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Abstract

Résumé. Nous introduisons une version g-analogue du procédé d’accélération
élémentaire d’Ecalle-Martinet-Ramis et définissons la notion de série entiere Gg-multi-
sommable. Nous montrons que toute série entiere solution formelle d’une équation aux
g-différences linéaire analytique est Gg-multisommable.

Abstract

Summary (Multisummability of formal power series solutions of linear analytic
g-difference equations). We introduce a g-analogous version of the elementary accel-
eration method of Ecalle-Martinet-Ramis and define the Gg¢g-multisummable power
series. We show that every formal power series satisfying a linear analytic g-difference
equation is Gg-multisummable.

*Mots clés et A.M.S. Classification. Développement asymptotique Equation aux ¢-différences
Multisommabilité — Produit de ¢g-convolution — Transformation de ¢g-Borel — Transformation de ¢g-Laplace —

Accélération Estimations Gevrey. 30E99 33D10 39B22 40G99.
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Introduction

Soit ¢ > 1 fixé. On considere une équation aux g¢-différences, linéaire, avec ou sans second
membre, a coefficients analytiques en l'origine de C. Dans [Zh], on introduit la notion de
développement asymptotique g-Gevrey d’ordre 1 et celle de série entiere Gg-sommable. On
établit la version g-analogue suivante d’un résultat de J.-P. Ramis [Ral] : toute série entiere
solution formelle d'une équation aux g¢-différences est Gg-sommable d’ordre 1 dans le cas
ol le polygone de Newton associé admet une unique pente égale a 1. L’objectif du présent
article est de montrer que cet énoncé demeure vrai dans le cas général, quitte a changer Gg¢-
sommable en Gg-multisommable. Ce dernier constitue une version g-analogue d'un résultat
récent sur les solutions formelles d'une équation différentielle linéaire analytique en 0 (cf

[BBRS)).

L’article comprend trois parties. Dans la premiere partie, nous étudions un ¢g-analogue de la
transformation de Borel-Laplace d’ordre strictement positif quelconque. Apres ’extension a
I'ordre arbitraire de la notion de série Gg-sommable d’ordre 1 de [Zh], nous introduisons la
nouvelle notion de produits de g-convolution (voir 1.4); elle jouera un réle important pour
les prochaines parties.

Dans la seconde partie, nous examinons la Gg-sommabilité du carré de la série théta de
Jacobi tronquée a gauche, (3,50 (["("_1)/23:")27 ce qui fournit un exemple de série entiere ne
s’écrivant pas comme somme de séries Gg-sommables de niveaux simples (Théoreme 2.2.1).
Nous définissons ensuite la notion de série entiere Gg-multisommable en combinant les
transformations de g-Borel et de g-Laplace de différents niveaux, c’est-a-dire en introduisant
des g-analogues des accélérateurs élémentaires étudiés par J. Ecalle ([Ec|, Chapitre 2), J.
Martinet et J.-P. Ramis ([MR2]).

Dans la derniere partie, nous montrons la Gg-multisommabilité de toute série entiere solution
formelle d'une équation aux g¢-différences linéaire analytique (Théoremes 3.3.2, 3.3.5). La
preuve de ce résultat repose essentiellement sur le fait que tout opérateur aux g¢-différences
peut étre décomposé en produit de plusieurs opérateurs aux ¢-différences d’ordre 1. Nous
expliquons également comment nous servir de cette factorisation pour former un systeme
fondamental de solutions formelles.

En nous inspirant de l'article [Tr] de W. J. Trjitzinsky, nous avons étudié diverses factorisa-
tions formelles d'un opérateur aux ¢-différences. Vue la complexité des calculs, nous n’avons
pas inclus ce travail dans le corps du présent article. Les résultats présentés ici constituent
une suite de l'article [Zh], dont les résultats seront précédés de 1. Nous espérons que nos
travaux puissent servir a 1’étude du phénomene de Stokes et du groupe de Galois aux ¢-
différences local en 0; ceci est en cours d’étude et certains résultats sont déja rédigés par le
second auteur du présent travail.

Une des premieres versions de l'article a été envoyée a une revue durant 1’été 1998; nous
avons recu de nombreuses remarques importantes de la part du referee anonyme désigné par
la revue; nous l'en remercions vivement.

Signalons enfin qu'une partie des résultats de l'article a été présentée dans la Note [MZ].
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1 Transformations de Borel-Laplace g-analogues d’or-
dre positif

Dans toute la partie, k£ et s désignent un couple de nombres réels positifs tel que ks =1, 0
désigne un nombre réel quelconque.

1.1 Quelques définitions et notations

En vue de faire adapter la méthode de Gg-sommation a la classe des séries g-Gevrey d’ordre
s, nous avons besoin de généraliser certaines notations de notre premier article sur le meme
sujet ([Zh]). Conscients du désarroi éventuel que peut provoquer la complexité de la liste
suivante de notations, nous renvoyons le lecteur a ce dernier article pour retrouver les étapes
conduisant a nos notations dans le cas s = 1.

1.1.1. On définit la tranformation de q-Borel formelle d’ordre s (ou de niveau k), notée
B,.., comme étant 'application linéaire de ¢[[z]] dans C[[¢]] qui fait correspondre, a chaque
monéme 2", le monéme ¢~ (*=1/2¢" Son inverse est noté L., et sera appelé la transfor-
mation de q-Laplace formelle d’ordre s.

Notons C[[z]],s 'ensemble des séries entieres g-Gevrey d’ordre s; c’est I'image de C{¢{} par

L

q;8»

;s

1.1.2.  On désigne respectivement par C la surface de Riemann du logarithme et par log la
détermination principale de celui-ci. Par définition, on note = log,x = log,|v|+iarg, v
On note dy := {x € C: argx = 0} la direction d’argument 9 On appelle voisinage secfomel
de dy toute partie de C contenant un secteur ouvert du type {z € C : |argz — 0| < £}, ol
£>0.

On appelle germe de fonction analytique en 0 € C toute fonction définie et analytique dans
un ouvert du type “disque en colimacon” D(0; R) := {x € € : |z| < R}, ot R > 0 arbitraire;
on note O l'ensemble de ces germes de fonctions.

1.1.8. Soit ¢ : V — C une fonction définie sur une partie non radialement bornée V' de C.
Par définition, on dit que ¢ admet a l'infini dans V' une croissance g-exponentielle d’ordre k
et de type fini si pour tout R > 0, il existe des constantes p € R, K > 0 telles que, si { € V
et si [€] > R, alors |o(€)] < K|&rgosE|.

On note HH I’ensemble des fonctions analytiques ¢ dans un voisinage sectoriel de dy et qui
vérifient les deux conditions suivantes :

e ¢ admet un développement asymptotique (au sens de Poincaré) en 0 dans un secteur
bissecté par dy;

e ¢ admet a l'infini une croissance g-exponentielle d’ordre &k et de type fini dans ce
secteur.

On note ]Hle I’ensemble constitué des éléments ¢ de Ile qui sont supposés, de plus, analy-
tiques au VOlSlnage de 0 dans C. On note enfin E,, 'ensemble des fonctions entieres ayant
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a 'infini une croissance g-exponentielle d’ordre £k et de type fini dans le plan complexe. On
a (par compacité de [0,27]) :

Hz;s = ]ﬁlg;s NC{E}, Eye = Noelo,2x)Hy;s -

1.1.4. Soit f € 0. On dit que f admet un développement asymptotique q-Gevrey d ordre
s dans la direction dy et on écrit f € G qs, sl existe une série entiere f = 250 An
vérifiant : il existe des constantes K > 0, A > 0, ¢ > 0 telles que, pour tout x € C de
module suffisamment petit, tout n € N et tout ) €]¢ —<,60 + <[, on :

n—1
. gu sp21 k 119
— 3 apat| < KAgen rlers, (e
k=0

P,

Pour tout élément f € G .., son développement asymptotique f est unique et appartient a
I'espace C[[z]]4:s-

On désignera par @2;5 I’ensemble des fonctions f € O qui vérifient la condition suivante :
il existe une série entiere 3,50 a,2" et une constante ¢ > 0 telles que, si [#] = 0 et si

Y €]0 —e,0 +¢[, on ait :

qs“

n—1

, E
— Z apa®| < K, qz@8a(e
k=0

—“9
n
e,

oll, pour tout n € N, K, est une constante dépendant uniquement de n. On a Gz:s - @2.5.

1.2 Séries GGg-sommables d’ordre s.

Soit f € C[[7]]g:s-

1.2.1.  Définition. On dit que f est Gq-sommable d’ordre s dans la direction dy si f €
[[]] s et si By f € H o.+; dans ce cas, on note fe cfa}l,

On dit que dy est une direction singulicre d’ordre s pour f et on note 6 € DS(f) sl Bq;sf ¢

qis°
La série f est dite Gg-sommable d’ordre s et on note f € C{x},., si DS(f) N[0, 2n] est fini.

1.2.2. A l'aide de la proposition [-3.1.4 (avec q changé en ¢°), on obtient que f a un rayon
de convergence non nul si, et seulement si, Bq Sf € E,;. 1l vient aussitot que pour tout 6 :
cfa} C cfa}?,, € lallge.

On peut vérifier que f € C{z} si, et seulement si, DS(f) =0 (cf1-4.1.4).

1.2.3. Théoreme. Les deux conditions suivantes sont équivalentes.
e La série f est Gg-sommable d’ordre s dans la direction dy.

o ]I existe une fonction f € (GZ;S admettant f pour développement asymptotique q-
Gevrey d’ordre s dans la direction dy. De plus, le germe de fonction analytique f qui

vérifie la condition (ii) ci-dessus est unique.
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Idée de la preuve — On utlhsera une version q analogue de la transformation de Borel-Laplace
pour lier les fonctions f € G et Bq Sf € H._; voir plus loin les propositions 1.3.3, 1.3.6 et
le théoreme 1.3.7. O

gis

1.2.4. La fonction f du théoreme 1.2.3 sera appelé Gg-somme d’ordre s de f dans la
direction dy et sera notée Sg;sf. On obtient ainsi une application Sg;s : (C{:L"}Z;s — Gg;s qui
vérifie, entre autres, la propriété suivante : si f € ¢{r}, alors Sg;sf est la somme habituelle

r q . s , N s s ) ) s s s . I/]
de f. Ceci résulte du théoréme précédent. Pour d’autres propriétés algébriques sur S,
voir 1.4.2.

1.3 Définition de st et de EZ;S.

On interprete l'opérateur de sommation Sg.s au moyen d’'une transformation de Laplace ana-
lytique g-analogue d’ordre s. On étudiera ensuite 'inverse de cette derniere transformation.

1.3.1. Lemme. Soit ¢ une fonction continue de [0, c00e”[ dans C. On suppose qu’il existe
i E R tel que (&) = O(ﬁ“qglong) pour £ tendant vers I'infini sur dy. Si I'on pose

— k
ikl g T T L
2mlogq Jd, S

alors r — £z;s<,o($) définit une fonction analytique dans le disque lN?(O; q1/?=1/%) de € qui

Ll o(x) =

vérifie la propriété suivante : pour tout R €]0, q(l/z’“)/k[, il existe C'r > 0 tel que I'on ait,
pour tout x € D(0; R) :
/ % (arg, (we™7))?
|£qsp( )| < Crq?'*® )

Preuve — Quitte a faire une rotation d’angle (—6) sur £ et x, on peut supposer que 6 = 0.
Par hypothese, il existe K > 0 vérifiant d'une part [¢(§)] < K si £ € [0,1], et d’autre part
lo(€)| < K&rqr'osi€ si ¢ > 1. En écrivant [ = Ji 4 [°, on obtient :

[ttt < gt [Tyt
0
K] Horrtone b [ g1
1 §

Il en résulte que, d’'une part, la fonction [,qs’p( ) est bien définie pour || < ¢t/2"W/* et
d’autre part, elle vérifie la propriété de croissance annoncée. 0O

1.8.2. Par définition, on appelle EZ;S la transformation de q-Laplace analytique d’ordre s
dans la direction dy.

1.3.3. Proposition. Sous I’hypothése du lemme 1.3.1, si I’on suppose, de plus, que ¢
admette un développement asymptotique (au sens de Poincaré) ¢ pour & en 0 dans un
voisinage sectoriel de dy, alors Eg;sgo € @z;s et son développement asymptotique est égale

a la transformée ﬁq;scﬁ. En particulier, si ¢ € ]ng;s (resp. E,), alors la transformée Eg;sc,o
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appartient a I’ensemble (Gz;s et admet /jq;S@ pour développement asymptotique g-Gevrey
d’ordre s dans dy (resp. pour développement de Taylor en 'origine du plan complexe).

Preuve — Soit n € N. On remarque que, d'une part,
‘Cz;sgn (.7,') — qsn(n—l)/Ql,n

et d’autre part, si une fonction ¢ vérifie le lemme 1.3.1 et telle que ¢(§) = O(£") pour £ — 0
dans dy, alors il existe K > 0 tel que

- kare (ze—i9))2 n
L0 b(x)] < KqFemsalee™ )"

pour tout z € C de module suffisamment petit. Ainsi, la proposition découle immédiatement
du lemme 1.3.1 ci-dessus. O
Par conséquent, si ’'on désigne par S? I'opérateur de prolongement analytique le long de la
direction dy. on a la relation
0 _ pb QOp
Sq:s - ﬁq;ss B(HS
sur C{}? . Il en résulte que la condition (i) implique (ii) dans le théoréme 1.2.3.

Etant donné R > 0, on désignera par 8+[7(0;R) le bord positivement orienté du disque
D(0; R) dans C.

1.3.4. Lemme. Soit f une fonction définie et analytique dans D(O; r) (r>0); on suppose
quil existe n € N, £ > 0 et K > 0 tels que, si |z| < r, alors |f(z)] < Ix’|x|"q§(argq(“ﬂﬂ))2
pour tout ¥ €0 —z,0 4 ¢[. Soit V={£ €C:|arg{ — 0| <e}. Soit 0 < R < r; on pose

1/(8K) /%
Bl f(£) = VR

§Iqu%(1°gq%7%)f($)d_x.

V2mlogq Jo+D(0;R) 1 T

On a les assertions suivantes :

i) & B définit une fonction analvtique, a croissance g-exponentielle d’ordre k et de
s ytique, q-exp

type fini a I'infini dans V', qui est indépendante de R;

ii) pour tout p €l0,r|, il existe K, > 0 tel que, si £ € V et < pgn T2k on ajt

(ii) p p €]0,7], P que, rq :

1B ()] < Kpq 2= De)™,

Preuve Par hypothese, si x = Re' (t € R), on a :

k

rE

z z_1 3 1] €] k —9— —
log, ¢ (log, ¢ k)f(x)| < I{anglogqf(logq?—l—%)eglnq(2t P—arg &) (I—arg £)

On obtient que la fonction BZ;S f(&) est bien définie et & croissance g-exponentielle d’ordre
k a l'infini dans le secteur V'; elle est analytique et, par Cauchy, elle est indépendante du
choix de la petite valeur de R.

La seconde assertion résulte de la remarque suivante : si |[¢] < pg="+*/2/k on a

. ky Ll ﬂ+1 2 (—n24n-1
Rle?(]fp[RnQQ og,p (logg 7 +%) _qz( nen 4)|€|”_ 0

1.8.5. Par définition, on appelle Bg;s la transformation de q-Borel analytique d’ordre s dans
la direction dy.
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1.3.6.  Proposition. (i) Si f € Gi.,,

et admet Bq;sf pour développement asymptotique en 0 dans un secteur bissecté par dy. (ii)

de développement asymptotique f, alors Bg;sf € IF]I(HIS

Sife Gg;s, ayant f pour déVGIO}?pGIATDGHt asymptotique q-Gevrey d’ordre s dans la direction
dy, alors Bg;sf € Hz;s et admet B, f pour développement de Taylor en 0 € C. (iii) Si f est

la fonction somme d’une série entiére f de rayon de convergence non nul, alors Bg.s [ € Eys
et c’est la fonction somme de la série B, f.

Preuve — La premiere assertion découle du lemme précédent et de la remarque suivante :
pourn € N, on a :

0 _.n _ _—sn(n=1)/2¢n
Bq;sx (5) =q ( )/ € .
SifeG, ona fe C[[z]]4;s donc Bq;sf € ¢{¢}; de la deuxieme assertion du lemme 1.3.4
ci-dessus, on déduit que Bg;sf € C{¢}, don Bg;sf € H

L’assertion (iii) est immédiate. O

1.3.7. Théoréme. (i) Sur chacun des espaces E,., H. . H’  on a :

q;s’ q;s 7
0 o _
B, oL, =1id.

(ii) Sur chacun des espaces C{z} (I'espace des germes de fonctions analytiques au voisinage
de 0 dans C), G).,, G.,. on a :

9 o _
L,,0B,, =id.

Preuve  Nous vérifions seulement la premiere assertion, et nous donnerons a la fin de la
preuve quelques indications pour la seconde.

Quitte a faire une rotation, on peut supposer que # = 0. Soit ¢ € ]I:Hg;s; on pose ¢ =
BS;S 0 Eg;sgo, et on va vérifier que ¢ = ¢ sur R™, donc sur un voisinage sectoriel de RT par
unicité du prolongement analytique.

Soit £ € RT fixé. Afin de combiner les intégrales définissant B et £, on choisit d_ (resp. dy)
une direction suffisamment proche de R*, d’argument négatif (resp. positif). On décompose
le chemin 9+ D(0; R) en deux parties notées I'_, T'y avec : z = Ret € T'_ si t €] — 00,0],
r=Re'" €l sitel0,+o0f; en faisant si nécessaire une homothétie, on supposera R = 1.

Ona:

¢(¢)

/ q21°gq§ (log, &~ ) q—flogqf(logq;—%)@(u)
27rlogq L

2 1 [qz logqf ]ogq / qklogqglogq d’[’ du
mlogq E
) _(/ _/ )\/iﬁ(logif—log?,u)%@

2wt Ja- Jay YV u logu — logé u

p(£).

Ici, on a utilisé respectivement le théoreme de Fubini pour (1) et la formule de Cauchy pour
(3), le passage (2) résultant d'un calcul direct. D’ou 'assertion (i) du théoreme.

—~
—

—_
N
—

—_
W
=
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Pour vérifier la seconde assertion du théoreme, supposons f € ((}2.3. On fixe un petit réel

positif z, et on choisit deux disques en colimagon f)(O; Ry), f?((); Ry) avec Ry < x < r9; on
applique ensuite le théoreme de Fubini aux intégrales doubles

1 . dv . d& Foo . dv . d&
Lo K6 [ K e )T

oun K(z,&,v) = qglogﬁ(log#_%)q_glogq%Uqui_%)f(v), et on conclut avec la formule de Cauchy

comme précédemment. O

1.4 Produits de g-convolution.

On rappelle que dans la théorie classique de la sommation de Borel-Laplace, le produit usuel
se transforme en produit de convolution par la transformation de Borel. En ce qui concerne
la sommabilité des séries g-Gevrey, on verra que la notion de produit de g-convolution
introduite ici jouera aussi un role tres important; voir Théoreme 2.4.3. On remarquera
également que notre produit de g-convolution coincide avec le produit habituel quand ¢° = 1
(¢ =1 ou s = 0 par exemple).

1.4.1. Lemme. Les ensembles G, GI., constituent des C{x}-modules.

Plus précisemment, soient f € C{x}, g € (Gz;s (resp. @z;s) eth=fg. Ona:he€ Gg;s (resp.
((N}z;s) et h = fg, ot I'on note " la prise du développement asymptotique d’une fonction.
Preuve  Etant donnés n € N et u une série entiere, on pose 4, la somme partielle des
n premiers termes de 4. Si f = ¥,500,2", on a (f§), = >0 a;x? §,—j; on en déduit la
relation suivante :

(F9)(0) = (Fa)n(e) = 3 0527 (9(0) = f-s(a)) + 3 asg(a).

i>n

Le résultat du lemme en découle. O

1.4.2. Proposition. L’ensemble C{x}).. constitue un C{x}-module, stable par 'opérateur

aux q-différences o, : f(z) = f(qx), et tel que pour tout (f,§) € cf{z} x cf{xz}?.,, on ait
/] FaN rel A \ o s . . r

S,(f9) =818, ou Sf désigne la somme habituelle de f.

Preuve 11 suffit de changer ¢ en ¢* dans la proposition 1-4.3.1 (dont la preuve utilise

essentiellement la transformation de ¢-Borel analytique). O

La proposition précédente implique ceci : si f € C{z} et § € cf{xz}?., . alors B,.(fg) € HY,
(comparer ceci avec le lemme 1.4.1 ci-dessus).

1.4.3. Considérons le produit de deux séries entieres f, § € C[[z]]. On a formellement :

B (f3) (&) = > ang V2B, f (g™ m€),

n>0

les a,, étant les coefficients de la série g. Ceci nous suggere de définir une loi de composition
interne (commutative) dans C[[{]] notée k., de la maniere suivante. Si ¢ = 3,50, ¢",
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,AY - ano,gné-nq, oIl pose

Prg:sY(E) =D Z%ﬁn g mien,

n>07=0

on a:

g ¥ (&) = D0 anl"H(q™E) = Y BulPlq7").

n>0 n>0

Par définition, on appelle px,.y le produit formel de g-convolution d’ordre s de ¢ et 7.
Noter que, si ¢ € C{{} et 4 € C{{}, on a $k,7 € C{&}: ceci résulte du fait que I'espace
des séries g-Gevrey d’ordre s est stable par le produit de deux séries habituel.
Soit I un intervalle ouvert de R. Pour simplifier, on appelle germe de secteur de support I
tout secteur ouvert, de sommet de 0 € C, contenant un secteur du type {x € C : argx €
I,|x| < R}, avec R > 0 arbitraire. Notons A(/) l'anneau des fonctions analytiques sur
un germe de secteur de support I, admettant un développement asymptotique (au sens de
Poincaré) en 0 dans ce secteur. Si ¢ = ¥ ,500,&" € C{¢}, de somme ¢, et si 7 est le
développement asymptotique dune fonction v € A(I), on pose

P xgis V(E) =Y @& y(q™"E).

n>0

(Ici, nous laissons au lecteur le soin de reformuler notre définition en terme de la g-intégrale;

cf [GR], p. 19.)

1.4.4. Lemme. Sous les hypothéses précédentes, on a ¢ x4y € A(I) et, plus précisément,
© *gis 7 admet Pk, pour développement asymptotique.

Preuve — Soit 3, - 3,£" le développement asymptotique de v en 0 sur un germe de secteur
V de support I; on a, pour tout £ € V : v(g™5"¢) — [y si n tend vers +oo. Puisque
¢ converge au voisinage de l'origine, on déduit la convergence en 0 € V' de l'expression
définissant ¢ *,.s 7(§); autrement dit, ¢ x,.5 7(€) est bien définie et analytique sur un germe
de secteur noté U dont ['ouverture contient I, tel que U C V.

Solent ¢ 1= g5 7, )= (kg5 et pour n € N, ¢, la somme partielle d’ordre n de t; on
a P, =X ;& _i(q77%E), A désignant la somme partielle d’ordre ¢ de la série 4. En
écrivant

W(€) — dul€ Zaﬁ’ 6 = Ani(a770) + 2 (g

j>n

on conclut a 'asymptoticité de ¢ a 1[) m|
Par définition, on appelle ¢ x,., v le produit analytique de q-convolution d’ordre s de ¢ et .
De maniére analogue, on peut aussi définir ¢ *,,s v pour tout couple (p,7) € A(I) x C{{}.

Le produit (formel ou analytique) de g-convolution d’ordre zéro correspond exactement au
produit habituel. Or, on sait que A() est stable pour la multiplication; il serait peut-étre
intéressant de voir si l'on peut reformuler notre produit de g-convolution de sorte que A(I)
soit stable. Dans cette direction, on constate aussitot la propriété suivante (cf la fin de la
preuve du lemme précédent) :
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1.4.5. Proposition. Dans le lemme 1.4.4, si l’on suppose, en plus, que vy € @g;s, (oury € (Gg;s,)
avec s' > 0, alors on a Y %457 € (Gz;s, (01l Y *gs Y € Gg;s, respectivement). O
La proposition qui précede étend le résultat du lemme 1.4.1 au cas d'un produit de ¢-
convolution. On remarquera aussi que, d’apres la proposition 1.4.2, on a ¢ x4, v € Hz;s
quand ¢ € E,; et v € HZ;S. Voir le lemme 2.4.4 pour un énoncé plus général.

2 Séries entieres Gg-multisommables.

Dans cette partie, nous allons introduire une notion de multisommabilité pour les séries
q-Gevrey. Nous commencons par un résultat du type taubérien qui affirme que si 'ordre
Gevrey d’'une série entiere est strictement plus petit que son ordre de Gg-sommabilité, alors
la série est convergente. Ce résultat nous permet d’établir I'impossibilité d’exprimer le carré
de la série théta de Jacobi (tronquée) comme somme de plusieurs séries Gg-sommables a
simples niveaux; voir Théoreme 2.2.1.

Pour les séries entieres Gevrey multisommables, il y a plusieurs définitions équivalentes.
Nous en citons deux : l'une utilise le procédé d’accélération élémentaire de J. Ecalle ([Ec],
Chapitre 2), J. Martinet et J.-P. Ramis ([MR2]), une autre décrit une série multisommable
comme combinaison finie de séries k-sommables a différents niveaux k& ([Ba], [MR1]). Le
théoreme 2.2.1 ci-dessous mettra en défaut cette seconde définition pour une bonne théorie
des séries entieres GGg-multisommables. Car la série étudiée dans ce théoreme est solution
formelle d'une équation aux ¢-différences linéaire a coefficients polynomiaux, c’est donc
une série qui devrait étre sommable avec une méthode bien congue. Dans la perspective
d’étudier les équations aux g-différences, nous allons introduire la notion de série entiere Gg-
multisommable au moyen d'un ¢g-analogue de ’accélération élémentaire citée précédemment.
On verra que ceci permet de sommer toute série entiere solution formelle d'une équations
aux ¢-différences (cf les théoremes 3.3.2 et 3.3.5).

2.1 Un résultat du type taubérien.

2.1.1. Lemme. Soit 0 < s' < s. Soit f € C[[z]] une série entiére telle que By, f converge
dans C vers une fonction entiére p. On a f € C[[z]],s si et seulement si ¢ € E, 5.

Preuve D’apres la définition de Bq;s (¢f1.1.1),ona Bq;s = Bq;sfl’;’q;s,sf. Or, les applications
Bys : C[x]]gs — C{&}, Bys—s @ C{&} — Egs—s sont bijectives; ceci prouve le lemme. O

2.1.2. Proposition. Soit 0 < s’ <setf €R. On a
(C{‘T}g;s N C{r}z;s’ = C{x}z;s N (C[[l’]]q;s/ = (C{T}

Preuve — Soit f € cf{x}l.. N cf[z]]ge; il s'agit de vérifier que B,.f € Eg.. Notons ¢ la
fonction somme de la série Bq;sf. A partir du lemme 2.1.1 et de la définition 1.2.1, on
obtient que p € Fgs— ﬂ]ng;s. Soit alors V' un voisinage sectoriel de la direction dy sur lequel
ona () = O(f"qiloggf) pour [{| = 400, o p € R désigne une constante convenable.
Deux cas sont possibles.

(i) V = C: c’est exactement ce que 'on attend de la proposition.
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(ii) V # C : on pose U un secteur ouvert non vide, d’ouverture < 7, tel que (U \ {0}) C V;
on note W le complémentaire C* \ U et OW la frontiere de W dans C*. En choisis-
sant une détermination de la fonction logarithme sur W, on considere la fonction (&) =
@(f)ff“q’;_slogzé. C’est une fonction analytique sur W, continue sur W U OW et bornée sur
OW. En outre, v a une croissance exponentielle sur W (méme sous-exponentielle : pour tout
>0, y(€) = o(efll) si ¢ — 0o dans W). En utilisant le théoréme de Phragmén-Lindeldf,
on obtlent que 7 est bornée sur W tout entier; ceci implique que ¢ a une croissance au plus
g-exponentielle d’ordre s a I'infini dans W, donc dans C. O

2.1.3. Dans la théorie des séries Gevrey ordinaires, on a un énoncé similaire. Notre énoncé
2.1.2 porte sur une seule direction dy alors que dans le cas Gevrey on utilise les séries
sommables dans presque toutes les directions (cf [Ral]).

En outre, la proposition 2.1.2 sera généralisée plus loin pour les séries multisommables.

2.2 Etude de la série (X, q"’("_l)/za:”)z.

On pose F = (Xn>0 q"("*l)/Z:E")Q. On rappelle que la série théta de Jacobi tronquée a
gauche >, g ¢""=V72z" est Gg-sommable d’ordre 1. Dans la suite, on va démontrer le
résultat suivant, qui n'a pas d’équivalent dans la théorie de la resommation des séries entieres
Gevrey ordinaires.

2.2.1. Théoréme. Pour toute suite finie de réels strictement pos1t1fs (S])1<j<£ et tout § € R,
il n’existe pas de f] € (C{r} -~ vérifiant (3,50 ¢" " V/22m)? =fi+..+f.

Idée de la preuve — La série EnZO n(n=1)/2gn étant ¢-Gevrey d’ordre 1, son carré F Dest

également. Il suffit donc de méme que F ne peut pas se décomposer en la somme de
deux séries, l'une étant Gg-sommable d’ordre 1, l'autre g-Gevrey d’ordre s < 1. Ceci sera
démontré dans le lemme 2.2.5 ci-dessous par des arguments fondés sur la croissance a l'infini
de la transformée formelle d’ordre 1 de F. O

2.2.2. Du fait que la série 3,59 q"( ~D/23™ est solution formelle de xy(qx) —y(x) = —1, on
déduit que F vérifie 'équation (¢?z? 0 —z(l1+2)o,+ 1)F( ) = 1+, laquelle se transforme

par B, en celle-ci :

(2.2.3) (1=q'&0;)BuF (&) = (1+6)/(1 =€)
En développant formellement

(1 o q—1€2 —1 Z )n — Z (1—'11252710_(1—717

n>0 n>0

on en déduit que I’ equatlon (2.2.3) admet une solution analytique en l'origine de C et une
seule, qui est donnée par Bq,lF(f_) Yoa>0q " 52"(1 +q ") /(1 — ¢ "¢). On remarquera
que £ =1,¢q, ..., ¢", ...sont les poles (simples) de Bq;lF.
Considérons la fonction entiere P(€) := By F(€) T,50(1 — ¢7"€). On a, pour tout n € N :
P(q") = 24" Th<e<n(l = ¢) M1 (1 = q7™), ce qui implique que

(2.2.4) lim (—1)"P(q")g "2 =2 [[(1—q™

n— 0o
m>1
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De la relation (2.2.3), on obtient I'équation (1 —&)(1 — ¢ (1 —§)&%0, 1) P(§) =1 +&, dont
le polygone de Newton relatif au point a l'infini contient une pente et une seule égale a 3.
En utilisant un théoréme de J.-P. Ramis [Ra2], on conclut que P € Ey/3 et que P & Egs
pour tout s > 1/3.

Ceci étant, vérifions maintenant le lemme suivant.

2.2.5. Lemme. Pour tout 6 € R, il n’existe pas de triplet (s, f, §) satisfaisant aux conditions
suivantes : A

(1)0<s<1, fec{z}l etgec[z];

(i) F=f+3.

Preuve — Supposons qu’il existe un triplet (s, f . g) vérifiant les conditions indiquées. Con-
sidérons les fonctions

0(€) =B f(O TIA - a8, (&) = Buaa(&) [T(1 —q7¢).

n>0 n>0

D’apres le lemme 2.1.1, [S’q;lg est une fonction entiere, donc v(¢") = 0 pour tout n € N.
De la relation P(&) = ¢(&) + v(£), on a ¢(¢") = P(¢"); avec la formule (2.2.4), on obtient
que ¢ est une fonction entiere telle que |p(¢")| > K¢@™/? pour tout n € N, ot K =
211n>1(1 — ¢ ™). En utilisant un résultat de Littlewood [Li] sur les fonctions entieres
d’ordre zéro (cf le lemme 1-4.3.7 pour I’énoncé correspondant), on en déduit que ¢ a une
croissance g-exponentielle d’ordre au moins 3 dans C. La fonction I],~o(1 — ¢~ "¢) étant
g-exponentielle d’ordre exactement égale a 1, la fonction Bq;l f admet alors une croissance

g-exponentielle d’ordre au moins 2 dans toute direction ou elle est définie, ce qui contredit
Ihypothese f € c{z}%,. D

2.3 Définition d’une série entiere Gg-multisommable.

Pour les séries Gevrey, 'accélération élémentaire consiste essentiellement a combiner des
transformations de Borel et de Laplace de niveaux différents; il en sera de méme pour les
séries g-Gevrey.

2.3.1. Soit s> s > 0etsoit # €R. Ona: (1) K., CK., siK=Houl (2) G, CG.,.
Par contre, I'inclusion (Gz;sl - (Gg;s n’est pas forcément vraie.

On admettra la convention suivante : si s = 0, on a Bg;s = Eg;s = 1d sur un espace de
fonctions quelconque.

2.3.2. Lemme. Si ¢ € ]I:]Ig

;S

et s > s >0, alors
Eg.skp — £g;8781£2;81(’9 et Bz;sfslﬁz;skp — ﬁg;sl(p.
Preuve — D’apres le théoreme 1.3.6, £ et B sont inverses 1'un de 'autre, il suffit donc de

prouver l'une des assertions du lemme. Prouvons la premiere et supposons s # s'; soient

k=1/s, kK =1/s', k =1/(s—s'); on a k = kk'/(k' — k). En utilisant la définition de £
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puis le théoreme de Fubini, on a :

k z z 1 k' u u 1
Ez;s—s'ﬁz;s"fo(f’f) - C q——logq;(l 2q % %) ’ q_jlogqf(logqf_ﬁ) o(€) g —
9

_ C-/de\/7 7klogqx——10gq., 99(6) ( f) fg

_g1/GR)

ou l'on a posé C = 2ﬂogq

I(x,§) = q 3 L>1°gq“+(“°gqﬂf+k’log &)log,u AU
u

_ \/27T(k‘/ ;Qk)logq q’;;7§(l%long+k’logqf)2_ 0

2.3.3. Etant donnée une série g-Gevrey d’ordre s, on lui applique la transformation de
q-Borel formelle d’ordre s et on obtient un germe de fonction analytique en l'origine du plan
complexe; si, de plus, la transformée obtenue appartient a la classe lle ., la série est dite Gg-
sommable d’ordre s. Dans la pratique, on constate en général que cette transformée a une
croissance g-exponentielle d’ordre plus élevé. Dans ce cas, on lui applique une transformation
de Laplace d’ordre adaquat, et 1’on essaye ensuite d’autres transformations de Laplace.
Autrement dit, on substitue I'inverse £,.; de la transformation de ¢-Borel d’ordre s par une
succession d'un nombre fini de £,.¢, les s’ étant a priori tous inférieurs a s. D’apres le lemme
qui précede, cette démarche étend la méthode de Gg-sommation a une classe de séries plus

grande, appelées séries Gg-multisommables.

A présent, on désigne par Q7 I'ensemble des suites finies, strictement croissantes, formées de
réels strictement positifs. Par convention, on admet que § € Q*. On pose Q1 = QT \ {0}.
Soit # € R; on notera S? I'opérateur de prolongement analytique le long de la direction dj,
c’est-a-dire dans un voisinage sectoriel de djy.

2.3.4. Définition. Soit s = (s, Sa, ..., 5,) € QT et soit f € ¢[[z]].
(1) On dit que f € C[[z]] est Gg-multisommable d’ordre s dans une direction dy et on écrit
f e c{x}’_, siles conditions suivantes sont remplies :

g5

° fe Cl[]]gss, ;

i qusrf E q3Sr —Sr— 1'
0 0 0 : : _ 9.
® Lo sr—soLgs—s,,S Bq Srf €H’ Gisv_j—s,_;_, bour j compris entre 1 et 7 —2;
o 0 0 0
¢ Lq 382 —81°° qusr jH+1—Sr— _7 £q5 —Sr S Bq S"f E ;51"

(2) Si f € (C{x}z'_s,, on appelle Gg-somme d’ordre s de f dans la direction dy la fonction

définie de la facon suivante :

f £l .l L SB[

qSl qSZ_Sl 43Sr—j+1—Sr—j q;Sr—Sr—1
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(3) La direction dy est dite singuliére d’ordre s pour f si f ¢ C{x}’_,. Lorsque c’est le cas,
’ q; s

on écrira § € DS(f).
(4) La série f est dite Gg-multisommable d’ordre s si DS(f) N [0,2n] est fini. Dans ce cas,
on dit aussi que f € (C{:L"}q.—;.

Par convention, C{I}g-? et C{I}q-§ désigneront ensemble C{z} si s = 0.

2.85. Si f e cf{z}l,, avec’s = (sq,...s,) € Q" on constate aussitot les propriétes
q; s
suivantes.
(1) S(f;?f €G-
(2) On a f € c{a}?t2™ S f(r) = 8% f(ze~ ™) pour tout entier relatif v. Il s’ensuit
‘ s 4 s s
que f est Gg-multisommable d’ordre S si et seulement si DS(f) est un ensemble discret de

R.
(3) On a f € c{z} si et seulement si DS(f) = 0.

2.4 Quelques propriétés sur les séries Gg-multisommables.

Commencons par une variante du lemme 2.3.2.

2.4.1. Lemme. Soient 0 <t, <ty < ..<t, (n>2), 0 €Ret f € [[x]]gs,. Silon pose ¢
la fonction somme de By, f, alors on a

p=2L0, . ..LC cl SBya, f-

qita—t1" Gitn—1—tn—2"7qitn —tn—1

Par conséquent, on a : (i) C{ﬂf}g;tl - C{x}z;(n H2reentn)? (ii) C[[z]]q: N (C{l“}g;(tl Harenitn) c{z}
pourt €]0,].
Preuve — Puisque f € C|[[z]]4:t, , on obtient, d’apres le lemme 2.1.1, que Bq;tn fe Egity —t,- Ol

n = 2, avec la proposition 1.3.3 on a : ¢ = L’ Sel’;’q;mf.

qita—t1
6

q;tn_tnilS‘ng;tnf € Egt, —t,_, car cette fonction est la somme de la

Supposons n > 2; on a L

série entiere Lo, ¢, B, [, cette derniere étant égale a By, , f. En réitérant ce processus,
on prouve 1’égalité portant sur la fonction ¢ du lemme.

La conséquence (i) est immédiate car G, C Gb,, . Pour (i), il suffit de remarquer ceci :
0 _ _ . Yol

Gty MEgity —+ = Gy, N Egyy ¢ = Egy, 43 VOIT la preuve du lemme 2.1.2. 0O

Compte tenu du lemme qui précede, on remarque la généralisation suivante de la proposition
2.1.2:

C{f"}i;‘; NCll2lloe = (C{:r}z;_; ncfaly, = C{x}z;—;(t)’

ot s = (s1,....5,) € QF, ¢t > 0 et ol on note s (t) € QF la suite extraite de s constituée
des s; < t.

Par définition, on note [s] =0 ou {s1,....s,} selon le cas s = @) ou (sq, ..., s5,) € Q.
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2.4.2. Proposition. Soit f € R et soit 5, 5 € QT tels que [5] c [?l] On a :

[4 [4 [4
(C{.I'}q;—g C (C{:c}q;_sﬂ’ _*/|(C{1‘}‘9 = Sq;_s)'

Preuve — Le résultat découle immédiatement des lemmes 2.3.2, 2.4.1 a I’aide de la définition
233. O

Nous conjecturons que 1'égalité (C{;r}z o = cf{z}? ., n’a lieu que si [5] = [?/]
; q5 s

2.4.3. Théoréme. Etant donnés s € QF et € R, I'ensemble (C{I}0—> constitue un C{x}-

module, stable par I'opérateur aux g-différences o, et tel que pour tout (f g) € ¢{z} x
c{r}’ . on ait 89 (fg) sttg ot Sf désigne la somme naturelle de f.
@ s

Preuve  Le théoreme est déja connu quand S =0 : cestle produit de deux fonctions

analytiques en l'origine du plan complexe. On suppose $ = ($1,..,8) € Q. En tenant

Compte de la proposition 1.4.2, on considere seulement le cas ou r > 1. On va vérifier
(fg) SfS(f -3, les autres propriétés du théoreme étant évidentes.

Utlhsons la notion de produit de g-convolution introduite dans le paragraphe 1.4.3; on a :

Bq;sr (fg) = Bq;sr I* ;squ;srg-

Comme § € C[[z]]ps, et f € C{z}, on a f§ € C[[z]],s,; par unicité du prolongement
analytique, on obtient 1’expression suivante :

Squ;sr(f[]) = SBys, [ *g35, SQBq:srgAa
ol Squ f € E,;.s,; et le lemme 2.4.4 ci-dessous nous assurera que SHBq;ST(fﬁ) € Hg;sr,sr_l.
Considérons ensuite £, SGBq;Sr(ch}); d’apres les lemmes 2.4.4-5, on aura

qiSr—Sr—1

0 013 Fay o ; 6 0 -
‘Cq 1Sr—Sp_ 18 Bq;sr(fg) - SB(ﬁSr—lf* 3Sr—1 ‘Cq 1Sr—Sp_— 18 Bl];Srg € Hz;sr —Sp_1"
et il en sera de méme pour les autres itérés de transformées de Laplace. Ceci entrainera la

relation S;’_?(fg) = Sij_?f]. i

2.4.4. Lemme. Soit § € R et 0 < s" < s. On a les assertions suivantes. (i) Si ¢ € E,; et
v € H)

~ 9y e z . . . ) ~
0. alors @ xgey € H). ., (ii) L’énoncé (i) est encore vrai si I'on change H).., en H,,,

Preuve — Vu le lemme 1.4.4 et le fait que le g-convolé de deux séries convergentes reste
convergent, il suffit de vérifier la croissance a l'infini de la fonction g-convolée ¢ .. . Soit
(&) = Toso@nl™; du fait que ¢ € Eyy, il existe R > 0 tel que o, = O(R"q~"("71/2) 5
n — oo. Quitte a faire une homothétie sur la variable £, on suppose ceci : |, | < Ag—snn=1)/2
pour tout n € N, ot A = |ap|+1 par exemple. Avec ’hypothese que v € Hz;s, ouH’ ,, on peut

a5’
choisir un voisinage sectoriel V de dy sur lequel on ait, si |¢| > 1, alors |y(€)| < Kqz'o%alél|¢ |,
ot K >0, u € R sont des constantes convenables. En choisissant u tel que g > 1/s+1/2,
on en déduit l'estimation suivante :

q—snn 1) /2|€ ||,_>/( —sng | < ]\qzs lo gq|f||€|ﬂq q (ns 210gq|f|)
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oun€Net eV avec [{| > 1.

Soit £ € V tel que |¢] > 1. On pose m¢ = min{m € N : [¢| < ¢*™/2}. Avec la définition de
(¢ *4:s Y et Uestimation obtenue précédemment sur le produit ¢ =" =D/2|¢" ||~y (g7*"¢)|, on a :

|0 g V(E)] < Alx”q2171°g§|§||f|” 3 g T nns=2ogylél) 4

0<n<mg

+AK z qfsn(nfl)/2|§n|

n>me

AK

< — qgljlogﬁléuﬂu + K'q3'% el

ou K' > 0 et p/ € R. Ceci termine la preuve du lemme. O

2.4.5.  Lemme. Sous les hypothéses du lemme 2.4.4 (ii), on a
Lowor (9 %qs 1) = Larp *gss-sr Loy

(ici, on conventionne que F %, G = FG, produit usuel entre les fonctions).

Preuve Soient p = 37,5 @,§" € Eys et 7 € ]Itﬂz;s,; on distinguera deux cas: s = s’ et s > 5.
Cas ot s > s'. On a : [,Z;S,(,O = > on>0 g =D/ ¢ Egs—s ['2;317 € @Z;S,. Notons
f= L’z;s,cp Kgrs—s! L'Z;S,V; ona f€ Gg;s,, d’apres l'assertion 1.4.5. En développant

f(g) — Z Oénqs’n(nfl)/2g‘n)Cg;Sl,)/(qfn(sfs’)g)7
n>0
et avec Fubini on obtient que Bz;s,f =  *q:5 7; ceci prouve le lemme.

Cas ot s = s'. 1l suffit de remarquer que @2;5 sont des C{z}-modules; voir le lemme 1.4.1
et la proposition 1.4.2. O

3 Gg-multisommabilité dans les équations aux g-diffé-
rences.

Jusqu’a la fin de D'article, A désigne un opérateur aux g-différences de la forme
A = ap(r) + ar(z)oy + ... + am(x)oy’,

ot m est un entier > 1, ag(x)a,,(x) Z 0 et ou, pour tout entier j variant de 0 a m,

aj(z) = aj,a” € c{z}.

v>0

On pose PN (A) le polygone de Newton de A; par définition, c’est ’enveloppe convexe de R?
engendré par les demi-droites ascendantes partant des points de coordonnés (j, Val(a;(z))),
Val(a;(z)) désignant la valuation de la fonction analytique a;(x) en = 0, avec la convention
Val(aj(z)) = 400 si a;(z) =0. On a PN(A) C [0,m] x [0, +o0].

Quitte & changer la variable 2 en z = 2'/¥ avec ¥ € N* convenable, on supposera que toutes
les pentes de PN(A) sont entiéres. On appellera multiplicité d’une pente la longueur
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—
de la projection du coté de la pente sur 'axe des abscisses; on écrira A 1= (ky, ko, ..., kn) la
suite croissante formée des pentes de PN (A) comptées avec leurs multiplicités respectives.

Le résultat central de la partie est le théoreme 3.3.2, qui affirme que toute série entiere figu-
rant dans un systeme fondamental de solutions formelles de Ay = 0 est Gg-multisommable;

~ ~ —
il s’ensuit que si une série entiere f vérifie Af € ¢{z}, alors elle est G¢g-A-sommable. Pour
établir ces résultats, I'un des ingrédients principaux sera d’utiliser la factorisation analytique
de I'équation. On trouvera quelques remarques dans le dernier paragraphe de la partie.

3.1 Factorisation analytique de opérateur A.

Soit k := k,, la pente la plus grande de PN(A). En effectuant le changement

y = xrq_EIqur(Iqul_1)27
on a
Ay _ xrq—%logqr(logqm—l)A/3
avec A = YT ¢"aj(x)z"" o, On observe que PN(A) posséde une pente horizontale,

les autres étant strictement négatives ou verticales. Pour simplifier, on suppose que A =
YiLobj(z)o, et que b; € C{x}, b (0) # 0. Désignons par P, (X) le polynome caractéristique
correspondant & la pente horizontale de A : P,,(X) = 37, b;(0) X7, ot les by (0), . . ., by—1(0)
ne sont pas tous nuls. Posons enfin 7, un nombre complexe tel que P,(¢"™) = 0 et que
P, (qg" 1) # 0 pour | € N".

3.1.1. Lemme. II existe une série entiére convergente f € C{x} telle que : (1) f(0) = 1;
tmog 2(log z—1
2 q q

(2) la fonction y,, = "™ q~ ) f soit solution de I’équation Ay = 0.

Preuve — Voir [Zh], p. 252. O

Notons C{x}! I'ensemble des séries enticres convergentes f € C{r} telles que f(0) = 1.
C’est un groupe multiplicatif, stable pour l'opérateur aux g¢-différences o, : f(z) — f(qx).

Considérons la fonction y,, du lemme précédent; soient v, = ¢"™ et g(z) = f(qx)/f(z); on
a a,, €C*, g € C{z}'. Du fait que y,, annule a la fois les opérateurs ¥ o, — a,,g(z) et A,
on peut factoriser A sous la forme suivante : A = A'(2*"0, — a,,g(x)), on A" € c{z}[o,]
est d’ordre diminué de 1 par rapport a A. De plus, les pentes du polygone de Newton de
A’ coincident avec les m — 1 premieres valeurs de celles de A (comptées avec multiplicité).

En itérant le processus A — A’ I'opérateur A se décompose de la fagon suivante :

(3.1.2) A = go(z)(z™ 0o, — a1g1(2)) (2% 0, — asge(z))...(2"" 0 — g (7)),
%

ot go(v) € c{x}, (k1,...,km) = A, et, pour j variant de 1 & m, a; € C*, g; € C{z}'.

3.1.5. Lemme. Soit o € C*, g € C{z}' et k € Z. Il existe une et une seule paire de séries
entiéres u, v € C{x}! vérifiant la relation 2*0, — ag(z) = u(z)(2*o, — a)v(x) dans I'anneau
C{a}log]-

Preuve  L’égalité 2o, — ag(r) = u(z)(2*

‘0, — a)v(r) équivaut aux relations :

u(@o(ge) = 1. u@)o(x) = glx).
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lesquelle sont vérifiées si, et seulement si :
ulqr)/u(z) = g(gr), v(z)/v(gr) = g(x).

En faisant opérer successivement toutes les puissances positives de o,-1 sur ces deux der-

nieres équations (ici, ¢ > 1), on déduit que

q

ug(x) = H g(q"x), wo(z) = H :

n>0 o1 900 ")

constituent une solution du probleme. L’unicité résulte du fait que dans C{x}, I’équation
y(x)/y(gr) = 1 n’a pas de solution non constante. O

Par conséquent, la relation (3.1.2) s’exprime en celle-ci :
(3.1.4) A = ho(x) (2™ o, — ar)hi(2) (220, — az)ha(2)... (2" 0y — ) B (7)),

ot hy € C{z} (ayant en z = 0 la méme valuation que le coefficient de o) de A), (ky, ..., kn) =
_)

A, a; €C et hj ec{z}! (1 <7< m).

3.1.5. Dans la formule (3.1.4), on a d'une part k;41 > k; et, d’autre part, si kj11 = kj,
alors ajy1/a; & 7. Soient £, j deux entiers compris entre 1 et m tels que £ > j; on note
(> j et on dit que ¢ précéde j (dans A) si k= k;j et ay/ej € ¢"'. On pose :

pi(A) = Card{l €]j.m] : £ = j}.

3.2 Recherche des solutions formelles.

Depuis les années trente, on sait démontrer l'existence d’'un systeme fondamental de solu-
tions formelles d'une équation aux ¢-différences. Dans la suite, on va brievement expliquer
comment se servir de la factorisation (3.1.4) pour construire, au moyen des séries entieres
et des expressions de la forme

(log, ) a"q 38182y e N, r e, ke PN(A),

un systeme fondamental de solutions formelles pour Ay = 0.

On désigne par éq le corps des g-constantes formelles; par définition, c’est I'ensemble de
toutes expressions (formelles) a telles que 0,4 = a.

3.2.1. Définition. Etant donnée ¢, ..., y, une famille de solutions formelles de Ay = 0,
on dit qu’elle constitue un systeme fondamental si, pour toute solution formelle y de cette
équation, il existe dans C, un n-uplet et un seul, (a, ..., a,), vérifiant :
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3.2.2.  Proposition. Un systéme de m solutions formelles (41, ...,Um) (m étant I'ordre de
I'équation) est fondamental si et seulement si son q-Wronskien,

W, (i1, oo Om) = det((og) " 9) 1< j<m,

est non nul.

Preuve — Soit g une solution de Ay = 0. Comme A est un opérateur linéaire d’ordre m, on
a: det(a} 19,00 ' ))1<icmi11<j<m = 0; on en déduit qu’il existe des g-constantes é;(x) tels
que :

Tlg=Y o g, 1<i<m+ L

on en déduit que

Si We(y;) # 0, on a det(0}7;)1<ij<m 7 0; on obtient alors 0,¢; = ¢;, c’est-a-dire ¢; € C,.

Nous laissons au lecteur le soin de vérifier que la condition est également nécessaire. O

3.2.3. Notations. Soit A donné sous la forme (3.1.4), ot k; € Z pour 1 < j < m; désignons
par r; le nombre complexe vérifiant simultanément ¢ = «a; et I(r;) €] — wi/logg, mi/logq;
posons

ej = e q—%zlogqa:(long—l)‘
On écrira g € e;C[[x]][log,x], (1 € N) si y/e; est un polynome en log,z, de degré au plus y,
ayant pour coefficents des séries entieres. Il faut noter que £ > j si et seulement si e;/e; € 2"
(¢ > j); il s’ensuit que e C[[z]][log, ], C e;C[[x]][log, ], quand £ = j.

3.2.4. Théoréeme. L'équation Ay = 0 posséde un systéme fondamental de solutions formelles
(Uj)1<j<m avec, pour chaque j, §; € e;C[[z]][log, ], (a)-

Preuve — On procede par récurrence sur I'ordre de 1’équation. Si m = 1, c’est une équation
d’ordre 1 et la fonction e,, /h,, en est une solution, non nulle, donc fondamentale.

Soit m > 1; sans nuire a la généralité du résultat, on supposera que h,, = 1. Soit £ un entier
compris entre 1 et m — 1; on considere I'opérateur A, défini par :

Ay = hyo(a:kl(fq — al)...hg_l(xkf(fq — ).

Supposons que ’équation A,y = 0 admet un systeme fondamental de solutions formelles
(Ye)1<j<e avec gy ; € e;C[[x]][log, 7], (a,)- Nous nous proposons d’étudier I'équation Agy 1y =
0, avec Ay = Aghy(z™+10, — apyq).

La fin de la démonstration revient a démontrer les deux lemmes suivants.
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3.2.5. Lemme. Pour chaque entier j compris entre 1 et (, il existe

Y15 € ej‘c[[x]][logqx]w(&m)

qui vérifie I'équation en y :
k N
he(z™ o, — 1)y = e

3.2.6. Lemme. Pour chaque j =1, ..., (, fixons 4 ; vérifiant le lemme précédent et posons
Yes1,041 = €ey1. Alors (§[+17j)1§j§[+1 est un systéme fondamental de solutions formelles pour
Ay = 0.

Preuve du lemme 3.2.5 — Par hypothese, on a :

i (Ag)

Yoj = €j Z (logql’)yfz,j,m fl,j,y € (C[[T]L
r=0

il reste a établir I'existence de séries entieres foyq ;, telles que

15 (Agt1) . 1 (Ae) .
hg(xk“laq — Qt1)€; Z (log, )" fes1j0 = €; Z (log,@)" fe .-
v=0 v=0

On distinguera deux cas : (1) (A1) = 5(A0); (1) pj(Ag1) = pj(Ag) + 1.

Cas (i) + pj(Aer1) = p(A¢). On pose p = pj(Ay). En identifiant les coefficients de
ej(logq:r)” dans chacune des équations précédentes portant sur les f[_i_l’jyy: il s’ensuit que ces
séries doivent vérifier les relations suivantes :

) .
. - ; . 2 -~
(32.7) (ega™ Mo, —apy) foyrjw = fZM —ajateTh 37 (V)aquLm 1<v<p
¢ i=v+1

L’hypothese p;(Apy1) = p1;(A¢) équivalant a dire que kpyq > kj ou ke = k; mais a1/ &
q", Popérateur (ajz*+1=*ig, — ayy1) est alors un automorphisme de C[[z]]; d’olt I'existence
(et méme 'unicité) des séries entieres foyj, qui vérifient (3.2.7).

Cas (ii) @ (A1) = 1;(A¢) + 1. On a kepy = kj, apy1 = ;¢" avec n € N. En posant
= 1;(A), les séries f(+17]’71, en question vérifent les équations suivantes :

(0g = a") frr1jpus1 =0,

c ny £ fﬁ, v Htl 1 ~
(3.2.8) (09 = ¢") fer1jw = aj_]h[ - i:zy;rl (,)ouferrge 1<v<p

Du fait que dans C[[z]], ker(o, — ¢") et coker(o, — ¢") sont tous deux unidimensionnels, on
obtient que le systéme (3.2.8) admet des solutions fo ;1 ,, dans C[[z]]; ceci termine la preuve
du lemme 3.2.5.

Preuve du lemme 3.2.6 — On voit clairement que les g,y ; annulent I'opérateur Ay,; avec
la proposition 3.2.2, on est ramené a considerer le ¢-Wronskien du systeme. Or, avec la

définition des g,y ; on a :

in i1 _
Aio e 41 — Bioy Yo 41 = 0,

N0 Ger1j — Biol ey =0 e, 1< <0,
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oul <i</l N\ = Jffl(hgxk“l), B = a5+102*1hg; on en déduit que

. N 1 o . .
Wo(Jes1,1s s Jepr,e41) = qu(w,h s D00 O 1,041

ainsi, le lemme s’en déduit directement avec I'hypotheése imposée sur (gy,;).
En combinant les lemmes 3.2.5, 3.2.6 et la méthode de récurrence, on obtient le théoreme
du paragraphe. 0O Remarquons que le théoreme que l'on vient de démontrer était déja

connu a ’époque de C.R. Adams; voir [Ad].

3.3 Sommabilité des solutions formelles.

Dans le théoreme 3.2.4, on peut choisir §,, = €, /I, done §,, /e, € C{x}; on va généraliser
ce résultat pour tous les membres du systeme (g;).

3.3.1. Notations complémentaires. Nous reprenons les notations (3.2.3). En outre, a
chaque paire d’entiers (¢, j) telle que 1 < j < ¢ < m, on associe le multi-ordre ?g,j € Ot de
1 N . s g . e — , 9212 4% .
a maniere suivante. Si k, = k;, on pose s,; = 0; sinon, s.; est 'élément de Q1 composé
des inverses respectifs des éléments non nuls de I'ensemble {k, — k, : j < v < (}.

Pour tout multi-ordre s € QT et toute direction dy, on définit de maniere évidente les sous-
espaces ¢;C{z} - [log,z]y, e;C{x}’ - [log,x], de l'espace vectoriel e;C{[x]][log,x], introduit

) S q; s
au (3.2.3).

Ceci étant, nous pouvons maintenant énoncer une version plus précise du théoreme 3.2.4.

3.3.2. Théoréme. Il existe un systéme fondamental de solutions formelles de I'équation
Ay =0, (gj)1<j<m, tel que y; € ej(C{a?}q;—;mJ [log, 7], (a)-

Plus précisemment, soit §; = e; Ef}‘;(OA) (logqx)”ijy dans le théoréme 3.2.4. Alors fj,v €
Cl{z} - et

95 S m,j

; QXU (ky—k;)if *
DS(]L]'YV) C Uj<£§m,k]-<kg{0 ER: —_6 (ke —k;)i € ]R+ }
j
Preuve — On va procéder de maniere analogue a ce que l'on a fait pour le théoreme 3.2.4 :
sim =1, ona e,/h, € C{x}, ce qui correspond a ?m,m = {; si m > 1, étant donné ¢ un
entier compris entre 1 et m — 1 on suppose que fi;, € C{z} — et

q5 54,5

o (07 RN N R %
DS(fg’jV,,) C Uj<l§£,kj<kl{9 eER: —{6 (ki—k;)i0 € Rt }
J

Pour obtenir la sommabilité des f¢1; ;,, nous avons besoin du lemme suivant.

3.3.3. Lemme. Soientk €N, « €C*, f, § € C[[z]] tels que (z*0, — a)f = q.

(i) Sik =0 etsige C{z}, alors f € C{x}.

(ii) Si k > 0 et si § € (C{.r}q.—S», avec s = (1/k,so,....s,) € QF* alors f € (C{.?:}q'—g et
DS(f) c DS(§) U {0 e R: ae™* e RT"}.
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Preuve du lemme — L’assertion (i) résulte directement d’'une comparaison des coefficients de
f et g; on ne considere que la seconde assertion, avec k € N*.

Soit s; = 1/k et appliquons la transformation formelle de g-Borel d’ordre s; a ’équation

(:ckaq—a)fzg; on a :

(U =R2ek — ) B, F(€) = By 9(6).

En décomposant 1/(¢('=¥/2¢" — o) en éléments simples, on obtient :

k 5 ~
B s1f(€) = Z ﬁh?ﬁ%(f)* /jn € (C*7 (an>k = aq(k_l)/Q.
k=1 K

On est alors conduit a démontrer le résultat suivant.

3.9.4. Si (B )(€) = (Byw§)(€)/(1 =€) et sig e cfz}’ . alorsona fe cfz}! - pourvu
que 0§ #0 (mod 2)m. 7 7

En effet, si » = 1, le résultat devient évident car Bq;sl g et Bq;sl f ont les mémes propriétés
d’analyticité et de croissance g-exponentielle dans toute direction ne passant pas par le point

d’affixe 1.
Supposons r > 2. De 'égalité Bq;sr = Bq;sr—sléq;slu on obtient

B, srf<o = 0(O*gssp—s1 B (),

ou l'on a posé

#(¢) = Byormsi (1/(1 = ))(C) € By, s
D’apres le lemme 2.4.4 (i), on obtient que B’q;srf € H

?
s, —s,, car, dune part, s, — s >

S, — $,_1, et d’autre part, Bq;srg € ]Hlo; (par hypothese).

q;Sr —Sr—1
Si r = 2, on utilise le lemme 2.4.5, avec v = By,G, 5 = 52 — 51 = §'; on obtient, a I'aide du
lemme 2.3.2 :

52,32 SB[ = (8"Bie, ) () /(1 =€),

ce qui montre que £° on prouve ainsi le résultat (3.3.4) dans le cas en

question.

q;52— 81 f (1517

Sir > 2, il suffit d’appliquer a plusieurs reprises le lemme 2.4.5 et d’aboutir enfin a la
relation

BL () = (B%§)(€)/(1 - ¢),
avec
6 [ 6 4 15 .
B_) - Lq jS2—s1°" £q;5r—j+1_sr—j“.ﬁq;sr_sr—ls B‘HSH

nous laissons le détail au lecteur.

Revenons au théoreme 3.3.2. En appliquant le lemme 3.3.3 aux équations (3.2.7-8) et en

remarquant que (C{a:}q_—» C (C{a:}q L s (car [$¢;] C [Seq1,], voir Proposition 2.4.2), on

obtient la sommabilité et les directions singulieres éventuelles pour chacune des séries fry1 .,
ce qui acheve la preuve du théoreme. O

Comme application du théoreme 3.3.2, on remarque le résultat important suivant.
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3.3.5. Théoréme. Si f € C[[z]] est une série telle que Af € C{x}, alors on a f € (C{x}q;—;
ol s € OF est la suite composée des inverses respectifs des éléments strictement positifs de
I'ensemble {k; : 1 < j < m}.

En particulier, si A n’a pas de pente strictement positive et si Af € ¢{z}, alors f elle-méme
est convergente.

Preuve  On suppose que f n’est pas la série nulle. Considérons d’abord le cas ol Af =
0 : f est solution (formelle) de I'équation Ay = 0. Il existe alors des ¢; € C, tels que
f = XL ¢yj, ol (7;) est un systeme fondamental satisfaisant au théoreme 3.3.2. Or,
C,N (e;C[[z]][log,7]) = C; on en déduit que f est combinaison linéaire, & coefficients dans C,
de certaines y; € C[[z]], jo < j < j§, qui correspondent a la pente horizontale avec e; € z".
La sommabilité de f s’en déduit de celle de ces solutions y;.

Supposons donc Af # 0, et posons a = Af, Apir = aq(%A) — %A; on a Ame =0 et on
se ramene alors au cas que l'on vient de traiter, avec A,,;; remplacant A. Par un calcul
direct, on trouve que PN(A,,;+1) = PN(A) U {0}; ceci termine la preuve. O

Dans le théoreme 3.3.5, on peut localiser les directions singulieres de f en fonction des o;
et k]

3.4 Quelques questions et remarques.

Un prolongement naturel de notre présent article serait d’étudier le phénomene de Stokes
dans les équations aux g¢-différences ainsi que le probléeme des invariants, voire la théorie de
Galois. Ceci est en cours d’étude et des résultats seraient publiés prochainement dans un
article en préparation par le second auteur du présent travail.

Pour batir une théorie de Galois a partir de notre (Gg-resommation, la question suivante est

particulierement importante : est-ce que le produit de deux séries Gg-multisommables reste

encore Gig-multisommable ? Dans l'affirmative, l'opérateur de resommation S?_. est-il un
;S

morphisme d’algébres q-différentielles 7 Nous connaissons certaines réponses partielles; ici,
nous en citons deux.

3.4.1. Soient s > 0,0 € Ret f, g € cf{z}?,. Ona fi e C{I}g;s/zs et Sg;S/Q’S(fg_) =
Spiaf Syl

3.4.2. Btant données fi, fo € |[z]] telles que A;f; € C{z} ot A; € C{x}[o,] pour j =1, 2,
on peut construire (par un algorithme) un opérateur A € C{z}[o,] tel que A(f, f2) € C{z};
on en déduit que f;fo est Gg-multisommable. De plus, on a

0 Fob ; _ ob 7 P
Sq:?lflsq;?2f2 o Sq;?(flfQ)'

Remarquons enfin que 'on peut déduire de notre théoreme 3.3.2 un résultat important de
J.-P. Ramis [Ra2] sur la croissance des solutions entieres d'une équation aux ¢-différences
linéaire a coefficients polynomiaux. L’idée est la suivante : on trace le polygone de Newton
relatif au point a l'infini et on forme un systeme fondamental de solutions formelles, les
séries intervenant étant en puissance descendante en x (ou une ramification de x). Ces séries
sont Gg-multisommables; leurs (Gg-sommes donnent naissance a un systeme fondamental de
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solutions analytiques, fondamental au sens g-analogue (a g-constantes pres...). Ainsi on
peut exprimer toute solution entieére dans ce systeme et on obtient directement la croissance
g-exponentielle de la solution.
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