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Abstract

We construct superefficient estimators of Stein type for the intensity param-
eter A > 0 of a Poisson process, using integration by parts and superharmonic
functionals on the Poisson space.
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1 Introduction

Consider a Poisson process (Xi)icpo, ) With intensity w of the form wu(t) = Ah(t),
t € [0, 7], under a probability P,, where (h(t))c(o,r] is a given deterministic function.
As is well-known, cf. [6], or [8], p. 351, Example 2, Ch. XIX, the classical parametric

maximum likelihood estimator (MLE)
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of A on the time interval [0, 7] is obtained by maximization of the Girsanov density,

i.e. under the condition:
d Xr b% Xr
- X1 ,—(AR(T)-T) 1 _ (2T _ Xr ,—(AR(T)-T) 1 —
- (A Te Hh(T,Q) = ( : h(T)) AT [Th(1) =o0.
k=1 k=1
The MLE Ar is efficient in the sense that it attains the Cramer-Rao bound

E, [‘S‘T - )\|2] = %

over all unbiased estimators (r satisfying IE,[(r] = A, for all A > 0, where IE, denotes

expectation under P,,.

In this paper we construct superefficient estimators for the intensity parameter A > 0
when the intensity (u(t))tcpo,r of (X¢)icpo,r) is constrained to have the form u(t) =
Ah(t), t € 10,T].

We use integration by parts and harmonic analysis on the Poisson space, via the
technique introduced by Stein [15] for the estimation of the mean of a standard Gaus-
sian random vector Z in R?, and extended to drift estimation on the Wiener space in

[14], [13]. Recall that Stein’s argument relies on:

a) the integration by parts

]Eu[(Zz' - Mz’)gi(z)] = ]Eu[az’gi(z)]> (1-1)

where IE,, denotes expectation under the standard Gaussian measure with mean

ne R
b) the chain rule of derivation for the partial derivative 9; on R,

c) the existence and properties of non-negative superharmonic functions on R? for

d>3.



Precisely, given an estimator of y € R? of the form Z + gradlog f(Z), where f : R? —

R? is sufficiently smooth, one gets, using the chain rule of derivation,

E,[|Z + gradlog f(Z) — p||34]

= B2 — pllz] + Eu[ll gradlog f(Z) 3] +2ZIE — pi)0;1og f(Z)]

= d+ Eu[” grad log f(Z)H]?@d] + 2,

B )

Zazz log fi(Z)

i=1

(1.2)

VI(Z)

i.e. Z+ gradlog f(Z) improves in the mean square sense over the maximum likelihood

estimator (MLE) Z if d > 3 and /f is superharmonic on R¢.

Integration by parts for g : N — R with respect to the discrete Poisson distribution
P(X =k)=e*/k! k € N, can be written as

E\[(X = X)g(X)] = AEA[g(X +1) — g(X)].

where IE, denotes expectation under the Poisson distribution with parameter A > 0,

and has been used to derive Stein identities for jump processes, such as

E\[X =X+ g(X)P] = A+ Ey\[|lg(X)*] + 2EA[(X — N)g(X)]
= A+ Ey\[|g(X)]] + 20 E\[g(X + 1) — (X)),

cf. [1], [3]. However the absence of chain rule for the finite difference operation
g— g(-+1) —g(-) prevents us from continuing the calculation as in (1.2) above, and
from using superharmonic functions as in the Gaussian case. On a more general level
the derivation property requirement prevents us from using finite difference gradients

on Poisson functionals cf. e.g. [9].

In this paper we apply Stein’s argument on the Poisson space, and construct su-
perefficient estimators for the discrete Poisson law, by replacing the Stein equation

(1.1) with the integration by parts formula of [2], [4], extended to arbitrary intensity
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functions on the Poisson space as in [11], in which the gradient V satisfies the chain
rule of derivation. When wu(t) has the form u(¢) = Ah(t) we apply our result to the
parametric estimation of the Poisson process intensity A > 0 via estimators of the
form

M+ —1 T
T hT) (X7r=0} h(T)

where F' is a positive superharmonic random variable on the Poisson space, ¢ € R is

Vrlog F,

a suitably chosen constant, and Vr is a gradient operator on the Poisson space.

Unlike in the Gaussian case, the Laplacian considered here contains first order terms
and is not the standard Laplacian on RY. As a consequence the d > 3 dimension
condition imposed in the Gaussian case can be waived and superharmonic functionals

can be constructed as functions of d jump times for d > 1.

We proceed as follows. In Section 2 we introduce the Poisson space and derive the
Cramer-Rao bound for a non-parametric estimator of the intensity. Our proof uses
stochastic calculus, and in this respect it differs from the ones usually found in the
literature, cf. e.g. § 1.2 of [7]. In Section 3 we recall the elements of analysis and
integration by parts on the Poisson space which will be needed in Section 4 to construct
superefficient estimators for the intensity of a Poisson process. In case u has the form
u(t) = At, numerical applications and simulations are given in Section 5 using simple

examples of (pseudo) superharmonic functionals.

2 Preliminaries

In this section we state some notation on the Poisson space and Poisson process,
and derive the Cramer-Rao bound. Let 7' > 0 and consider (X)o7 the canonical

process on
Q:{M:Z(Stk L 0<t < <t, <T, nENU{oo}},
k=1

defined as
Xi(w) = w([0,1]), t € 0,7,
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where 0, denotes the Dirac measure at = € [0,T]. Let (7})r>1 denote the jump times

of (X¢)ico,17, i-e. any w € {Xp = n} is written as

n
W = E 6Tk'
k=1

Let PP denote the standard Poisson measure on 2, under which (X;)cr . is a standard

Poisson process, and let (F;):cp0,r] denote the filtration generated by (Xi)icpo,7)-

Definition 2.1. Let P denote the set of functions of the form

t
u(t) :/ u(s)ds, t €[0,7],
0
where 4 : [0,T] — [0,00) is a non-negative function.

Let now u € P. By the Girsanov theorem, the measure P, on €2, under which the
canonical process (X;)cjo,r] is a Poisson process with intensity (t)dt, is absolutely

continuous with respect to P with
dP, = A(u)dP,
where
T Xr
A(u) = exp (- / (iu(s) — 1)ds) [T
0 k=1

denotes the Girsanov density. In the sequel we will denote by IE, the expectation
under P, and let L2(Q2) = L*(Q,P,).

We close this section with a derivation of the Cramer-Rao inequality using stochastic
calculus, for non-parametric estimation of the intensity. In case the intensity is con-
strained to be constant on intervals, our bound can be recovered from the Cramer-Rao

inequality for arbitrary finite dimensional estimators, cf. Theorem 1.5 of [7].

Definition 2.2. An estimator & of u € P is called unbiased if
E,[&] = u(t), t € 0,7,

and adapted if the process (& )iwcpo,r) @5 adapted to the filtration (F;)icio,m generated by
(Xt)te[O,T} .



Here, X; can be considered as an unbiased maximum likelihood estimator of its own
intensity u(¢) under P,, ¢t € [0, T]. From the next proposition, this estimator is efficient

since its mean square error is equal to
E, [\Xt — u(t)|2] = u(t), te0,7]. (2.1)

Proposition 2.3. Cramer-Rao inequality. Letw € P andt € [0,T]. For any unbiased

and adapted estimator & of u(t) we have
E, [|& — uw(t)]’] > u(t), ueP, (2.2)

where for all u € P the lower bound u(t) is attained by & = X,

Proof. Since &; is unbiased, for all v € P and € € R we have
Eu-ﬁ-av[&t] = u(t) + €'U(t) = Eu+av[u(t)] + EU(t),

hence

o) = L Eual— u(b]imo
d

= = [(& — u(t))A(u + ev)]je=o

- E [(& - u(t))d%A(u + fvhe:o]

= B | (6~ u(t) "t log Alu+ >]

= B fl6 = u0) [ L S 0N, ~ i)
= E, -(&—u(t))/o 1{&(8)7&0}%

Note that the adaptedness hypothesis on the estimator & was used to get the last

(@, = i()a)|.

equality above, and that the exchange between expectation and derivative can be
justified by standard uniform integrability arguments. Thus, by the Cauchy-Schwarz

inequality and the It6 isometry, we have

2t) < E[( [ s X~ ats)as)) ]Eun&—uu)m
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= /0 l{u(s)¢0}‘2(€3)‘ ds B, [[& — u(t)[].

It then suffices to take

to get
Var,[§] = Eu[|& — u(®)’] = u(?), (2.3)

which leads to (2.2). As noted in (2.1), 4, = X; is clearly unbiased under P, and

attains the lower bound u(t). O

3 Analysis on the Poisson space

In this section we recall the elements of analysis and integration by parts on the

Poisson space which will be needed for the construction of Stein estimators.

Definition 3.1. We denote by S the space of Poisson functionals of the form

F = folix,—o) + Z Lixp=ny ful(Th, ..., Th), (3.1)

n=1

where fo € R and f,, n > 1, is Ct on {0 < t; < .-+ < t, < T}, and satisfying the

continuity condition
fn(tbatn):fn+l(t1>atnaT)> OétlggtnSTa n e N. (32)

Recall that for all F' € S of the form (3.1), letting

fn(tl,...,tn) = fn (t(l),...,t(n)), nZ 1,
where (t(1,...,%x)) represents the arrangement of (¢,...,t,) € [0,7]" in increasing
order, we have:
E,[F] (3.3)

© 1 (T T
= " Dfgte™N = [ oo [ fulte,. o tn)i(ty) - lty)dty - - dty,
n=1 n! 0 0
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fo + e~ Z o / / _1 t1 , _l(tn))dtl <o dt,

From now we assume that v € P is such that u(t) is lower bounded by a (strictly)
positive constant for all ¢ € R, in order to satisfy the integrability conditions needed

in the sequel.

Definition 3.2. For F' € § of the form (3.1), let
D,F = — 21{XT H}Zym (9kfn(T1,... T,), tel0,T],

for F of the form (3.1), where Oy f, denotes the partial derivative of f, with respect
to its k-th variable.

Let
t
H= {v 20,7 =R : o(t) ::/ v(s)ds, t€[0,T], v € LQ([O,T],u(t)dt)}
0
denote the Cameron-Martin space with inner product
T
(v, )5 = / o(syis)a(s)ds,  v,w e H.
0

We have .
(DF,v)y = / o(t) Dy Fa(t)dt, FeS, wveH.
0

Let L2(€2; H) denote the space of processes (v(t))seo,r] of the form

v(t) :/0 0(s)ds, t €10,7],

. [ 1ot

We now turn to the definition of the operator § adjoint of D. Note that as D has the

such that

< 00.

derivation property, the operator ¢ is different from the Kabanov-Skorohod integral
[5], whose adjoint is a finite difference operator [9]. See [10], [12] for a comparative

study of these gradient and Skorohod type integral operators.



Proposition 3.3. i) The operator D is closable and admits a closable adjoint § :

L2(Q; H) — L2(Q) under P,, which satisfies the integration by parts formula
E,[Fé(v)] = E,[(v, DF)g], F € Dom(D), v € Dom(d). (3.4)

ii) We have
T
d(v) = / 0(t)(dX, — u(t)dt), (3.5)
0
for every Fi-adapted process v € L?(Q; H).

Proof. By standard integration by parts we first prove (3.4) when v € H:

E,[(DF,v) ]

— vaZ/ / /k 'tk $)dsOp fulty, ... ty)a(ty) - - - a(ty)dty - - - dty,
u(T) L(tg) o -
:_e_u(T) ! v u Yl u_l 17"'7u_1 n 17" Wln
;”’;/0 /0 /0 (s) (S>d88tkf"( (t1) (tn))dty - - - dt
0o n u(T) u(T) pti o -
= —6_"”’2%2/ / / b(u~Y(s)) dsa—tkfn(u‘l(tl),...,u‘l(tn))dtl-~-dtn
= ian/ v / U(T uTH (), ()0 (u (f))dy - d,
n=1

o u(T)
_u(T) _1 _1 o -1 ~ T o B
—° Z (n — 1) A dS/ / tl y U (tn 1)a )dtl dtn 1

n=1

:e_“(T)i% n/ /fntl,..., (bt ) - - - )ty - - -t
—e—umi(n_ll)!/o o(s)i / / Fultts ot TYi(ty) -~ it 1)ty -~ b .

n=1

The continuity condition (3.2), i.e
Fooi(tt, oo tumr) = fulty, oo tae, 7). n> 1,
yields
E,[(DF,v)u]

[e%e) T T 3
— T);%/O /0 fu(ty, .. tp)u(ty) - a(t,) Y o(ty)dt, - --dty,

k=1
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T < 1 T T
—e® [ a(sya(s)as SO~ [ / e )ity - ()t - -y
0 0

Next we define §(Gv), G € S, v € H, by
T
0(Gv) = G/ 0(t)(dXy — u(t)dt) — (v, DG)p, (3.6)
0
with for all G € S:

Eu[G<DFaU>H] = Eu[<D(FG)’U>H - F<Dva>H]

= E, {F (G/OTv(t)dXt— <DG=U>H)]
= E,[F5(Gv)],

which proves (3.4). The closability of D then follows from the integration by parts
formula (3.4): if (F,)peny C S is such that F,, — 0 in L2(Q) and DF, — U in
L2(Q; H), then (3.4) implies
| E(U, Go)u]l < | E[F0(Gv)] — E[(U, Go)nl| + | E.[F,0(G)]]
— | Bu{(DF, — U,Gv)u]| + | E,[F0(Gv)]
< DFvya — (U v)ull o Gllz@) + 1 Fallz@l16(Go) |z @),

n € N, hence E,[(U,Gv)y] =0, G € S, v € H, i.e. U = 0. The proof of the
closability of ¢ is similar. Finally, by standard arguments we consider processes of
the form v = G117 where G € S is F-measurable, t € [0,7], for which we have
1;7(s)DsG =0, s € [0, T, which shows from (3.6) that

5(v) = G /0 L1 () (dX, — i(s)ds) = /0 0u(dX, — 1i(s)ds),

hence § extends the Ito integral on all square-integrable F;-adapted processes, and

(3.5) is proved. O
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For all t € [0,T] we let X;(s) = min(s,?), s € [0, T].
Definition 3.4. Let
t
Vi F = (DF, X;)u :/ u(s)DyFds, F € Dom(D).
0

For F' of the form (3.1) we have:

L > “u(t AT
V.F = / D.Fi(s)ds = = > Lixp—my Y %&Jn(ﬂ, T,
0 n=1 k=1

In the parametric case u(t) = Ah(t), t € [0,T], h € P, we have

h(t N\ Ty)
vtF’— Z]-{XT "}Z k ak.fn(Tla"'aTn)> (37)
k=1

which is independent of .

We close this section by introducing a Laplacian on the Poisson space.

Definition 3.5. We define the Laplacian A; by
AF =V, V,F, Fes.

The operator A, is easily shown to be closable, i.e. for any sequence (F},),en of random
variables converging to 0 in L2(€) and such that (A;F,),en converges in L2(Q), we

have

This allows one to define the domain of A;, denoted by Dom(A;), as the set of
functionals F' for which there exists a sequence of cylindrical functionals (F},)nen,
which converges in L2(Q) to F' and such that the sequence (AF},),en converges in
L2(€). We will say that a random variable F' in Dom(A;) is As-superharmonic on €
if

A F(w) <0, w € Q. (3.8)

For example if u(t) = At, then for any F' € S of the form (3.1) we have
AF = —ZI{XT n}th@fn T,...,T,)(t ATy)
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= Y Ve Y EAT)(EAT)RD (o, T)
n=1

k=1

+ 3 Vixemny Y Yon(T)Tedk fu(Th, - - T),

n=1 k=1

which is independent of A. Note that due to the presence of first order terms this
Laplacian differs from the canonical Laplacian used in the Gaussian case, as a conse-
quence the existence of associated positive superharmonic functions is not conditioned
by a lower bound (such as n > 3) on the number of variables, see the examples in

Section 5.

4 Stein estimators

Our aim is to construct a superefficient estimator A of A of the form

S {r
)\T‘l'm,

whose mean square error will be strictly smaller than the Cramer-Rao bound when
&r € L2(Q) is suitably chosen, where Ay = X7 /h(T) is the MLE of A. In agreement
with Proposition 2.3, this estimator will be biased and anticipating with respect to

the Poisson filtration.

The next proposition is our main result on estimation of the intensity parameter
A > 0.

Proposition 4.1. In the parametric case u(t) = Mh(t), t € [0,T], for any F € S of
the form (3.1) the estimator

< . 1 fi(T 1
PPN W () —

W) fu(T) =0 gy Vrlos

of A\, where VpF is given in (3.7), has risk

Bl == 5+ e

2
4 N VvV F
—Ah(1 TV1

e ()+h2(T) Ey, [7
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The proof of Proposition 4.1 will relies on the following two lemmas. First in the
next lemma we construct an unbiased risk estimator by applying Stein’s integration
by parts argument in which we replace (1.1) by the duality relation (3.4) between the

gradient and divergence operators on the Poisson space.
Lemma 4.2. Lett € [0,T]. For any & € Dom(D) we have
E, [|X; + & — u(®)]?] = u(t) + 16720 + 2 Eu [Vi&] .- (4.2)
Proof. We have
B, [|[X; —u(t) +&P] = B [|[Xi = ul®)P] + [1&ll72 ) + 2B (X0 — u(t))é]
= ut) + &l 72 @) + 2B [(Xe — u(t))&] .-

We now use the duality relation (3.4) and Relation (3.5) to get

B, (X —u()&] = B [6(X)&]

E
E, (X, D&) ]

= E, { /0 t u(s)DS&ds]
E

u [vtgt] 9

u

which yields (4.2). O

The proof of Proposition 4.1 is then a consequence of the following result which applies

Lemma 4.2 to processes (& )icjo,r) of the form

u(t)

& = le{XT:O} + Vilog I, te[0,17,

where ¢ is chosen in such a way that { € Dom(D), ¢t € [0,7], and F' € Dom(D) is
such that F > 0 and vF € Dom(4A,).

Lemma 4.3. Lett € [0,T] and let F € S of the form (3.1) such that F > 0, P-a.s.,
F € Dom(4A,), and

8nfn(t1, e 7tn—17 T) =0 and 8kfn(t1, N ,tn> = 8kfn+1(t1, N ,tn,T),
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0<t; < <t, <T, 1<k<n,n>2. Let also
u(t) fi(T)

gt = —m fl (T) 1{XT:0} + Vt log F. (43)
Then & € S € Dom(D) and
2] _ w?(t) | f(T) ’ —u(T) AWF
E, [|X: + & — u(t)]?] _u(t)+u2(T) F(T) e +4E, ok t € 10,77.
(4.4)
Proof. By construction we have ¢ € S, t € [0,T], and from Lemma 4.2:
E, [|X; +& — ut)P’] = u(t) + [&ll72 @) + 2 Eu [Vi&d
_ 0 | A iy g |[VE[
A0 [ADF ), o [, VVeE | VeF]?
u(t) + (T | F2(T) e + E, _2 7 ‘ I3 (4.5)
u?(t) | A(T) [ —w(T) V.ViVF
u(t) + (1) | (1) e +4E, Wia :
O

Proof of Proposition 4.1. Apply (4.3) and (4.4) above at t = T with u(t) = Ah(t). O

As a consequence, the A;-superharmonicity of F' may imply the superefficiency of
X +¢&. Note also that X;+¢, may not be positive and replacing & with max(X;+¢&;,0)

will yield a lower risk since the intensity « is known to be positive.
We close this section with some additional remarks.

Remarks

a) Relation (4.5) established in proof of Lemma 4.3 shows that the A;-superharmonicity
of F' implies

B, (| X + & — u(t)]’] (4.6)

14



2

2
u-(?) e M B, [V, log F|? tel0, T
U | t g | ) [7 ]7

fi(T)
< u(t) + (T

Si(T)

with equality in (4.6) when F'is A;-harmonic. Nevertheless the A;-superharmonicity

of /F is a weaker condition.

b) Note that the risk of any non-adapted estimator (; of u(t) can be lowered by

adapted projection, indeed we have

Eu[| B¢ | F] —u®)] = B, [|G—u®)] =B, [|EJG | F] -G
< E, [|G—wl], (4.7)

for all w € P, and in particular

_ u(t) fi(7T) — (u(T)=u(t)

t € [0,T], which is however dependent on the intensity w.

¢) Both estimators X; + & and X, + IE,[¢, | ;] have bias
b(t) = Eu[X; + & —u(t)] = E,[&], t€[0,77,

which, using the relation

V.F|?  V,V,F 4
’ | =25~ ﬁvtvt\/ﬁ,
can be bounded as follows:
() = |E.&]?
S Eu [‘515‘2}
2
_ 9E, [vtvtF]+ 922(15) flT) D) _ 4, V,.VVF |
F w(T) | Au(T) VF
hence when F' is A;-superharmonic we have
2t) | fL(T) |? V,.ViVF
V() < ?L( DAV el g R, |2, tel0,T).
0= @) @) VF 01]
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d) By integration over [0,7], Proposition 2.3 immediately yields, for any unbiased
and adapted estimator ¢ of u € P:

T
IEu [/ |Ct — u(t)\2dt] > ||u||L1([O,T]), u e 7), (48)
0

where the lower bound |lu||11(o77) is attained by ¢ = X. This bound can be

used to derive a nonparametric estimation result for the process (u(t)):ejo,r)-

On the other hand, formal maximization of the Girsanov density A(u) gives

T+ o) = M) [ 25X, ~ du(s) =0

for all v € H, ie. 4 = X;. Hence the canonical process @ = (Xy)co,7] be
considered as an unbiased maximum likelihood estimator of its own intensity
(u(t))teo,r) under P, which is efficient in the sense that it attains the Cramer-

Rao bound
B [I1X = ullgom] = lullz o (4.9)

Given (Xt(l))te[oﬂ, e (Xt(N))te[O,T]a N independent samples of (X¢).c(o.7], the

process

1
Xt:N(X§1)+-~-+X§N))

is a point process with intensity v under P,, which is consistent as 1" tend to 0

and as N goes to infinity, since by independence we have

E. [IX - ulbpn) = 53 [Z/LX ] = ¥ [ o

Similarly to the above, integration over [0,7] and Lemma 4.3 show that for
defined as in (4.3),t € [0,T], & € S, t € (0,7, and

2
—u(T)

f(T)
Si(T)

+41E, {% /0 ' Atﬁdt] ,

16

lul72
, B L2((0.7])
E, |1 X +&—uli2qom| = lulmqom + (T)




hence the A;-superharmonicity of F', ¢t € [0,7], may imply the superefficiency
of (X; 4 &)icjo,r)- Note however that in the general non-parametric case, the

estimator (X; + & )icjo,r) of v is dependent on w.

6

Poisson path
Intensity -----—---
Stein estimator ---------

(0] 0.2 0.4 0.6 0.8 1
Time

Figure 4.1: u(t) =3t, t € [0,T]; N =5.

Figure 4.1 represents a sample path of the process X; + &, t € [0,7] when
u(t) = At, A = 3.

5 Examples

In this section we present some examples of estimators satisfying the hypotheses
of the previous sections, and we test their superefficiency. In the parametric case
u(t) = Ah(t), t € [0,T], the percentage gain of an estimator Ay of A over the MLE
Ar = Xr/h(T) is defined as

EullAr = AP = BullAr = AP _ o AA(T) = EullAr =

100 B[ — A2 ()

In the sequel we assume that u(t) = At, t € [0, 7], hence (4.1) reads

H(T)
S(T)

VrVrVF
VF

2
4
e—u(T)

~ A
Eu[|>‘T - )‘|2] = Tz

T
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and \p is superefficient, i.e. its gain is positive, provided v'F is Ap-superharmonic

and f{(T)/f1(T) vanishes or is small enough.

The positive As;-superharmonic functionals we consider are of the form

T 0 n
VE= [ 0N =Y Loy > (),
0 n=1 k=1

where g, : [0,7] — (0,00), k > 1, and

gi(t1) + -+ gnltn) >0, 0<t1y <---<t, <T, n=>1l

Then, & defined from (4.3) as

9:(T)
gt = —thi (T) 1{XT:0} + Vt log F

9,(T) . (t /\ Tk gk(Tk)

— /)y 2§1 D
() Hr=% W= L g () + -+ gu(T5)
9,(T) / )

= lix,.—0) — — tAs s)dNg,
7 (T) {Xr=0} \/F o ( )gNS ( )

belongs to Dom(D) provided
ge(T) =0, and g (T)=0, k=2,
and for the condition Arv/F < 0 to hold it suffices that
g.(z) + zgi(z) <0, rel0,T], k>1
a) Let g1(x) =T(14+ 3) —z and g, =0, k > 2, i.e.
F =1{x,5n (BT +T —Th)?,

with 8 > 0. We have from (4.3):

2
& = 1{XT:0}/8—Tt+1{XT21}m(t/\Tl)?

and
V.VWVF = -Ti1 04(T1)1ix,>13 <0,
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hence

- A4 4 T
2 _ —\T 1
Bulbr 3 = 7+ g™ g e re
A 4 _p 4T T N
- Z R B )
T et T, fraT—20

The gain of this estimator is equal to the function of \T"

4 (T T \ 4 S 4
_ N =T :4/ —)\T:cd . —\T
T/O AT+T—z° 7 13 1+ 6—z e

R —" 1
> 4o / Mz g,
= 7 <0 1148 de AT 32
e AT <((>\T)2 — AT +1)eM —1 1)

4

BAT 1+ 1/B)AT B

which is strictly positive (i.e. A is superefficient) provided 3 > 2A71T—1

Figure 5.1 represents the gain of Ay as a function of 3.
40
Al
20
Il
/
|

[0} 5 10 15 20 25 30 35
beta

gain %

Figure 5.1: Gain as a function of § with A =1 and N = 1.
b) When k£ > 2, conditions (5.2) and (5.3) are not compatible and as a consequence,
superefficiency of A will be dependent on the value of A\. We take
g(x) =C,  gi(z) = —(=log((c+2)/(c+T))™,  2<k<N,

g =0,k>N, WithC’ZZ]kvzl(—log(c/(c+T)))ak and o, > 1,2< k< N. In

this case, Argy is not everywhere negative as shown in Figure 5.2, with ap = 2,
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k=2,T =1, and ¢ = 0.01, but this suffices to achieve superefficiency for most

values of A, see below.

L L L L L L L L L )
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Figure 5.2: Graph of Args

Figure 5.3 represents the gain of Ar as a function of A, with 10® samples, oy =

a3 = 27 N = 37 and C' = 92(0) + 93(0)

14

12 /
10

gain %

[0} 5 10 15 20 25 30
lambda

Figure 5.3: Gain as a function of \.

20



References

1]

2]

[5]

[6]

R. Averkamp and C. Houdré. Stein estimation for infinitely divisible laws. ESAIM
Probab. Stat., 10:269-276 (electronic), 2006.

E. Carlen and E. Pardoux. Differential calculus and integration by parts on Poisson
space. In S. Albeverio, Ph. Blanchard, and D. Testard, editors, Stochastics, Algebra and
Analysis in Classical and Quantum Dynamics (Marseille, 1988), volume 59 of Math.
Appl., pages 63-73. Kluwer Acad. Publ., Dordrecht, 1990.

L.H.Y. Chen and A. Xia. Stein’s method, Palm theory and Poisson process approxi-
mation. Ann. Probab., 32(3B):2545-2569, 2004.

R.J. Elliott and A.H. Tsoi. Integration by parts for Poisson processes. J. Multivariate
Anal., 44(2):179-190, 1993.

Y.M. Kabanov. On extended stochastic integrals. Theory of Probability and its Appli-
cations, XX(4):710-722, 1975.

Y. Kutoyants. Intensity parameter estimation of an inhomogeneous Poisson process.
Problems Control Inform. Theory/Problemy Upravlen. Teor. Inform., 8(2):137-149,
1979.

Y. Kutoyants. Statistical inference for spatial Poisson processes, volume 134 of Lecture
Notes in Statistics. Springer-Verlag, New York, 1998.

R.S. Liptser and A.N. Shiryaev. Statistics of random processes. II, volume 6 of Appli-
cations of Mathematics (New York). Springer-Verlag, Berlin, 2001.

D. Nualart and J. Vives. A duality formula on the Poisson space and some applications.
In R. Dalang, M. Dozzi, and F. Russo, editors, Seminar on Stochastic Analysis, Random
Fields and Applications (Ascona, 1993), volume 36 of Progress in Probability, pages
205-213. Birkh&auser, Basel, 1995.

N. Privault. Chaotic and variational calculus in discrete and continuous time for the
Poisson process. Stochastics and Stochastics Reports, 51:83—109, 1994.

N. Privault. Calcul des variations stochastique pour les martingales. C. R. Acad. Sci.
Paris Sér. I Math., 321:923-928, 1995.

N. Privault. A calculus on Fock space and its probabilistic interpretations. Bull. Sci.
Math., 123(2):97-114, 1999.

N. Privault and A. Réveillac. Stein estimation for the drift of Gaussian processes using
the Malliavin calculus. Preprint, 2006, to appear in the Annals of Statistics.

N. Privault and A. Réveillac. Superefficient estimation on the Wiener space. C. R.
Acad. Sci. Paris Sér. I Math., 343:607-612, 2006.

C. Stein. Estimation of the mean of a multivariate normal distribution. Ann. Stat.,
9(6):1135-1151, 1981.

21



Liste des prépublications.

99-1 Monique Jeanblanc et Nicolas Privault. A complete market model with Poisson and Brownian components.

A vparaitre dans Proceedings of the Seminar on Stochastic Analysis, Random Fields and Applications, Ascona,
1999.

99-2 Laurence Cherfils et Alain Miranville. Generalized Cahn-Hilliard equations with a logarithmic free energy. A

paraitre dans Revista de la Real Academia de Ciencias.

99-3 Jean-Jacques Prat et Nicolas Privault. Explicit stochastic analysis of Brownian motion and point measures on
Riemannian manifolds. Journal of Functional Analysis 167 (1999) 201-242.

99-4 Changgui Zhang. Sur la fonction ¢-Gamma de Jackson. A paraitre dans Aequationes Math.

99-5 Nicolas Privault. A characterization of grand canonical Gibbs measures by duality. A paraitre dans Potential
Analysis.

99-6 Guy Wallet. La variété des équations surstables. A paraitre dans Bulletin de la Société Mathématique de
France.

99-7 Nicolas Privault et Jiang-Lun Wu. Poisson stochastic integration in Hilbert spaces. Annales Mathématiques
Blaise Pascal, 6 (1999) 41-61.

99-8 Augustin Fruchard et Reinhard Schifke. Sursabilité et résonance.

99-9 Nicolas Privault. Connections and curvature in the Riemannian geometry of configuration spaces. C. R. Acad.
Sci. Paris, Série I 330 (2000) 899-904.

99-10 Fabienne Marotte et Changgui Zhang. Multisommabilité des séries entiéres solutions formelles d’une équation

aux ¢-différences linéaire analytique. A paraitre dans Annales de I’Institut Fourier, 2000.

99-11 Knut Aase, Bernt @ksendal, Nicolas Privault et Jan Ubge. White noise generalizations of the Clark-Haussmann-
Ocone theorem with application to mathematical finance. Finance and Stochastics, 4 (2000) 465-496.

00-01 Eric Benoit. Canards en un point pseudo-singulier nceud. A paraitre dans Bulletin de la Société Mathématique
de France.

00-02 Nicolas Privault. Hypothesis testing and Skorokhod stochastic integration. Journal of Applied Probability, 37
(2000) 560-574.

00-03 Changgui Zhang. La fonction théta de Jacobi et la sommabilité des séries entiéres g-Gevrey, I. C. R. Acad.
Sci. Paris, Série I 331 (2000) 31-34.

00-04 Guy Wallet. Déformation topologique par changement d’échelle.

00-05 Nicolas Privault. Quantum stochastic calculus for the uniform measure and Boolean convolution. A paraitre
dans Séminaire de Probabilités XXXV.

00-06 Changgui Zhang. Sur les fonctions ¢g-Bessel de Jackson.

00-07 Laure Coutin, David Nualart et Ciprian A. Tudor. Tanaka formula for the fractional Brownian motion. A

paraitre dans Stochastic Processes and their Applications.

00-08 Nicolas Privault. On logarithmic Sobolev inequalities for normal martingales. Annales de la Faculté des
Sciences de Toulouse 9 (2000) 509-518.



01-01 Emanuelle Augeraud-Veron et Laurent Augier. Stabilizing endogenous fluctuations by fiscal policies; Global
analysis on piecewise continuous dynamical systems. A paraitre dans Studies in Nonlinear Dynamics and

Econometrics

01-02 Delphine Boucher. About the polynomial solutions of homogeneous linear differential equations depending
on parameters. A paraitre dans Proceedings of the 1999 International Symposium on Symbolic and Algebraic
Computation: ISSAC 99, Sam Dooley Ed., ACM, New York 1999.

01-03 Nicolas Privault. Quasi-invariance for Lévy processes under anticipating shifts.

01-04 Nicolas Privault. Distribution-valued iterated gradient and chaotic decompositions of Poisson jump times

functionals.
01-05 Christian Houdré et Nicolas Privault. Deviation inequalities: an approach via covariance representations.
01-06 Abdallah El Hamidi. Remarques sur les sentinelles pour les systémes distribués

02-01 Eric Benoit, Abdallah El Hamidi et Augustin Fruchard. On combined asymptotic expansions in singular

perturbation.
02-02 Rachid Bebbouchi et Eric Benoit. Equations différentielles et familles bien nées de courbes planes.

02-03 Abdallah El Hamidi et Gennady G. Laptev. Nonexistence of solutions to systems of higher-order semilinear

inequalities in cone-like domains.

02-04 Hassan Lakhel, Youssef Ouknine, et Ciprian A. Tudor. Besov regularity for the indefinite Skorohod integral

with respect to the fractional Brownian motion: the singular case.
02-05 Nicolas Privault et Jean-Claude Zambrini. Markovian bridges and reversible diffusions with jumps.

02-06 Abdallah El Hamidi et Gennady G. Laptev. Existence and Nonexistence Results for Reaction-Diffusion Equa-
tions in Product of Cones.

02-07 Guy Wallet. Nonstandard generic points.
02-08 Gilles Bailly-Maitre. On the monodromy representation of polynomials.
02-09 Abdallah El Hamidi. Necessary conditions for local and global solvability of nondiagonal degenerate systems.

02-10 Abdallah El Hamidi et Amira Obeid. Systems of Semilinear higher order evolution inequalities on the Heisen-
berg group.

03-01 Abdallah El Hamidi et Gennady G. Laptev. Non existence de solutions d’inéquations semilinéaires dans des

domaines coniques.

03-02 Eric Benoit et Marie-Joélle Rochet. A continuous model of biomass size spectra governed by predation and

the effects of fishing on them.
03-03 Catherine Stenger: On a conjecture of Wolfgang Wasow concerning the nature of turning points.

03-04 Christian Houdré et Nicolas Privault. Surface measures and related functional inequalities on configuration

spaces.

03-05 Abdallah El Hamidi et Mokhtar Kirane. Nonexistence results of solutions to systems of semilinear differential

inequalities on the Heisenberg group.



03-06 Uwe Franz, Nicolas Privault et René Schott. Non-Gaussian Malliavin calculus on real Lie algebras.
04-01 Abdallah El Hamidi. Multiple solutions to a nonlinear elliptic equation involving Paneitz type operators.

04-02 Mohamed Amara, Amira Obeid et Guy Vallet. Relaxed formulation and existence result of the degenerated

elliptic small disturbance model.

04-03 Hippolyte d’Albis et Emmanuelle Augeraud-Veron. Competitive Growth in a Life-cycle Model: Existence and

Dynamics
04-04 Sadjia Ait-Mokhtar: Third order differential equations with fixed critical points.

04-05 Mokhtar Kirane et Nasser-eddine Tatar. Asymptotic Behavior for a Reaction Diffusion System with Unbounded

Coefficients.

04-06 Mokhtar Kirane, Eric Nabana et Stanislav I. Pohozaev. Nonexistence of Global Solutions to an Elliptic

Equation with a Dynamical Boundary Condition.

04-07 Khaled M. Furati, Nasser-eddine Tatar and Mokhtar Kirane. Existence and asymptotic behavior for a convec-

tion Problem.

04-08 José Alfredo Lépez-Mimbela et Nicolas Privault. Blow-up and stability of semilinear PDE’s with gamma

generator.
04-09 Abdallah El Hamidi. Multiple solutions with changing sign energy to a nonlinear elliptic equation.
04-10 Sadjia Ait-Mokhtar: A singularly perturbed Riccati equation.

04-11 Mohamed Amara, Amira Obeid et Guy Vallet. Weighted Sobolev spaces for a degenerated nonlinear elliptic

equation.
04-12 Abdallah El Hamidi. Existence results to elliptic systems with nonstandard growth conditions.
04-13 Eric Edo et Jean-Philippe Furter: Some families of polynomial automorphisms.

04-14 Laurence Cherfils et Yavdat Il’yasov. On the stationary solutions of generalized reaction diffusion equations

with p & ¢- Laplacian.

04-15 Jean-Christophe Breton et Youri Davydov. Local limit theorem for supremum of an empirical processes for

i.i.d. random variables.

04-16 Jean-Christophe Breton, Christian Houdré et Nicolas Privault. Dimension free and infinite variance tail

estimates on Poisson space.

04-17 Abdallah El Hamidi et Gennady G. Laptev. Existence and nonexistence results for higher-order semilinear

evolution inequalities with critical potential.

05-01 Mokhtar Kirane et Nasser-eddine Tatar. Nonexistence of Solutions to a Hyperbolic Equation with a Time

Fractional Damping.

05-02 Mokhtar Kirane et Yamina Laskri. Nonexistence of Global Solutions to a Hyperbolic Equation with a Time

Fractional Damping.

05-03 Mokhtar Kirane, Yamina Laskri et Nasser-eddine Tatar. Critical Exponents of Fujita Type for Certain Evolu-

tion Equations and Systems with Spatio-Temporal Fractional Derivatives.



05-04 Abdallah El Hamidi et Jean-Michel Rakotoson. Compactness and quasilinear problems with critical exponents

05-05 Claudianor O. Alves et Abdallah El Hamidi. Nehari manifold and existence of positive solutions to a class of

quasilinear problems.
05-06 Khalid Adriouch et Abdallah El Hamidi. The Nehari manifold for systems of nonlinear elliptic equations.
05-07 Eric Benoit. Equation fonctionnelle: Transport et convolution.
05-08 Jean-Philippe Furter et Stefan Maubach. Locally Finite Polynomial Endomorphisms.
05-09 Thomas Forget. Solutions canards en des points tournants dégénérés.

05-10 José Alfredo Lépez-Mimbela et Nicolas Privault. Critical Exponents for Semilinear PDEs with Bounded

Potentials.
06-01 Aldéric Joulin. On maximal inequalities for stable stochastic integrals.

06-02 Aldéric Joulin. On local Poisson-type deviation inequalities for curved continuous time Markov chains, with

applications to birth-death processes.

06-03 Abdallah El Hamidi et Jean-Michel Rakotoson. On a pertubed anisotropic equation. Ricerche Di Matematica,
volume 55 No 1 (2006) 55—69.

06-04 Khalid Adriouch et Abdallah El Hamidi. On local compactness in quasilinear elliptic problems. A paraitre
dans Diff. Integ. Equ.

06-05 Jean-Christophe Breton. Convergence in variation of the joint laws of multiple stable stochastic integrals.

06-06 Laurence Cherfils et Alain Miranville. Some remarks on the asymptotic behavior of the Caginalp system with

singular potentials.
06-07 Jean-Philippe Furter. Quasi-locally Finite Polynomial Endomorphisms.
06-08 Jean-Philippe Furter. Jet Groups.
06-09 Jean-Philippe Furter. Fat Points Embeddings.

06-10 Abdallah El Hamidi et Jean-Michel Rakotoson. Fonctions minimales pour des inégalités de Sobolev anisotropiques.

A paraitre dans Ann. Int. H. Poincaré, "Analyse non linéaire".

07-01 Alexey Borovskikh et Guy Wallet : Rapport sur la sommation des séries divergentes par le prolongement
différentiel

07-02 Nicolas Privault et Anthony Reveillac : Stochastic analysis on Gaussian space applied to drift estimation.

07-03 Jean-Christophe Breton : Regularity and convergence in variation for the laws of shot noise series and of

related processes

07-04 Nicolas Privault et Anthony Reveillac : Stein estimation of Poisson process intensities.



