1

P(h(Tn1 , ∆n1) ∈ A \ {0}|N2 = n2, Tn2)

=

n2−1∑
n1=1

P(h(T ′
n1

, ∆n1) ∈ A \ {0}) (15)

where L(Tn1|N2 = n2, Tn2) = L(T ′
n1

) is the n1-th uniform order statistics on [0, Tn2 ]. But
since h(T ′

n1
, ∆n1) ' (λ̄[0,Tn2 (ω̄)] ⊗ σ)h−1, condition (11) entails

P(h(TN1 , ∆N1) ∈ A|N2 = n2, Tn2) = 0

and finally in this case also: µ2 � λ. With (13), this ends the proof of 2). �

For integrand h(t, x) = xg(t), Prop. 2.1 can be specialized as follows for the non-
compensated part in Lévy-type integrals (4):

Corollary 2.1 Let g : R+ → R and consider the Poisson integrals I in (1) but with
integrand f(t, x) = xg(t).
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1) The law of I is absolutely continuous with respect to λ on R \ {0} if :

λR+g−1 � λ. (16)

2) The law of I has an atom at 0 and is absolutely continuous with respect to λ on
R \ {0} if :

(λR+g−1)|R\{0} � λ.

Remark 2.2 • Like in Remark 2.1, note that a sufficient condition for (16) is given
by Th. 4.2 in [DLS]: it is enough that g is differentiable a.e. with g′(t) 6= 0 a.e.

• When h(t, x) = xg(t)1|x|≥1, we study the Poisson integral in the Lévy-Itô decom-
position of a Lévy-type integral, cf. (4).

Proof. 1) Follow the same lines as in the proof of 1) in Prop. 2.1. Plugging h(T ′
1, ∆1) =

∆1g(T ′
1) in (2), the proof reduces to the absolute continuity of the law of ∆1g(T ′

1). But
this is true because, from [DLS], g(T ′

1) is absolutely continuous under (16) and because
a product XY of independent random variables X, Y has an absolutely continuous law
whenever X has and P(Y = 0) = 0.

2) The atom in 0 comes from the Remark 2.1. Next, we follow similarly the same
lines as in the proof of 2) in Prop. 2.1. Plugging h(Tn1 , ∆n1) = ∆n1g(Tn1) in (14) and
h(T ′

n1
, ∆n1) = ∆n1g(T ′

n1
) in (15), the proof reduces to the absolute continuity of the

law of ∆n1g(Tn1) and of ∆n1g(T ′
n1

). We conclude like in 1) because a product XY of
independent random variables X, Y has also an absolutely continuous on R \ {0} law
when L(X)|R\{0} � λ and P(Y = 0) = 0. �

3 Regularity in variation of the law of shot noise series
In this section, we study further the law of shot noise series: we show the convergence in
variation of the laws with respect to the "filter" h. When the laws have densities, this
convergence is equivalent to the convergence in L1(R) of the densities. First, we deal in
Section 3.2 with series I in (1) related to Poisson interals on R+ × (R \ {0}). Next, we
consider truncated series I(t) in (9) related to Poisson integrals on [0, t]× R in Section
3.3. Since there is necessarily an atom in 0 in this second case, the arguments and the
conditions change. We begin with some useful results on convergence in variation in
Section 3.1. Our key argument to derive convergence in variance will be Lemma 3.3 and
Lemma 3.4.

3.1 On the convergence variation

In the sequel ‖µ‖ stands for the total variation of a signed measure µ and var−→ denotes
the related convergence. We shall use the following elementary results:
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Lemma 3.1 Let Xn and X be random variables such that L(Xn)
var−→ L(X). Let Y be

independent of (Xn)n and of X such that P(Y = 0) = 0. Then L(XnY )
var−→ L(XY ).

Proof. For any Borelian A, we have P(XnY ∈ A) = EY [PXn(AY )] where EY is the
expectation with respect to Y , PXn is the law of Xn and for any y 6= 0, Ay := {a/y|a ∈
A}. We thus have

|P(XnY ∈ A)− P(XY ∈ A)| ≤ EY [|PXn(AY )− PX(AY )|].

For any countable partition (Ap)p∈N\{0} of R, we have

+∞∑
p=1

|P(XnY ∈ Ap)− P(XY ∈ Ap)| ≤ EY

[
+∞∑
p=1

|PXn(Ap,Y )− PX(Ap,Y )|

]
.

Since for all y 6= 0, the Ap,y’s are disjoint, taking supremum with respect to any partition
(Ap)p∈N\{0}, we derive

‖L(XnY )− L(XY )‖ ≤ EY

[
sup
(Ap)p

+∞∑
p=1

|PXn(Ap,Y )− PX(Ap,Y )|

]
≤ EY [‖L(Xn)− L(X)‖]
= ‖L(Xn)− L(X)‖

which concludes the proof of the lemma. �

Lemma 3.2 If µn
var−→ µ when n → +∞, then for any i ≥ 1, µ∗in

var−→ µ∗i.

Proof. By an immediate induction, it is enough to prove the result for i = 2. We have

‖µn ∗ µn − µ ∗ µ‖ ≤ ‖µn ∗ (µn − µ)‖+ ‖(µn − µ) ∗ µ‖
≤ ‖µn‖‖µn − µ‖+ ‖µn − µ‖‖µ‖
= 2‖µn − µ|‖.

�
Moreover, we shall interpret the law of shot noise series as measure image and we

shall use the following result (with p = q = 2) from [ABP] for which we introduce the
Sobolev space W 2,2(λR+ ⊗ σ) ={

f : R+ ⊗ (R \ {0}) → R
∣∣ ∫ |f(t, x)|2λ(dt)σ(dx) < +∞,

∫
|Df(t, x)|2λ(dt)σ(dx) < +∞

}
.

Lemma 3.3 [ABP, Corollary 4] Let Gn, G ∈ W q,q
loc (Rp, Rp) where q ≥ p and let

the mappings Gn converge to G with respect to the Sobolev norm ‖ · ‖q,q on every ball.
Assume that E ⊂ {det DG 6= 0} is a set of finite Lebesgue measure. Then for any
measure µ � λ, we have

µ|EG−1
n

var−→ µ|EG−1, n → +∞.
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In dimension one, Davydov gives more explicit conditions in [D]:

Lemma 3.4 [D, Theorem 1] Suppose that the functions fn and f are absolutely con-
tinuous on [a, b] then λf−1

n
var−→ λf−1 if the following conditions holds true:

1. fn(a) −→ f(a), n → +∞,

2. ‖f ′n − f ′‖L1([a,b]) −→ 0, n → +∞,

3. f ′ 6= 0 a.e. on [a, b].

3.2 Convergence of shot noise series

In this section, we give conditions for the continuity for total variation norm of the law
of shot noise series (1) with respect to h.

Proposition 3.1 Let σ be a measure such that σ � λ and let hn, h in W 2,2(λR+ ⊗ σ)
satisfying (6) and limn→+∞ an = a. Suppose

hn → h in W 2,2(λR+ ⊗ ν̄1), (17)

and det Dh(t, x) 6= 0 λ⊗ σa.e. Then L(In)
var−→ L(I) when n → +∞.

Proof. From (17), for any subsequence (n′) there is some further (n′′) ⊂ (n′) such
that hn′′(t, x) → h(t, x) λ⊗ σ-a.e. But since moreover

|eiuy − 1− iuy1|y|≤1| ≤ 21|y|>1 + (eu − 1− u)y21|y|≤1 (18)
≤ (21|y|>1 + (eu − 1− u)1|y|≤1)y

2

we derive from (7) that φI−In′′
(u) → 1 for all fixed u. We have thus In′′ − I

L−→ δ0 and
In

P−→ I.
Since in particular hn → h in L2(λR+ ⊗ σ) and T1 has a bounded density, we have

also hn(T1, ∆1) → h(T1, ∆1) in L2(Ω,F , P). Together with In
P−→ I, we derive

Σn
2 :=

∑
k≥2

hn(Tk, ∆k)
P̄−→ Σ2 :=

∑
k≥2

h(Tk, ∆k).

For any subsequence (n′) ⊂ (n), there is some further subsequence (n′′) ⊂ (n′) and Ω̄0

with P̄2(Ω̄0) = 1 such that for every ω̄ ∈ Ω̄0, the convergence Σn′′
2 (ω̄) → Σ2(ω̄) holds true.

Next, from Lemma 3.3, the condition (17) and det Dh(t, x) 6= 0 a.e. imply (λ[a,b] ⊗
σ)h−1

n
var−→ (λ[a,b]+ ⊗ σ)h−1 for any interval [a, b] and thus also

µ̃n,1 := L(hn(U, ∆1))
var−→ µ̃1 := L(h(U, ∆1)) (19)
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for any uniform random variable U independent of ∆1. Like in the proof of the first
part of Proposition 2.1, we disintegrate the probability space and we derive for the total
variation of measures:

‖µn − µ‖ =

∫
Ω̄

‖µn,ω̄ − µω̄‖P̄2(dω̄) =

∫
Ω̄0

‖µn,ω̄ − µω̄‖P̄2(dω̄). (20)

In the sequel, we study ‖µn,ω̄−µω̄‖ for ω̄ ∈ Ω̄0. Note τn,ω̄(x) = x+Σn
2 (ω̄) the translation

of Σn
2 (ω̄). The measure µn,ω̄ is the law of fn(T ′

1, ∆1)+Σn
2 where T ′

1
L
= L(T1|ω̄) is uniformly

distributed on [0, T2(ω̄)]. It rewrites µn,ω̄ = µ̃n,1τ
−1
n,ω̄. Letting τω̄(x) = x+Σ2(ω̄), we have

‖µn,ω̄ − µω̄‖ ≤ ‖µ̃n,1τ
−1
n,ω̄ − µ̃1τ

−1
ω̄ ‖

≤ ‖µ̃n,1τ
−1
n,ω̄ − µ̃1τ

−1
n,ω̄‖+ ‖µ̃1τ

−1
n,ω̄ − µ̃1τ

−1
ω̄ ‖

≤ ‖µ̃n,1 − µ̃1‖+ ‖µ̃1τ
−1
n,ω̄ − µ̃1τ

−1
ω̄ ‖. (21)

From (19), the first term in (21) goes to 0. Next, for the subsequence (n′′), since for all
ω̄ ∈ Ω̄0, Σn′′

2 (ω̄) → Σ2(ω̄), since the operator of translation is continuous in L1(R), and
since, from det Dh(t, x) 6= 0 a.e., µ̃1 has a density (see the first point in Remark 2.1), the
second term in (21) goes to 0. This yields µn′′,ω̄

var−→ µω̄ when n′′ → +∞ for all ω̄ ∈ Ω̄0.

Finally from the disintegration (20), for any (n′) ⊂ (n), there is some (n′′) ⊂ (n′)
such that µn′′

var−→ µ. This proves µn
var−→ µ. �

Remark 3.1 • The main condition in the proof of Prop. 3.1 is in fact

(λR+ ⊗ σ)h−1
n

var−→ (λR+ ⊗ σ)h−1. (22)

From Lemma 3.3, (17) is an explicit condition for (22). The same remark applies
for (23) in Cor. 3.1 and for (24) in Prop. 3.2 below.

• The following conditions on hn are sufficient to apply Prop. 3.1: hn ∈ L1(λR+ ⊗
σ) ∩W 2,2(λR+ ⊗ σ), n ≥ 1 and

hn → h in L1(λR+ ⊗ σ) and in W 2,2(λR+ ⊗ σ).

When hn(t, x) = xgn(t), we can adapt the proof of Proposition 3.1 for the shot noise
series In =

∑
k≥1 ∆kgn(Tk) with more specific conditions. When furtherly hn(t, x) =

xgn(t)1Bc
1
(x), the series In become Poisson integrals

∫
R+

∫
Bc

1
xgn(t)N(dt, dx), the fol-

lowing result thus applies for the Poisson integral in the Lévy-Itô decomposition of a
Lévy-type stochastic integral (4). Note that here the measure σ is not supposed to be
absolutely continuous with respect to λ.

Corollary 3.1 Consider the shot noise series In =
∑

k≥1 ∆kgn(Tk) for gn ∈ W 1,1(λR+).
Suppose

gn → g in W 1,1(λR+) (23)

and g′(t) 6= 0 a.e. Then L(In)
var−→ L(I) when n → +∞.

10



Proof. We adapt the proof of Prop. 3.1. Since from (18), we have also

|eiuy − 1− iuy1|y|≤1| ≤ (21|y|>1 + (eu − 1− u)1|y|≤1)|y|

the condition (23) entails φIn′′−I → 1 and In
P−→ I like previously.

Similarly since T1 has a bounded density, hn(T1, ∆1) → h(T1, ∆1) in L1(Ω,F , P) comes
from hn → h in L1(λR+ ⊗ σ) and we derive

Σn
2 :=

∑
k≥2

∆kgn(Tk)
P̄−→ Σ2 :=

∑
k≥2

∆kg(Tk).

For any subsequence (n′), there is some further (n′′) ⊂ (n′) and Ω̄0 with P̄(Ω̄0) = 1 such
that Σn′′

2 (ω̄) → Σ2(ω̄) for every ω̄ ∈ Ω̄0.
Next from Lemma 3.4, the condition (23) implies λ[a,b]g

−1
n

var−→ λ[a,b]g
−1 for all interval

[a, b] and together with Lemma 3.1:

µ̃n,1 := L(∆1gn(U))
var−→ µ̃1 := L(∆1g(U))

for any uniform random variable U independent of ∆1. The rest of the proof follows the
same lines as that of Prop. 3.1. �

3.3 Convergence for truncated shot noise series

When we consider truncated shot noise series I(t) with hn(s, x) = fn(s, x)1[0,t](s) (see
(9)), we can not adapt the proof of Prop. 3.1 but the convergence in variation of the
laws still holds true. Moreover, when hn(s, x) = fn(s, x)1[0,t](s)1Bc

1
(x), the related series

in (9) are Poisson integrals on [0, t] × Bc
1 and the following result applies to Poisson

integrals in the Lévy-Itô decomposition of Lévy-type integrals on [0, t], see (4).
We shall use the following elementary result:

Lemma 3.5 Conditionally to Ai = {Ti ≤ t < Ti+1}, the vector (T1, . . . , Ti) is the

uniform order statistics, i.e.: its law is given by the density
i!

ti
10≤t1≤t2≤···≤ti≤t.

Proposition 3.2 Let σ be a law such that σ � λ, and for some fixed t > 0, let fn ∈
W 2,2(λ[0,t] ⊗ σ) such that the shot noise series In(t) are well defined. Suppose

fn → f in W 2,2(λ[0,t] ⊗ σ) (24)

such that Df(s, x) 6= 0 λ⊗ σ-a.e. Then L(In(t))
var−→ L(I(t)) when n → +∞.

Like for Prop. 3.1, the condition (24) gives an explicit condition for

(λ[0,t] ⊗ σ)f−1
n

var−→ (λ[0,t] ⊗ σ)f−1

which is the real requirement in the following proof. Moreover, explicit conditions for
the existence of In(t) are given in (5) and (6) with h(s, x) = f(s, x)1[0,t](s).

11



Proof. Let µn (resp. µ) stands for L(In(t)) (resp. for L(I(t))). Note A0 = {T1 > t}
and, for i ≥ 1, Ai = {Ti ≤ t < Ti+1} and µn,i (resp. µi) the conditional law of In(t)
(resp. of I(t)) under Ai. We have:

µn = P(A0)δ0 +
+∞∑
i=1

P(Ai)µn,i and µ = P(A0)δ0 +
+∞∑
i=1

P(Ai)µi.

We have for all p ≥ 1:

‖µn − µ‖ ≤
+∞∑
i=1

P(Ai)‖µn,i − µi‖ ≤
p∑

i=1

P(Ai)‖µn,i − µi‖+ 2
+∞∑

i=p+1

P(Ai).

Since
∑+∞

i=0 P(Ai) = 1 is a convergent series, it is enough to show µn,i
var−→ µi when

n → +∞ for all i ≥ 1.

Note that conditionally to Ai, In(t) and I(t) rewrites

In(t) =
i∑

k=1

fn(Tk, ∆k) and I(t) =
i∑

k=1

f(Tk, ∆k).

Using Lemma 3.5 (and commutativity of addition), conditionally to Ai, In(t) and I(t)
have the same law as

i∑
k=1

fn(Uk, ∆k) and
i∑

k=1

f(Uk, ∆k)

where Uk (1 ≤ k ≤ i) are i.i.d. uniform random variables on [0, t]. By independence, the
law of

∑i
k=1 fn(Uk, ∆k) is the convolution of the law of fn(Uk, ∆k), 1 ≤ k ≤ i, that is

L

(
i∑

k=1

fn(Uk, ∆k)

)
=
(
(t−1λ[0,t] ⊗ σ)f−1

n

)∗i (25)

and similarly

L

(
i∑

k=1

f(Uk, ∆k)

)
=
(
(t−1λ[0,t] ⊗ σ)f−1

)∗i
. (26)

From [ABP], (24) implies (λ[a,b]⊗σ)f−1
n

var−→ (λ[a,b]⊗σ)f−1 for any interval [a, b]. Finally,
from the expressions (25) and (26) and from Lemma 3.2, we derive µn,i

var−→ µi for all
i ≥ 1. This concludes the proof of Prop. 3.2. �

In the case of integrands f(s, x) = xg(s), Proposition 3.2 rewrites as follows:

Corollary 3.2 For some fixed t > 0, let In(t) be the shot noise series with kernels
fn(s, x) := xgn(s). Suppose gn and g are absolutely continuous with gn(0) → g(0) and
g′n → g′ in L1([0, t]) when n → +∞. Then the laws L(In(t)) converge in total variation
to L(I(t)).
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Proof. Following the same strategy as in the proof of Proposition 3.2, it is enough to
show for all i ≥ 1 that

L

(
i∑

k=1

∆kgn(Uk)

)
var−→ L

(
i∑

k=1

∆kg(Uk)

)
, n → +∞.

But from [D], for all k ≥ 1, L(gn(Uk))
var−→ L(g(Uk)) when n → +∞. Lemma 3.1 implies

then L(∆kgn(Uk))
var−→ L(∆kg(Uk)) for all k ≥ 1. Finally we conclude like in Proposition

3.2 by independence with Lemma 3.2. �

4 Lévy-type integrals
In this section, we consider the solution of the one-dimensional stochastic differential
equation (SDE)

Xt = x0 +

∫ t

0

a(Xs)ds + Zt (27)

where Z is a real Lévy process without Gaussian part and with Lévy measure ν:

Zt = bt +

∫
[0,t]×B1

xÑ(ds, dx) +

∫
[0,t]×Bc

1

xN(ds, dx)

and a is a function of class C1 with bounded derivative. Here N is a Poisson measure
on R+ × (R \ {0}) with compensator λ⊗ ν, Ñ is the compensated measure and b ∈ R.
In [NS], Nourdin and Simon study the absolute continuity of the law of X. They prove
that for all t > 0:

L(Xt) � λ ⇐⇒ L(X1) � λ ⇐⇒ ν is infinite.

when a is locally monotone in x0, that is there is α > 0 such that for x0−α < y < x0 <
z < x0 + α, we have a(y) < a(x0) < a(z) (in the increasing case) or a(z) < a(x0) < a(y)
(in the decreasing case). In a sense, they show that the drift term a(Xs)ds in the SDE
(27) has a regularizing effect for a large class of drift functions a. They wonder also if
this effect concerns the regularity of the densities.

In the sequel, we give a first answer to this question: we show that the law of Xt

depends continuously on the drift coefficient a for the total variation norm. Under the
condition of [NS], this convergence rewrites as the regularity in L1(R) of the densities
with respect to the drift function. The proof is based on a simple application of the
method of statification of Davydov et al. (see [DLS]): it relies on a suitable transforma-
tion of one jump of the driving Lévy process Z. The precise statement of the result is
the following:

Proposition 4.1 Assume the Lévy measure ν is infinite and let Xn be the solution of
the SDE

dXn,t = an(Xn,t)dt + dZt, Xn,0 = xn,0. (28)

13



Suppose an and a are derivable with bounded derivatives and the convergence ȧn → ȧ is
uniform on bounded sets. Suppose also an(y) and ȧn(y) are both continuous functions of
the couple (n, y) and that xn,0 → x0. Suppose moreover a is locally monotone. Then for
each t > 0, the law of Xn,t converges in variation to that of Xt.

Remark 4.1 Since ȧ and ȧn are globally Lipschtiz, it is well known that there are
unique stong solutions to (27) and to (28) defined on R+. The continuity of ȧn(y) with
respect to (n, y) ensures the continuity of the solution of related ordinary differential
equation (ODE) with respect to the parameter n (see [P, p. 185]).

Proof. For simplicity, we prove the result for t = 1 and we note K := ‖ȧ‖∞ < +∞.
The setting follows that of Nourdin and Simon in [NS]. Let ε > 0 be fixed. Considering
−X if necessary, we suppose X is locally increasing, let α > 0 such that for x0 − α <
y < x0 < z < x0 + α, we have a(y) < a(x0) < a(z). Let

A1 = sup
−α/2≤y≤α/2

|a(y)|, A2 = sup
−A3≤y≤A3

|a(y)|

where A3 = K(|x0| + A1)e
K + α/2. By the right-continuity of Z, there is γ0 > 0 such

that
P
(

sup
t≤γ0

|Zt| < α/6

)
≥ 1− ε/6

Let γ = γ0 ∧ (α/(3A2)) ∧ 1 and let Tn be the sequence of jumping times ∆n := ∆ZTn of
Z into [η, α/6]. Since ν([0, 1]) = +∞, there is some η > 0 such that

P(T2 < γ) > 1− ε/6.

Following [NS], we consider Z̄t = Zt−∆11T1≤t which can be constructed on the disinte-
grated probability space(

Ω̄× [0, T2(ω̄)], F̄ × B([0, T2(ω̄)]), P̄⊗ λ̄[0,T2(ω̄)]

)
where (Ω̄, F̄ , P̄) is the canonical space associated to (∆1, Z̄). Let

Ω̄1 =

{
sup
t≤γ

|Z̄s| < α/3, T2 < γ

}
⊃
{

sup
t≤γ

|Zs| < α/6, T2 < γ

}
Note that Ω̄1 ∈ F̄ and P̄(Ω̄c

1) ≤ ε/3.

In the sequel, we consider Y = X − Z. It is solution of the ODE dYt = a(Yt + Zt)dt,
Y0 = x0. Consider also X̄ for the process defined by the SDE dX̄t = a(X̄t)dt + dZ̄t and
Ȳ = X̄ − Z̄.
Note that for t ≤ γ:

|Yt| ≤ |x0|+
∫ t

0

|a(Zs)|ds +

∫ t

0

K|Ys|ds

14



≤ |x0|+ A1 +

∫ t

0

K|Ys|ds

Applying the Gronwall’s inequality, we have

|Yt| ≤ K(|x0|+ A1)e
Kt,

so that for t ≤ γ: |Yt + Zt| ≤ A3 and from the ODE defining Yt:

|Yt − x0| ≤ A2γ ≤ α/3.

Next for t < T1, we have

|Xt(ω̄)− x0| ≤ |Yt(ω̄)− x0|+ |Z̄t(ω̄)| ≤ α/3 + α/3 < α (29)

and for T1 ≤ t < T2 ≤ γ, we have

|Xt(ω̄)− x0| ≤ |Yt(ω̄)− x0|+ |Z̄t(ω̄)|+ |∆1| ≤ α/3 + α/3 + α/6 < α. (30)

Note µn for the law of Xn,1, we have

‖µn − µ‖ ≤
∫

Ω̄

‖µ̄n,ω̄ − µ̄ω̄‖dP̄

≤ 2P(Ω̄c
1) +

∫
Ω̄1

‖µ̄n,ω̄ − µ̄ω̄‖dP̄

≤ (2/3)ε +

∫
Ω̄1

‖µ̄n,ω̄ − µ̄ω̄‖dP̄ (31)

where
µ̄n,ω̄ = λ̄[0,T2(ω̄)]Xn,1(ω̄, ·)−1

and Xn,1(ω̄, ·) = Yn,1(ω̄, ·) +Z1(ω̄, ·) with Yn = Xn−Z the solution of the ODE: dYn,t =
an(Yn,t + Zt)dt, Yn,0 = xn,0 that is:

Yn(t) = xn,0 +

∫ t

0

an(Yn,s + Zs)ds. (32)

Note that Z1(ω̄, ·) actually does not depend on T1 since Z jumps at least twice in [η, α/6]
(T2 ≤ γ ≤ 1) and by the Lévy-Itô decomposition, the terminal value Z1 is independent
of the first jumping time T1. Noting τZ1(ω̄) for the translation x 7→ x + Z1(ω̄), we have

λ̄[0,T2(ω̄)]Xn,1(ω̄, ·)−1 = λ̄[0,T2(ω̄)]Yn,1(ω̄, ·)−1τ−1
Z1(ω̄)

λ̄[0,T2(ω̄)]X1(ω̄, ·)−1 = λ̄[0,T2(ω̄)]Y1(ω̄, ·)−1τ−1
Z1(ω̄)

and it remains to show for all ω̄ ∈ Ω̄1

λ̄[0,T2(ω̄)]Yn,1(ω̄, ·)−1 var−→ λ̄[0,T2(ω̄)]Y1(ω̄, ·)−1 (33)
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for which we shall apply Lemma 3.4, for all ω̄ ∈ Ω̄1, with [a, b] = [0, T2(ω̄)], fn = Yn,1(ω̄, ·)
and f = Y1(ω̄, ·).

The main point is given in [NS, Prop. 2]: it is shown that Yn,1 and Y1 depend differen-
tiably on T1 with derivatives given by

dYn,1

dT1

= (an(Xn,T−1
)− an(Xn,T1)) exp

(∫ 1

T1

ȧn(Xn,s)ds

)
(34)

and the same for dY1/dT1.

Seing n as a parameter in the ODE (32), it is well known that, when ȧn(y) is contin-
uous in the couple (n, y), Yn,t depends continuously of (n, t) (see [P, p. 185]). Then, it
is easy to see M1(ω̄) = supn∈N,t∈[0,1] |Yn,t| is finite. Indeed, if M1(ω̄) = +∞, then for all
p there are tp ∈ [0, 1] and np ∈ N such that |Ynp,tp | ≥ p. But extracting tp′ → t∞ ∈ [0, 1],

• either (np′)p′ has an accumulation point na so that for a further subsequence (p′′),
np′′ = na. Taking the limit p′′ → +∞ in |Yna,tp′′

| ≥ p′′ gives |Yna,t∞| = +∞, which
contradicts Yna is bounded.

• either (np′)p′ is not bounded and for a further subsequence (p′′), np′′ → +∞.
Taking the limit p′′ → +∞ in |Ynp′′ ,tp′′

| ≥ p′′ gives |Yt∞ | = +∞, which contradicts
Y is bounded.

For ω̄ ∈ Ω̄1 and any n ∈ N, we have for all t ≤ 1:

|Yn,t + Zt| ≤ M1(ω̄) + |∆1(ω̄)|+ |Z̄t(ω̄)| =: M2(ω̄).

In particular, we have |Xn,t| ≤ M2(ω̄) for all t ≤ 1. Next, since we have:

|Yn,t − Yt| ≤ |xn,0 − x0|+ sup
x∈[−M2(ω̄),M2(ω̄)]

|an(x)− a(x)|+ K

∫ t

0

|Yn,s − Ys|ds

using Gronwall’s inequality, we derive:

|Xn,t −Xt| = |Yn,t − Yt| ≤

(
|xn,0 − x0|+ sup

x∈[−M2(ω̄),M2(ω̄)]

|an(x)− a(x)|

)
eKt. (35)

The first condition of Lemma 3.4 is satisfied since with t = 1 above yields Yn,1 → Y1, for
all T1 ∈ [0, T2(ω̄)].

Since Xn,T−1
, Xn,T1 , XT−1

, XT1 are all bounded by M2(ω̄), the uniform convergence of
an to a on [−M2(ω̄), M2(ω̄)] together with (35) entails:

lim
n→+∞

an(Xn,T−1
)− an(Xn,T1) = a(XT−1

)− a(XT1)
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uniformly in T1. Similarly, the uniform convergence ȧn → ȧ on [−M2(ω̄), M2(ω̄)], the
uniform convergence Xn,s → Xs in (35) and ‖ȧ‖∞ = K together imply

lim
n→+∞

∫ 1

T1

ȧn(Xn,s)ds =

∫ 1

T1

ȧ(Xs)ds

uniformly in T1. We derive now from (34): almost surely the following convergence holds
true uniformly in T1:

lim
n→+∞

dYn,1

dT1

=
dY1

dT1

. (36)

But since the convergence is uniform in T1, the same convergence as in (36) actually
holds true in L1([0, 1]). This shows condition 2 in Lemma 3.4 is satisfied. Moreover,
from (29) and (30), XT−1

, XT1 ∈]x0 − α, x0 + α[, so that the local monotony of a in x0

implies dY1/dT1 > 0, taking care of condition 3, see (34). Applying Lemma 3.4, we have
(33) for all ω̄ ∈ Ω̄1 and also

λ̄[0,T2(ω̄)]Xn,1(ω̄, ·)−1 var−→ λ̄[0,T2(ω̄)]X1(ω̄, ·)−1.

Taking limit in (31), we have limn‖µn − µ‖ ≤ ε. Since ε > 0 is arbitrary, the result
follows. �
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