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Abstract

We present a complete market model with jumps, using a martingale
constructed from a Brownian motion and a Poisson process that are mutu-
ally excluding eachother. The chaotic calculus relative to this martingale is
developed to obtain a Clark formula aimed at the computation of hedging
strategies.
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1 Introduction

In this paper we present a complete market model that considers jumps in dynamics
of asset prices. The sum of a Brownian motion and a Poisson process has been used
to model discontinuous asset prices, cf. [7], however it does not have the predictable
representation property, thus it does not yield market completeness. A model having
market completeness with jumps has been presented in [3] using the standard Azéma
martingale studied in [4] (which is a normal martingale according to the definition
of [2]), but this process does not seem to be natural in applications.

We suggest to use a modification (Af;)icr, of another normal martingale also intro-
duced in [4], which consists in a combination of a Brownian motion and a Poisson
process. This process does have the chaos representation property because its Brow-
nian part vanishes whenever it jumps. The martingale of [4] is originally a normal
martingale and this constrains the height of jumps to be linked to the intensity of the
Poisson component. For this reason we use a modification of this process which can
have jumps of arbitrary heights, according to a deterministic function of time. As
a consequence, the predictable quadratic variation of our process is no longer equal
to dt. The Poisson process and Brownian motion are included as particular cases in
our approach, as well as the representation formulas obtained in [6] using the Wiener

chaos associated to a continuous martingale with deterministic angle bracket.



In Sect. 2 we define the martingale (M,);cg, which is a combination of a Poisson
process and a Brownian motion, and satisfies a structure equation. Sect. 3 presents
the chaos representation property. Sect. 4 deals with the predictable representation
property and the Clark formula with simplified proofs, using a gradient operator
that plays a role in the computation of hedging strategies. Changes of probability
and the Girsanov theorem for the process (M;);er, are considered in Sect. 5, with

an application to the pricing of European options in Sect. 6.

2 Solution of a deterministic structure equation

Let ¢ : Ry — R and a : Ry —]0,00[ be two deterministic functions, with
(/) € anle(R+7Oé%dt>. Let lt = 1{¢t:()}7 and

| a2/ it ¢ #£0,
,\t:(l—zt)a?/<bf={0t/¢t ifziio; t € Ry.

Let (Bt)ier, be a standard Brownian motion, and (Ny);er, a Poisson process with
intensity v, = fot Asds, t € Ry, i.e. (4)ier, is the unique continuous deterministic
function such that (N, — I/t)teR+ is a martingale. We assume that the processes
(Bt)ier, and (NV;)ier, are independent and that lim, . 14 = oo and 1, < o0, Vt €
Ry. Let (X})icr, denote the process defined as
dXt = itdBt + ﬂ (df\ft —_— Atdt) , t E :[R,_|_7 XO = 07 (1)
at . .
which satisfies the classical structure equation

d[X, X], = dt + —dX,. (2)
't

o
It is known from [4] that (X});cg, is in fact the unique solution of (2). Relation
(2) implies that the process (X;)icr, has predictable quadratic variation d(X, X'); =
dt. From (X;);cr, We construct a martingale (M,;);cr, with predictable quadratic

variation d{M, M), = oldt, as
dﬂft = atht, t e R+, AIQ = 07 (3)

le.
dﬂ_{t = itatdBt + qbt (d]\/rt — )\tdt> s te ]R+, MO =0. (4)

We are using (M;)icr, instead of (X;);er, because the parameters (¢;)icr, and

(a¢)ier, have independent roles in the definition of (M;)icr,: (¢¢)icr, controls the



height of jumps, and (o ).cr, is relative to the continuous part of (M;);cr, . At first
it could seem more general to set dM; = (3;dX;, however this is not the case, because
the functions (¢ );cr, and (ay)wcr, are sufficient to completely characterize (M;);er,

as a solution of (5).

Proposition 1 The martingale (M;)cr, satisfies the deterministic structure equa-
tion

d[M, M), = oZdt + ¢,dM,, t € Ry, (5)
with d(M, M), = o?dt, t € R, .
Proof. Using the relations d[B, N|; = 0 and #;¢; = 0, t € R, we have:
d[M,M], = i, a2dt + ¢*dN,
= q,aldt + ¢, (th — iy dBy + (1 — iﬂZ—fdt)

= G?dt + qbtd*Mt; t e ]R,+. O

3 Chaos representation property

Let (Fi)ier, be the filtration generated by (Af;)icr, which is the same as the fil-
tration generated by (X;).cr, . since « is deterministic and does not vanish. This
filtration is smaller than the filtration generated by the pair Brownian motion -
Poisson process. We assume that we are working on a probability space (€2, F, P)
with F = F... We denote by L?(IR,,a?dt)°" the space of symmetric functions on
R’ that are square-integrable with respect to a?} e a?n dty - - - dt,, equipped with the

L*(RY,of -+ of dty---dt,)-norm. Given fi,..., f, € L*(Ry, afdt), let also
fio-rofp i RE— R
denote the symmetrization in n variables of the function
(tryeooutn) = fi(ty) - ful(tn).

It is known, cf. [4], that the process (X;);cr, has the chaos representation property,

i.e. any F € L?(Q2, F, P) has a unique decomposition

x o] 2% 12
FZE[F]-I—ZTL’/ / / gn<t]77tﬂ)d‘X’t1dth7 (6)
nel 0 0 0



with g, € L*({0 < #; <--- <t,}). Obviously a similar property holds for (M,);er, -
Let I,,(f,) denote the multiple stochastic integral of f,, € L?(IR,, a?dt)°" with respect
to (My)icr, , defined as

(o) tn tg .
(/) :n!/ / / Faltyse o t)dM, - dM;, 0> 1,
0 0 0 ’

with the convention Iy(fo) = fo, fo € R. The multiple stochastic integrals satisfy

the isometry and orthogonality properties

E[In(fn,)fm(gm)] _ { ((){nagn)LE(R+,a?dt)on Z ; Zz’ (7)

fn € L*(Ry, 2dt)°™, g,, € L*(Ry, a2dt)°™.

Proposition 2 The martingale (M;);er, has the chaos representation property: any
F € L*(Q,F,P) has a unique decomposition
F=FE[F]+ Y IL(f.), f.€L*Ry,0pdt)™, n>1.
n=1
Proof. Tt suffices to consider the expansion (6) of F € L?(Q2,F, P) and to define
fn € L*(Ry, a2dt)°" as

Faltivoootn) = (ay o) aaltin..otn), ti... t, €RY, n>1. O

The action of the conditional expectation with respect to F; on multiple stochastic

integrals is
ElL/(fy) | Fi] = L(falp<ny), t€RL, fo € LQ(]R+,a§ds)°", n>1,

since (M;)icr, is a martingale.

4 Gradient and divergence operators

In this section we introduce the gradient operator that will be used in the computa-
tion of hedging strategies. We denote by Dom(D) the set of F € L?(Q2, F, P) whose
decomposition F' = Y02 I,(f,) satisfies

oo

n(n!) ||fn||%2 (R a2dt)er < OO
n=1

We let
D : Dom(D) — L*(Q x Ry, dP x aldt)

Ut



denote the unbounded gradient operator defined as
DF =Y Ly 1(fa(*,1), dPxdt—a.e.,
n=1

if F € Dom(D) is written as F' = Y% I,(f,). We have

o)

IDFN72(m,y apxozany = E[(DF)*]ajdt

S~

Z (n = DI fa (. 1) ||L2 (Ry,a2dt)e(n— haidt

M8\

) (DN fallZ2 @y o2 aner-

3
Il

We denote by Dom(d) the set of u € L*(Q x Ry,dP x a?dt) whose decomposition
up = Yoo o In(un(x,1)), t € Ry, satisfies

[ee]

Z(n + 1)!”ﬂn||i2(R+,afdt)°("+l) < o,

n=0

where #, denotes the symmetrization in n 4+ 1 variables of u,,. Let
6 : Dom(8) — L*(Q,F, P)
be the unbounded divergence operator defined as
u) = f: Ii(ay,), dP—ae.,
=0

if v € Dom(4d) has the expression u; = 300 I, (un(*,1)), t € Ry. Let S denote the
vector space generated by multiple stochastic integrals of the form I,(f1 0--- o f,),

fi,...,fn € ﬂpzlLP(R+7(1?dt)7 n € N.
Proposition 3 The operators D and d have the following properties:

(i) D and & are mutually adjoint in the following sense:

E[(DF,u)2r, a2an] = E[F6(u)], € Dom(s), F € Dom(D). (8)

(ii) & coincides with the stochastic integral with respect to (My)icr, on the square-

integrable adapted processes u € L*() x Ry, dP x o2dt):

5(u) = /0 T u(t)dM,.



Proof. We first note that for F and u of the form F = I,,(f,) and u; = hil(gm), (8)
follows from the isometry relation (7). Hence by linearity, (8) holds on dense vector
subspaces of L*(Q2, F, P) and L*(Q x Ry,dP x a?dt). As a consequence, D and &
are closable hence (8) holds on Dom(D) and Dom(8) by density. Concerning (i7) we

write

tn to
21 (tn (%, 1)) Zm/ / /u (t1, ot t)dM, - - M, |

with u, (*,t) symmetric, t € Ry. We have u,, (*,1) = u,,(*,)11<sy, t € Ry, since u
is Fi-adapted, hence the symmetrization u, of u, in n + 1 variables coincides with

+1un on {0 <t <---<t,}. Consequently,

5(“) = iln+1<ﬂ>

OO n+]_ tn+1 2
- e / / / Un(t1, - st )AM,, -+ dM,,
0

oo X tn to
— / n‘// / tn(trs ooty 1) AM,, - - - dM;, dM,

- / ZI un*t))th—/ u(t)dM;. O

0

The next result states that (M;).cr, has the predictable representation property, as

a consequence of the chaos representation property.
Proposition 4 Any F € Dom(D) C L*(), F, P) has a representation
F=E[F]+ [~ EID.F | FldM,. (9)
0
Proof. We write the chaos expansion of F':
o o0 tn t-_z
F = E[F]+ Zn!/ / / Faltr oo t)dM,, - - M,
= Jo Jo 0 ’
= E[F]+Yn /0 Ly (fu( )1 azy ) AM,
n=1
—  E[F] +/ B[D,F | F]dM,. ©
0

This formula is called the Clark formula in the case of Brownian motion, cf. [1], [9].

Combining Prop. 4 with (i) of Prop. 3 we can also write

F = E[F] + §(E[D.F | F)).



Instead of the adapted projection (E[D,F | F])ier, We may also use the predictable
projection (E[DyF' | Fi-])ier, defined by

EDI,(fo) | Fi-l = Ln(falpecry)s  fo € L*(Ry,a2ds)™, t>0, n>1,

in fact this leads to the same representation since the adapted and predictable pro-
jections coincide in L?(2 x Ry, dP x a?dt). The following proposition gives the
product rule for the operator D, which can be useful in practice for the computation

of hedging strategies.

Proposition 5 We have the product rule
Dt(FG) == FDtG + GDtF + ¢tDtFDtG7 t e ]R,_|_, (10)
for any F and G in the vector space S.

Proof. Rewriting the multiplication formula for multiple stochastic integrals with

respect to (Xy)er, , we obtain

F(FV(0) = T (00 F) 05, 9) syt T (F0) 4 mlu(659) 0 5.
(11)
Consequently, (10) can be proved by replicating the proof of Prop. 1 in [10].

From the duality between D and §, relation (11) implies
FS(hF) = 6(hEF) + (h, DF) 2(ry a2ar + 6(9hDF),
h € N1 LP(Ry, aldt), F € S, which can be seen as a reformulation of (11).

Remark 1 Although D : L*(Q,F,P) — L*(Q x Ry,dP x o?dt) is unbounded,
the representation formula (9) of Prop. 4 can be extended from F € Dom(D) to
F € L*(Q, Fu, P) using the fact that the operator F — E[D.F | F.] has a continuous

extension from L*(Q,F, P) into the space of square-integrable adapted processes, cf.
[8]. [11].

Proof. We prove the continuity of the composition of the adapted projection operator
with D. Let F = 32, 1,(f,) € Dom(V) and u(-) = 3%, Ly(us(x,)) € L*(Q X
R,,dP x aldt). Let

An:{(th...,tn)ERi P 0<t <o <ty), n>1



We have, using the symmetry of f,.1:

(E[D.F | F],u)i2(0un, drwazn)

o)

(n+ 1)/0 ”!(fn+1(*>t)1{*<t}aUn(*:t))L?(R+,a3dt)on@?dt

n=0

S Z(Tl + 1 ‘/ fn+1<* t)]-{*<f}7 un<* t))Lz (R azdt onat dt

n

Il
=)

I
NE

(n+1)! ‘/0 ||(fn+1(*vt)1{*<t}||L2(R+,a§ds)°"||Un(*7t)||L2(R+,agds)ona?dt‘

n

I
=}

IN
M8

(n

o
A ||fn—|—1(*7 t>1An (*)1{*<t}”L2 (Ry,a2ds)on ||un(>|<, t) ”L2 (Ry,a2ds)on a?dt
0

n

1/2

IA
™8

(o DAL ([ (5,018, () Loy B, g

n=0

> 2 PR
Y I RNpe—r)

o

< Y4 DIVl failag 2y azdseesn nll 2 gy o2 aseo
nozoo
< Do+ 1)!m||fn+1||L2(R+,a§ds)°("+1) [tn 2Ry a2dsyotn+n)
nzgo 1/2 0o 1/2
< (S0 Dl i) (200 o)
= =
< ||F||L2(9)”u||L2(QxR+,dPXa§dt)- o

5 Changes of probability

Let ) be a probability measure which is equivalent to P. Then

Lt [dQ | ft] ’ te R+7 (12)

is a strictly positive F;-martingale under P. Due to the predictable representa-
tion property of (X;);ecr, and (M;)icr, (Prop. 4), there exists a predictable process
(¢)1er,. such that

st = Lt—’wtdiwt, t E ]R,+, L() = 1
We have

t 1 t t
L, = exp ( / i.aubodB, — = / ia22ds + / )\Subsds) 1 (1+6n01,),
0 2 Jo 0 Ti<t

where (T})r>1 denotes the sequence of jump times of (Ni);er, . hence the process

(Y)ter,, satisfies 1 4+ @10 > 0, € Ry




Proposition 6 Under the probability (), the process

Z, = M, — /Ot o2yds, teR,, (13)
15 & martingale which satisfies the structure equation

d[Z,Z): = &} (1 + ¢pby)dt + ¢rdZ;. (14)

In particular, if (V4)ier, s deterministic, then (Z;)ier, has the chaos representation

property under ().

Proof. From the classical Girsanov theorem, cf. [5], the canonical decomposition of

(M})er, under @ is

1 1
dM, = <th - (L, M)t) + 7 —d(L, M), t€Ry,
t— t—

ie. dZy = dM; — 7—d(L, M), is a martingale under Q, with d(L, M); = L,- v, dt.
(Under @, the process

N 1
A7, = dM, — —d[L, M], = dM, — Prodt)
t

e
1+ oy
is also a martingale, since L; = L;- (1 + ¢41:)). We also have

dZt = ’l.tO{tdBt -+ (ﬁtd]\’rt — /\t¢t(1 -+ (bfwt)dt
Under the probability @,

~ 1
dBt = dBt — L—d<L7 B>t = dBt — iﬂ/)tatdt

t

is a standard Brownian motion, and

1 t
AN, = Nt = —d(Ly, N = [ Ads) = dNy = M(1+ o),
0

=

is a martingale under @, i.e. (N;)ser, is a Poisson process with intensity ~,dt, with
Y= M(1 4+ detly), tER;.
Writing
dZ; = iy dBy + ¢y (dN; — M\ (1 + ¢yay)dt),
we have
d[Z,Z), = i«afdt + ¢idN,

= G,02dt + ¢y (dZ; — irud By + Ny (1 + raby)dt)

= q;aldt + (1 — i) (1 + ¢y )dt + ¢pdZ,

= (1 + ¢y)dt + $dZ,.

10



From the above discussion, if (¢;);cr, is deterministic, then the process (Z;);cr, has
the chaos representation property since it is a martingale that satisfies the determin-

istic structure equation (14).
O

Prop. 6 can be obtained in a different way, applying separately the Girsanov theorem
on the Wiener and Poisson spaces. The process dB; —i;1;c;dt is a standard Brownian

motion under the probability

00 1
exp (/ 1ssasd By — —/ 2a2ds) dP.
0 2 Jo

let (5 !)ier, denote the right-continuous inverse of (1,),er, . The process (N,-1).er,
t

is Poisson with intensity 1 under P, and has intensity (1 + ¢;¢;)dt under the proba-

bility

tim s ([ 0067 )as) TT 0+ (00) 07 )P

k=1

where (v7, )g>1 denotes the jumps of (]\ ~1)ser, - Hence (N;)icr, is a Poisson process

with intensity

pr <Vt +/ l/s Sd ) = (1 + ¢ty Nt

under the probability (), and
ét(ltdBt — ltl/)tatdt + (/5t<d]\/rt — )\t(]. + (ﬁtl/)t)dt) = d]V[t — l/)ta?dt

is a martingale under Q).

6 Application : European call

6.1 The model

Let (y4:)icr, be a deterministic process such that s lpslds < oo, ¥Vt € Ry, and let
0 : R,y — R be a deterministic bounded function satisfying 1 + 0:¢; > 0, t € Ry.

Let (S;)ier, denote the solution of the equation
dSt = ,LLtStdt + (ftSt—d]\/[t, t e :[R,_|_7
with deterministic initial condition S;. We have

¢ ¢ 1 gt
S; = Spexp (/ 0s051,d By —|—/ (s — PsAs05)ds — 5/ 1.0 a2ds>
0 0 0
k=N,

X H <1+0Tk¢Tk:)a tER+,
k=1

11



where (T})r>1 denotes the jump times of (Ny);er,. We assume that (S;)er, rep-
resents the price of a risky asset, and that (7;);cg, is a deterministic non negative
function which models the spot rate of a riskless asset.

As it is well known, if there exists a probability () equivalent to P such
that under @, (St exp (— fot 7‘Sds))t€R+ is a martingale, the market is arbitrage free.
Such probabilities are called equivalent martingale measure (EMM). Moreover, if the
market is complete, the EMM is unique.

In the following we check that our model has no arbitrage, more precisely
we construct explicitly the probability ) via the Girsanov theorem. Unlike in the

continuous case, the law of (S;);er, under () will also depend on (y4;);cr, by means

of the intensity of the jump process.

Proposition 7 Let us assume that 1 + (r; — p;)é:/(0a?) > 0, t € Ry, and let
(V1 )ier, be defined as
lf/)t = Lgt, t e R+.
(eFxe™

Then, the unique EMM 1is the probability () such that E [Z—% | Ft] =L, t € Ry,
where dLy = Ly-pydM;, t € Ry, Ly =1.

Proof. We have dS; = S;- (pdt + 04dZ; + o,);02dt) and
My + 0t’¢ta? =r, teRy,

hence dS; = Sy-(ridt + 0,dZ;) where (Z;)ier, , defined in Prop. 6, is a martingale

under Q).
O

If (¢4)tcr, is defined as in Prop. 7, then

t N t 1 rt
S; = Spexp (/ os041,dBgs + / (rs — s As0s(1 + ds1)s))ds — 5/ isafazds)
0 0 0
k=N,

x [T (1 +onén), teRy.

k=1

where B is a standard ()-Brownian motion. In the following, the probability Q) will

be the equivalent martingale measure constructed from the above proposition.

6.2 Pricing of a call

In order to price a European option we compute Ep {e*TR(T)(ST — K)*], where

Ry = %fOT rsds. The process (S;)icr, is a Markov process and the price at time ¢ is

12



given by
T
C(t,x) = Eg lexp <—/ 7’Sds> (Sr—K)" | Si==x|.
t
Let

BS(z,T;r, 0% K) = E[e_”T(xe”T_"QT/H”WT — K)*]

denote the classical Black-Scholes function, where W is a Gaussian centered random
variable with variance T'. In the case of deterministic volatility (o)scr, and interest
rate (rs)ser, . the price of a call in the Black-Scholes model is BS(z, T’; Ry, %ET; K)
with X7 = fOT afds. Let T'Y = fot isafagds denote the variance of fg 1,050,dB,;.
t € Ry, and Ty = [ 7,ds, t € Ry, denote the intensity of (Ni)ter, under @, where
Ve = /\t(l + ¢t¢t>, te Ry.

Proposition 8 The expectation Eg [exp (— I TSdS) (St — K)ﬂ can be computed

Eq leXp (_ /OT rsds) (Sp — K)+] _ eXp(_FT)é%/OT“-/OT

i=k

T r
BS (SO exp <—/ qﬁsfyscfsds) I+ 0,¢).T; R, ?T K)
0

1=1

as

XYpy o Y dty - diy.
Proof. We have
Eq [exp(—~TRy)(Sy — K)*]
= kf% Eq [exp(=TRy)(Sr — K)* | Ny = k| Q(Ny = k),
with Q(Nyp = k) = ;xp(—PT)(FT)k /k!, k € N. Conditionally to { Ny = k}, the jump

times (77, ...,T),) have the law

1
(I‘T)kl{0<t1<...<tk<T}’ytl Vi dtl e dt,ﬁ

since the process (NFt—l)teR_'_ is a standard Poisson process. Hence, conditionally to
{N(THTy)) = k} = {Ny = k}, its jump times (I'z,, ...,y ) have a uniform law
on [0,T'7]*. We then use the fact that (B;);cgr, and (N;)ier, are also independent

under @ since (p4)ier, is deterministic, and the identity in law

k=N

T
St ‘e So X7 exp <_/0 PsAs(1 + ¢s¢s)asds> H (1 +0n,97,) 5

k=1

where
re 1/2
Xr=exp|TR;y —T7/2+ <?) Wr |,
and Wy is independent of V.

13



6.3 The hedging strategy

An important problem is to determine the hedging strategy, i.e. to compute the

processes (0%,6}) such that

t
C(t,S;) = 0% exp (/ 7‘sd5) +6}S;,
0

and

t
dC(t,S,) = 6% exp ( / 7’Sds) ridt +01dS,
JO

(self-financing condition). It suffices to compute (6} );er, such that

d [exp (— /Ot rsds) C(t, St)] =0)d [exp (— /Ot Tsds) St] (15)

We shall note S; = exp (— N Tsds) St, t € Ry, the discounted price process.

In the following proposition we still denote by D the gradient operator defined
relatively to the multiple stochastic integrals with respect to (Z;);cr, instead of
(My)ter,, ((Zi)ier, also has the chaos representation property because (oF(1 +
®11¢) )ier,, is deterministic). The hedging strategy is computed using the gradient D

from the representation formula (9).

Proposition 9 If (r5)scr, = 0, the hedging strategy is given by

1
0 = E[D/(Sr — K)" | F], teR,.

015y

Proof. Let F = (Sy — K)*. We have dZ; = (0:S;-)~'dS;, hence

F = E[F]-l—/o E[D.F | FdZ,

(|
— E[F]+ / E[D,F | F]dS,,
0 05

since I’ is Fpr-measurable.

From Remark 1, the only regularity property that should be assumed on F =
(St — K)™ is its square-integrability, and this method can be applied to any square

integrable pay-off F'.

14



As in the standard Black-Scholes model, it is possible to determine the hedging strat-
egy in terms of the “delta” of the price in the case (r;)t € Ry is deterministic.

An application of I1t6’s lemma leads to

oC 8(7 19%°C
dC(t, St) l or TtSt or 2 or 3 Ztat SQ + /\t(]- + (/ﬁﬂ/)t)("_)c (t, St)dt
oc a ,
where

OC(1,S)) = C(t, Si(1 + 3:6)) — C(t, S1) — %(t, S))S01h.

~ t ~ ~
The process C; = C(t,S;) exp (—/ rsds) is a Q-martingale, and dC, = 0}dS;;
0
therefore, by identification of (15) and (16)

BC+ SGC 1
ot T

ocC
oz

0*C
a?S2o? + M(1+ o) OC| (8, S,),

rC(t,S:) = l oy T 3UPt 0 oy

0;S,00dZ, = Sior—=——(t,S,)dZ; + OC(t,S;) [AN; — \e(1 + ¢y )dt] .

Therefore, by identification of the Brownian and Poisson parts,

oC
ox

‘ oC
0tlstat¢t = Sto'ta (t St)(,bt + @C(t St)

Qtlstatit = StUt (t St)

On{teR; : ¢ =0} ={t : i(t) = 1}, the term OC(t,S;) vanishes. Therefore,
(17) reduces to

aC OC(t,S)

—(t,8) + —————.

8T< ’ t) + St0t¢t

The process (0} )ier,, is equal to the usual “delta” on the set {t € Ry : i; =1} and
C(t,S:(1+ ¢ior)) = C(t.S)

Si¢i0y
The usual PDE for the price of a call splits into two parts. On {t : ¢(t) = 0}, we

obtain the usual PDE

9 1 a) + 12 (1, ) +
ot g ”Iar o

whereas on the set {t € Ry : ¢ # 0} we have

oC
ot

0, =

to

on the set {t e Ry : i, =0}.

2

22280

AT 0 ——=
t tal,g

1
5 : (t,.l’) = th(tvx%

—(t,z) + 7t3:gc(t z) + M(1 4+ o))OC(t ) = 1, C(t, ).

Each equation has to be solved using a terminal condition, which is computed by

backward induction from the condition at maturity C'(7T',z) = (z — K)™.
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6.4 The greeks

The price of the European call is still convex and increasing with respect to the value
of the underlying asset. Here a new "greek” parameter has to be defined to make
precise the dependence w.r.t. the drift of the asset, under the historical probability,
ie. T = a—(t7 x) in the case where this drift is constant.

However, it turns out that the sign of this term depends on all the parameters

of the model.

7 Conclusion

The predictable representation property and the existence of a EMM give to this
model the main properties for mahematical finance’s purpose. For example, it is pos-
sible to solve a consumption /investment problem, and to use the backward stochastic
differential equation tools. It remains to find a method to fit the parameters to some
data. The continuous part of the driving martingale can have an arbitrary (deter-
ministic) quadratic variation. Concerning the discontinuous part, its jumps as well
as its intensity can be independently chosen as deterministic functions of time. This

allows to model different types of transitions from continuous to discontinuous paths,

for example starting with small jumps and great intensity.
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