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1 Introduction

The Cahn-Hilliard equation

W A ) — ), 1)

where kg, @ > 0, is very central to material sciences. This equation, which is a conservation
law, describes the transport of atoms between unit cells (the order parameter u corresponds
to a density of atoms). The function f, which corresponds here to a free energy, is generally
a double well potential, whose wells define the phases of the material. We recall that the
equation that was originally called the Cahn-Hilliard equation (by Cahn and Hilliard [2])
was based on a polynomial (of degree 4) free energy. Elliot and Luckhauss [7], and then

Debussche and Dettori [4], considered later a logarithmic free energy.

In particular, for both a polynomial and a logarithmic free energy, the different authors
obtained the existence and uniqueness of solutions and also the existence (and estimates on
the dimension) of attractors.

In [8], M. Gurtin considers more general forms of the Cahn-Hilliard equation, namely

%(u — Bdiv(ByVu)) + adiv(ByVAu) — div(ByVf (1)) + div(ByVy) = 0,
(2)

Ujt=0 = Uo,
where > 0, 3 > 0. We shall assume here that the mobility tensor By € M,(IR) is

symmetric, strictly positive and has constant coefficients. The equation is posed in  x IR™,
where Q = TII_,]0, L;[, L; > 0, n = 1,2, or 3. The function v = 7(z) is assumed to be
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regular enough (say, in H3(£2)), and Q—periodic. Throughout the paper, we thus consider
periodic boundary conditions, i.e. u is 2-periodic. However, we shall comment at the end
of the article on the case of Neumann-like boundary conditions.

The models we consider are derived by assuming that there should be microforces whose
working accompanies changes in the order parameter u. Indeed, according to M. Gurtin, even
though the derivation (and thus the mathematical study) of (1) is useful and important, this
equation should not be regarded as basic, but rather as precursor of more complete theories
(e.g. the taking of internal microforces into account). For instance, it seems reasonable that
interaction forces may be characterized macroscopically by fields that perform work when u
undergoes changes ; hence the presence of microforces.

In [9], the authors considered some of the models of Cahn-Hilliard equations derived in [§]
for a polynomial free energy. They obtained in particular the existence and uniqueness of
weak and strong solutions. They also obtained the existence of the global attractor, which
is a compact invariant set that attracts the trajectories as time goes to infinity and thus
characterizes the long time behavior of the system. Furthermore, they could prove that the
global attractor has finite dimension (in the sense of the fractal or the Hausdorff dimension).

Our aim in this article is to make a similar study in the case of a logarithmic free energy, i.e.

' 0 ].+U
f(u) = —0.u+ §1n<l—u

), 0<6 <. (3)

The idea is, following in particular Dettori-Debussche [4], to approximate f" by a polynomial

expansion
N o 2k+1

/ Uu
u) = —0, 0 )
fn(u) u + ];:0: o+ 1

(4)

and to pass to the limit as the degree of the polynomial goes to infinity. It is thus important
to derive a prior: estimates that are independent of the degree of the polynomial by a careful
treatment of the nonlinear term in particular (note that most of the estimates derived in
[9] depend strongly on the degree of the free energy). We thus obtain the existence (and

uniqueness) of solutions and the existence of the global attractor. We finally study the

dimension of the global attractor. We can note here that the regularizing effect introduced in

0
the generalized Cahn-Hilliard equation (corresponding to the term [ 5 div(By V u)) allows

us to obtain a more satisfactory result than in [4] for the dimension of the global attractor,
in the sense that we are not restricted as in [4] to sets with constant average. Indeed, in that
case, we are able to prove the existence of exponential attractors (which contain the global
attractor, have finite fractal dimension and attract exponentially the trajectories).



2 Preliminaries

2.1 Notations and preliminary results

Throughout the article, we denote by |.| and (.,.) the norm and the scalar product in L?*(2),

1 1
and we set m(u) = @ / u(x) dr for u in L*(2). We also set p(u) = 111(1 + u), o(u) =
o — .
u N2kl N y2k+2
s)ds, = 2 d u) = 2 . Furthe
/0 o(s)ds, on(u) kX:% T o (u) 1;) OE 1) 2h 1 2) urthermore,
for u € H? (Q), we set Agu = div(By Vu), Agu = —=Agu and we have H? (Q) = {v €

HL (Q): A2 Vv e H (Q)}. Hereafter, Cy, Cy, Cs, ... will denote fixed constants, whereas

per per
/ " . . .. . . .
¢, ¢, c .... will denote generic positive constants which may vary from line to line. In any

case, these constants will be independent of the polynomial degree V.

Proposition 1 For u, v smooth enough and 2-periodic and By symmetric, strictly positive,
with constant coefficients, we have:

(—Aou, v) = (ByVu, Vv) = (B§ Vu, B§ Vv), (5)

(Ao(Au), v) = (Au, Agw) = (V (BE Vu), V (B Vo). (6)

Proof :
Identity (5) results from elementary calculations. Furthermore, the operator Ay is selfadjoint
and, for u regular enough, we have
(Ao (Au), v) = (div ByV (Au), v)
= —(B¢ V(Au), B§ Vv).

Since BO% V(Au) = A (BO% V u), we integrate by parts and find (6).

Concerning the operator Ay, we have the following well-known results:

Proposition 2 The operator Aqy is linear, positive, selfadjoint and possesses a basis of
ergenvectors (w;) .y which is orthonormal in L*(Q) and is associated with the eigenval-

ues (/\j)de7
0= Xg < <X <. SA] — +00.

Furthermore, Aqy is a strictly positive, selfadjoint operator with compact inverse when re-
stricted to subspaces of functions with vanishing average.

We can thus give the following definition:



Definition 1
For s € IR, we set

(o) o)
S — S 3 . —_ . .
QU = Z Aj ujwj, where u = Z ujwj,
Jj=1 =0

V., = D(A(?) ={u = Zujwj, Z /\ju? < 400},
=0 j=1

which we endow with the seminorm and the semiscalar product

s s s
luls = |43 u| ; (u,v)s = (Af u, Afv),

and the norm
ulls = (lul2 + m(u)?)z.

Letu = u—m(u). We then have

1
2

oo
luls = llalls = Zﬁ?“?
J:

We refer the reader to [4] and [10] for the properties of the spaces V;. Nevertheless, we point
out that

Proposition 3

1
The norms ||.||2 and (|VBE Vu|? + |u|?)? are equivalent to the usual H?-norm in Va. More-
over, the constants in these equivalences can be chosen independently of €.

Proof: We infer from classical regularity results (see [1]) for the second order elliptic problem

{ —div(ByVu) + v = f inQ, (7)

u is €2 — periodic,

s =1, that ||.||> and the usual H%-norm are equivalent on V5. In the same way, taking s = §

1
in (7), we deduce the equivalence of the norms (|div(Bg Vu)|* + |u|2)% and ||.|| 42 (q). In the
latter case, we also have:

1 n 0 L
V(BiVu))? = > |8T_(B02 Vu);|?
igj=1 Y
> 312 (B vu)p
O o 7

4



1 1
where (B§ Vu); denotes the ith component of the vector B§ Vu. Furthermore, it can easily
be shown that, forn = 1,2 or 3,

Yoai > (> a)?, Ve< %
=1 1

1=

Thus, for ¢ < %

V(B Vu)? > 2|3

> e|div(B§Vu) %
Finally,
IV(B§ Vu)|* + [ul* 2 £ (|divBi Vul* + [ul*) 2 cllullf: ).

hence the equivalence of norms (the second inequality is straightforward).

There remains to prove that the constants occuring in the equivalence of norms can be cho-
sen independently of (2. Let us for instance prove this result for the norms (|V(B(;5 Vu)* +
luf?)z and |lu|| 2 (), i.e. actually, thanks to the result obtained above, for the norms
(|div(BO% Vu)? + |uf?)? and |[u]|y2(). We would proceed similarly for the norms |ulls
and [lul 0.

For simplicity, we take n = 3. We thus have Q = II3_,;]0, ;[ and we assume that L; < [

(say, I = 1 in the sequel). We thus cannot consider elongated domains of the form Q =
10, 1[x]0,6[x]0. 8[,8 = 0% (for which Q2 = & — 0).

We set K; = E(Li) +1,i=1,2,3 Weset Q = [[,]0, K; L;[ and we extend u to Q by

periodicity in the three directions ; let @ denote the extension of u to Q. We note that
K;L; € [1,2] so that |0, 1[>*C © C]0, 2[*. Furthermore, we have

)

1 3 1
[ div( BE V)| 2@ = | [1 K [div( BEVu)l,
=1

3
WL?(Q) = HKi |u],
i=1

3
lill g9y = \| TL 5 llllz )
\ 1=1

It thus suffices to prove the equivalence of norms with u and Q replaced by @ and Q re-
spectively (and with constants that are independent of the L;.) So, we now assume that
Q = II2,10, L;[, where L; € [1,2], i = 1,2,3. We set £y =]0, 1[> and we consider the change
of variables x; = 7- that maps 2 onto . We set u(x), 19, 15) = u(ry, Ty, r3) and we denote

by div, V the divergence and gradient operators with respect to the variables ac;,'i =1,2,3.
We then have ) o
div(B¢Vu) = div BV,

Ut



where B = (b;;), b;; = l:“j, if Bo% = (bij)-

TiL;
1 1 1 1 1 1 1
Since B = dlag(L1 I, L3> Bg diag(L—17 I, L—3), where
1
el L L[ 0 8
ia, —, —) = —
L' Ly Ly s ’
1 Ly L3 0 0 L

we deduce that B is symmetric, positive definite. We then have
. =
|div(Bg Vu)|* + clu]* = |Q|(|div(BV T}, q,) + cluffsq,)
> | [l g
where ¢ depends on €, on the coercivity constant of B and on max(|b;;|) (see the details of

the proofs in [1]). This constant can be chosen independently of Q. Furthermore, returning
to the x variable

9 [y = ZL“I IR 12|y |2+Z 2l

> cllullfeq
where ¢ can be chosen independently of (2. Therefore
|div(BZVu)|> + clu*> > ¢ ||u||fq2(m

where ¢ does not depend on . This finishes the proof (the other inequality is straightfor-
ward).

|
We next establish a Lemma that will be useful in the sequel.
Lemma 1
(i) For every u, v in L*(Q), we have
(u, v)o = (u, v) — m(u)m(v)|Q, (8)

(w,v) = (ua,v) = (u, v). (9)
(ii) There exists Cy € IR™ such that

W2 < Co|Vof2, Vo €V (10)



It can easily be shown that
o = [Q72 and wug = (u, wy) = Q| m(u),
which ends the proof of (8). Identity (9) is straightforward.
(i) Let v belong to V5. We have
ot = 450 = (450, Agv)

= (AO v, IU)
= —(div(ByVwv), v)

1
= |B¢ Vv|~
Then, we infer the existence of a real constant Cy satisfying
o[f < ColVuP,

and we obtain (10) by density.

2.2 Preliminary estimates

Equations (2)-(4) can be written as (taking f = fy)

( Oun .
a;\ + Ay Ky(uy) =0,
. ou 0
Ky(uy) = ﬁ—N — aAuy — O uy + 5991\7(%\’) -
luN‘t:() = u07
| un is 2 — periodic.

The solutions of (11) formally satisfy the conservation property (obtained by integrating the

equation over ()
m(un(t)) = m(ug) Vt> 0.

7



We shall derive here only formal a prior: estimates. These estimates can be justified by
making Galerkin approximations and by passing to the limit (see [4] and [10] for more
details).

We set = m(ug) and

« 0. 0 ‘
In(uy) = §|VuN|2 5/, uy dv + 3 /Q on(un) de — /ﬂ'}/uNdx. (13)
Then,
d GuN auN 0 auN 8uN
Sy = —a(Auy, ) g, (uy, EN —/i : dz — (v,
o In(un) a(Buy, =) =0 (un, =) + 5 | en(uy) = dv = (v, —57)
N 8uN auN 9
= (K —) — f
(i (u), S52) = 5122
oun . .
= —3| at]\ 2 — (Kn(uy), Ao (Ky(uy)).
Thus
d ﬁuN - .
= In(un) = —/5|W|2 — [Kn(un)lf <0, (14)
and we deduce that Jy is a Lyapounov function.
: I, o 1 2 . .
Since / yuydr < §|7| + §|uN| , we obtain, using (13)
Ja
0. « 20, +1 0
Itu) = a2 Gvunp = Bt e LG de — TP
Since
0 20.+1 .
Z/Q(/ﬁN(uN)da: - (274_)/9“%[ dx
2 4 6
uy o Uy Uy 20.+1, ,
= — + 5 - d
/n{(4 24 Tgo Tl T Tk g de
6 uk 20.+1, ,
> — - U ns o
= /Q{ o~ (T )uw g de
0y* 66"
and since % —0y+ e > 0, VyelR, it follows that
0 (260, + 1) ; 3 (20, + 1)
- uy)de — 25 [ 2 de > —2 222 T2 Q).
4/Q¢N(UN)C[’L' 5 /QuA dv > 5 2 ||



Consequently, for every t > 0, we have

6 3 (26.+1)?

c . 1
In(un) — §|’UN| > —|VUN + 7 / on(uy)dr — §T|Q| - §|’Y|2- (15)

0
Taking the scalar product of (11) with &KN(UN)’ we obtain

5uN 0 1d

r — Ky (un)? < 0.
(= 5 51 Ky(un)) + 5 7 Ky (un)lf <0 (16)

Remark 1 The solutions we shall obtain are not regular enough to prove, when passing to
the limit in the Galerkin method, the equality in (16). As it will sometimes be the case
hereafter, we can only justify, by lower semicontinuity, the inequality (see for instance [4]).

Since the function ¢y (uy) is positive, we have

O 0 Ketun)) 2 0|2 g [ OO gy g P
Thus,
SRl + 5 DO g T g 2
We have the following interpolation type inequality ([3]):
Jup 5 Jup 5 oupn oupn
5 —lo = = il S v S e 18

Indeed, we have, for u € V} such that m(u) =0,

uf? = (AF Ay Fu.u) = (Agu, Ag Fu) < [AGu] |4 u] < Jul_y Jul;.

aa? Cob?

Consequently, we infer from (10) and Young’s inequality ( ) that
200 200
1d Jun 5 a Ouy o
L Y-
537 (1wl + 91 %02 ) + & 1%
« |8u N| Cob? 8u N |2
- 20 Y 2a
Moreover, we have (with (11))
aUN 9 ~1 (9uN 1 GuN .
— A 2 A 2

= (Ag I{N(UN), Ag I{N(UN:)_)
= |I\rN (UN)E.

9



Thus, we finally conclude that, for every ¢ > 0

1d ~ 8uN .
541 (1Fvtolt + 9152 ) < ¢ Rl
(17)
/ - 9 au]\’ 2
< ¢ [ |Kn(un)|] + 5] 5 1“1,
, Cob?
where ¢ = —=< does not depend on V.
a

3 Existence and uniqueness of solutions

In [9], the authors proved the existence of a unique solution belonging to L>(0,7; V;) N
L*(0,T; V3) for problem (2)-(4) when the initial condition ug belongs to V;. However, this
earlier result relies on a priori estimates which strongly depend on the polynomial degree N.
Therefore, it does not allow to pass to the limit as N goes to infinity to prove the existence
of a solution for problem (2)-(3). Thus, as in [4], we first have to derive a priori estimates
independent of N for the solutions of problem (2)-(4).

3.1 A priori estimates independent of the polynomial degree

We establish here a priori estimates (independent on N) for the proof of the existence of
solutions when the initial value ug is assumed to satisfy

ug € Vi, |uglpe < 1: mlug) =p €]—1,1[. (18)

The function Jy being a Lyapounov function, we deduce from (18) that, V¢ > 0,

JN(uN(t)) < J]\T(UO) < J(Uo) < 400, (19)
a 5 0. 9 0 ‘ " .
where J(ug) = ) |Vugl® — 5 ), dr + 3 /Q o(ug) dr — /Q v ug dz. Inequalities (15) and

(19) then yield

@ 3(260, + 1)° 1.
SVl < Juo) + 22X jo) 4 P
and using (10), we have
lun(®h - < e (20)
lux()i < (E+p®)F Vi>0. (21)

In conclusion, uy is bounded (uniformly with respect to N) in L= (IR ; V7).

10



Integrating (14) between 0 and 7" and applying (15) and (19), we find

T Oun(t r : 3(260.+ 1
e NN | 2 U e ks YR S
0 ot 0 20
Thus, we have
/ IauN( par < e (22)
0
! 2 g 2
| v ita = [ Ry o) dt < e, (23)
where ¢ is independent of N. Multiplying (17) by ¢, we obtain
d Ju
b (trxtntt + 501 % )
aUN

Ju
< ot <|AN<UN 2+ NF) s Rn(umfE + 8128

which yields, using Gronwall’s Lemma (for 0 <t <T))

stz + 0150 < e ([T i+ [117 50 par).

Applying (22) and (23), we conclude that for every ¢ € [0, 7]

N

VHEn(uy(t))1 = VE|En(un ()i < e (24)

aUN(

V| | < e (25)

We now take the semiscalar product in Vj of Ky (uyn) by ¢n(uy). We then have, thanks to
(11)

4 2
5 lon(un)ly — a(Buy, px(un))o =

3uN

TR on(un))o + be (un, en(un))o + (v, en(un))o.

(Kn(un), en(un))o — B(——

Since m(Auy) = 0, we note that

11



(Aun, pn(un))o = (Aun, en(un))

= —/ VuNgo’N(uN)VuNdx <0,
Q

fa> b?
and since ab < 16 + v when 6 > 0, we have
0 0 4 . 8uN
Slonun)B < Tlow(un)B + 5 1Kn(un)li + - | N
402

4 0 409
ﬁ OUN 9 n

2

S |IXN(UN |1 +

Therefore,
ND) - V2 / 8uN 9 " 9 " 2
tlon(un)ly < ct|BEx(un)ly + c |27 + ¢ tluxfy + ¢ty

Thanks to (24), (25), (20), we finally find, for every t € [0,7]

Vi ||on(un(t)]lo = Vt|on(un(t))]o < ¢, ¢ independent of N.

Multiplying Ky (uy) by Agun, we obtain

duy

ot

. . 0
(Kn(un), Agun) = B (un, )1 — O lunli + 5 (on(un), Aouy)
2

— (v, un)i + a(Auy, Aguy).

We also have (cf. Proposition 1)

(‘P’V(U’V) Ajuy) = (Ao un, (PN(UN»
= (BO VuN, Bo c,oN(uN)VuN)
= /Q on(Un) (Bo Vauy)de > 0,

and

a (Auy. Aguy) = a|V (B Vu)P.

We thus obtain

auN

8t)

(Kn(un), Aoun) > B (un, 1 = O unli — (voun)i + a|V (BE Vuy)?

12



which can be rewritten

1 ou -
a|V (B§ Vuy)|* + 8 (un, a—;v)l < (Kn(un), Agun) + 0 lunli + (v, un)
< (En(un),un)i + Oclunli + |7 [un|i-
We finally have
3 o , B d P 2 9, 1 -
a|V(Bg Vun)|” + 5 = lunli < 5 [En(un)li + (e +1) Juni + 5k (27)

Then, integrating the last identity between 0 and 7" and applying (18), (20) and (23), we
obtain

T 1
a/|V@ﬁvmﬂPﬁ
0

1 T e 2 T 2 /6 2 1 2
<5 [ IEN@a)Bdt + 0 +1) [ funBdt + Sl + S BT
2 Jo 0 2 2
<e, ¢ independent of IV,
which yields (cf. Proposition 3)
T
/ |lun(®)||3dt < ¢, c independent of N. (28)
A .
We also infer from (27), (20), (24), that Vt € [0,T]

auN

1 t : t
at|V(Bg Vuy)]? < 5 |Kn(un)[f + (0. +1)t Jun|? + ) [+ Bt |(un, WH
au 7
§c+ﬁﬂmwm7ﬁﬂ

Oun
< et Bt lunle,

where ¢ depends on 7', but not on V.

Furthermore, we have

1 . 7 au J
at(|V (B Vun))® + un|’) < ¢ + /5t|a—t]\| [Un |2,

and Proposition 3 yields that there exists C'; independent of N such that

13



ou
atCyllun]} < ¢ +/5’t|—V||uV|o

) B2t Ouy 2 atC}

< unlf3.
S Tt 50 y el
Thanks to (25), we finally deduce that
Vi|un@))2 < ¢ VYt el0,T], (29)

where ¢” is independent of N.

3.2 Existence and uniqueness of the solution

Now that a priori estimates independent of N have been established, we can have existence
results for problem (2)-(3). Note that this problem can also be written as

4 8 ]
a—z + Ay K(u) =0,
. Ju 0
K(u) = [)’— — alAu — O, u + 5(,9('11,) — 7, (30)
Ujt=0 = Uog,
u is 2 — periodic.

\

Theorem 1 Let ug satisfy (18). Then, equation (30) possesses a unique solution u which
belongs to

C’([0,T); Vi) n L*(J0,T[; V3) VYT > 0.
Moreover, K(u) € L*(]0,T[; V), and

lu(t)|~ <1 V¥t >0,

{x € Q; |u(x,t)] =1} has measure 0 fort > 0.

Proof :

(i) We first prove the uniqueness of the solution.
Let u and v be 2 solutions of problem (30) corresponding to the initial data ug and v
respectively. Then, w = u — v satisfies

0
ot (
Taking the scalar product of (31) by Ay tw, we obtain

I+ fA)w — aAy(Aw) — 0. Agw + GAO( (u) —p(v)) =0. (31)

Ld o fd

0 ‘
5 ol + Sl —a(Aw w)o = 6. fwlf + 3 (p(u) = ¢(v). u=v)o < 0.

2

14



Since we consider periodic boundary conditions, we have

(Aw, w)y = (Aw, w)
= - /Q(Vw)2 dr <0.
We also have
(p(u) = (), u=v)o = (p(u) —pv), u—v) = (p(u) =), m(u) —m(v))

> —(e(u) —p(v), m(u) —m(v)),
thanks to (9) and to the monotonicity of the function . We thus find

B d
2dt

1d

. 0
5 w4 Sl < bjul? + 5 (o) = plo), m(w) - m(e)

0
< cflwlly + Blel) + 5 (p(u) = p(v), mu) —m(v).
If ug = vy, then m(u(t)) = m(v(t)), Vt > 0, and consequently

5 = (w2 + Blulg) < c(lwlZy + Blufg).

hence the uniqueness, using Gronwall’s Lemma.

(17) Concerning the existence of the solution, we proceed as in [4]. However, for the sake
of completeness, we give the details of the proof. First, we show that vt m(¢n(un(t))) is
bounded, V¢t € [0,T], in order to deduce, according to (26), that v/t pn (ux(z,t)) is bounded

in L*°(0,T; Vo).

We assume that v/t m(¢y(uy(t))) is unbounded, and consequently that there exist 2 se-

quences (t)ren and (Ng)ren such that

ty, — t* € [O,T],

k—+oco

Viem(pm, (un, (1)) — +oo.

k—+4oo

Let k; € IN be such that m(¢n, (un, (tr))) >0, Vk> k. For k > ki, we set

m(en, (un, (tr)))
2

Fro={2€Q; oy (un, (2, 1)) < } and Ep =Q\ F.

From (26) we have

m(on, (un, (t1)))? N C 9
|Fk| ( N (4]\ (k) S /Fk @Nk(uNk(tk»de S t|k |

15
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Then, thanks to (32) and (20) we see that

| Fe| fnd 0 and e un, (v, ;) da il 0.
Furthermore,
m (un, (T
‘k

Then, letting & — 400, we obtain

1] (limsup m(uM(tk))) > 19|,

k—+oo

which is in contradiction with
m(un, (te)) = m(ug) €] —1,1[, Vit € [0,T].

The case v/t m(pn, (un, (tr))) T 70 is analogous and is thus omitted.

In conclusion, v/ m(pn(uy(t))) is bounded V¢ € [0,7] and
Vtllon(un)llo < e, Vt €10,T], (33)

where ¢ is independent of V.

o
Next, we infer from (22) and (28) that uy is bounded in L?*(]0,77[; V3) and that % is

bounded in L?(]0,7[; Vo). Then, we deduce from classical compactness theorems the ex-
istence of a function v € C°([0,77]; V) and a subsequence (u,)n,eN converging to u in
L*(]0,T[; Vi) weak and in L?(]0,T[; Vi) strong. Moreover, by (33), there exists a function
™ such that

V1 o (U, (2,1)) .y Vip® in L%(0,T; V) weak *.
We now have to prove that ¢ = ¢(u). To this aim, we need auxiliary results. For an
arbitrary small £ €]0,1[ and for every ¢ €]0,7[, we denote by EN(t) (resp. xY(t), resp.
meas(EN(t))) the set EN(t) = {2 € Q; |un(x,t)| > 1—&} (resp. its caracteristic function,

resp. its measure). We have in fact meas(EN (t)) = L= Xe(t) dz.
: ' JEN (¢) JQ
We also denote by E.(t) (resp. x:(t), resp. meas(E.(t))) the set {z € Q; |u(z,t)] > 1—¢c}

(resp. its caracteristic function, resp. its measure). We then have

L N 21\ 2) 7
L ) un(z,t)
! b > N 2 PR S A—

= k=0

-

) N . t2k+1
> |EN()|F  inf (Ziu]\(x’) )

weEN) \j=p  2k+1

§ N (1 _ 6)2k+1

> |EXOF Y
oD 2k+1
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Thus, (33) implies that

N4\ [% ¢
BOE S
t
kz:% 2k +1
= 2—¢e’ (34)
Vi In(Z—/)
€
Letting N — 400, we deduce from Fatou’s Lemma that
B0 = [ x()d
< / lim inf ,X t) dt
N—+oo
< liminf |EN(t)].
N—+oo
Letting ¢ — 0, it follows from (34) that
Meas{z € Q, |u(z,t)] > 1} =0. (35)

Let us now study the term |@,, (uy (2,1)) — @ (um(2,t))|. Thanks to (35), we know that there
exist mg € IN and 6 > 0 such that

|t (2,t)] < 1—=0 ae in Q, Vm > my.

Thus,

+o0 2k-|—1
|(Pm(um($7t)) - (p(um([lf,t)” S Z %

k=m+1

1 =

Z (1 o 5>2k+1

k=m+1

IN

2m + 3

c(1—§)?m+s
2m+3
where ¢ is independent of m. This implies

[ fm (um (2, 1)) = o (um(z,1))] — 0,

m——+oo
and therefore

[om (um (2, 1)) = (u(z, )] < Jpm(Um(@,1)) = @(um (@, 1)) + [p(um(2,1) = p(ulz,1))]

— 0.
m——+oo

17



We thus have proved that

Om (U (2,1)) = @(u(x,t)) a.e. in Q.

Using Lebesgue’s Theorem, we finally conclude that

Om(Um) = p(u) in D/((O7T) x ).

Thus, ¢* = ¢(u) and u is a solution of (30). There remains to prove that u belongs to
Co(0.7]; Vi),
According to (29), we already know that u belongs to C°([7,T]; V1), 7 > 0. We refer the
reader to [4] and [5] for the study of the continuity at ¢ = 0.

u

4 Existence and dimension of the global attractor
For s = 0,1,2 and o > 0, we denote by V7 the space
VZ = A{u € Vi; Im(u)] <o},

which we endow with the norm of V;. We derive from (12) and Theorem 1 the existence of
the semigroup:

Si) Ve = Ve, o<1,
ug = u(t).

We easily prove that this semigroup is continuous in the space Vi” N {u € L>; |u|p~ <1}
endowed with the norm of V;. We first establish a priori estimates in order to prove the
existence of bounded absorbing sets in V7, s =0,1,2, 0 < 1, for equation (30). We then
derive the existence of the global attractor in V{y and V|?. Finally, we show that equation
(30) possesses an exponential attractor in V{7 ; hence we conclude that the global attractor
has finite fractal dimension.

4.1 Time uniform estimates independent of the polynomial degree
We multiply equation (11) by Ag'uy to obtain

1d

2 dt |’1LA’|%1 + (Kn(un), un)o <0,

where

pd 0

(Kn(un), un)o = §E|UN|3 - 9c|UN|3 — a(Auy, un)g + 2 (en(un), un)o — (7, un)o.

18



Moreover,
(Aun, uy)y = (Aun,uy),

|'U'N|O S |uN|7

and (cf. Lemma 1)

((foN(uN)auN)O = (‘PN(UN);UN —/1)
2k+2 2k+1
= 2 / - / Iz ).
Z( 2/<:+1 2% + “”")
It then follows that
1d b d 2e+2
5 77 vtz + 5 2 lunls = b funl” + a|Vuy|? +0§:/2k+1

(36)

2k+1

Z/ 2k+1“dr + (v, un) = m(y) QY.

Applying successively Holder’s and Young’s inequalities, we find

2k+1 2k41

Z/ 2k+1 S ( 2k+2 dl’) 2k+2 |Q|2k1+2
2k +1 2K 1
< 2542 1y 2k+2 ()
= 2k+1<2k+2 sy L
[i2k+2
<

2k+2d Ql.
/ x+z 2k+1 2it2)

Furthermore
unt? 2k+2 2kt

Z/2k+1“_2/2k+2 - 2/ 2k +1) 2k+2)d1

Equation (36) then reduces to

1d
2 dt <|UN| 1+ B funly ) o 90|uN|2 + a|VuN| (7, un) 2 / on(un)
N (k2
= 010 — 19
N /;) (2k + 1)(2k +2) 9] = m(y) p €2,

19



which can be rewritten equivalently as

1d o 5 0. 9
3 (lunl?y + 3 funld) + 5 [Vun]” = o Jun]” + Jn(ux)
N (i2k+2 (37)
< 0192 — m(vy) p|Q|.
kz:% (2k 4+ 1)(2k + 2) it () 12
Thanks to (15) and to the positivity of ¢, we deduce that
1d 3(26, + 1)? 1
577 (lun 2y + 0 lunfi) + o[ Vunl = Z===10] = Sh?
N 2k
< 012 —m t|€2].
<L Grrp@iry el
It follows from Lemma 1 and from Poincaré-type inequalities (see [10]) that
1d 2 @ 2
oW (Jlunl?y + B Junlg) + QC 2 lun|Z, TN |unly
N 2k+2 \92
H 1, o  3(20.+1)
< 010 — m(y) 1| + = 0
which yields (since |p| < o)
1d :
o (luwl2 + 8 lunl) + Ca (Junl2i + 8 [unls) < D). (38)
where
ol o2k +2 1, . 3(29 +1)2
D3y, = 010 + < [y)? + =10 Q)3 39
and N N
C, = min ( —) > 0.

2CCy" 28CHCs

Remark 2 For o < 1, we denote by D, |, the limit, as N — +oo, of DY oly|- We note that
D; | is bounded for every 0 < o < 1 and that

Dy — 0 when Q] = 0.
Thanks to (38) and Gronwall’s Lemma, we finally obtain, for every t > 0

‘ . D}
(O + Flux@fF < (s + 5 uold) e 2 + 22 (1= e 2),

We thus deduce the
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Proposition 4 For every p > 0 and for every uy € Vi satisfying
luglo < p and |m(ug)| < o, (40)

there exists Ty(p) > 0 such that the solution of (11) satisfies

Furthermore, if o < 1, the solution of (30) satisfies

2

|U<t)|0 < 604 Da,|7| )

vt > Ti(p). (42)

Remark 3 A consequence of Proposition 4 is the existence of a bounded absorbing set in
Vg = {u € Vy;|m(u)] < o} for problem (11) and in V7, ¢ < 1, in the case of equation
(30).

Next, we integrate (37) from ¢ to ¢t + 1. We obtain

t+1 . [+l )
| avtun(s)ds < 5 [ lun()Pds = m(3) )

N L2k 1 ; 3 ,
019 + —|un(t)|2 —lun(t)|p-
Since Jy is decreasing along the trajectories and |un(s)[> = |un(s)|2 + 1* ||, Proposition
4 yields
0.
J]\r(uN(t+1)) S C5D(]X‘7‘ + 50'2|§Z|7 Vit > Tl(P) (43)

Thanks to (15) and (43), we deduce that, for every t > Ti(p) + 1

§|VUN(t)| < G D, + T|Q| + §|’Y| + 57 12,
and we have the

Proposition 5 Let uy satisfy assumption (40). The solution of problem (11) satisfies

lun(t)h < /Cs DYy YVt > Ti(p) +1. (44)

Moreover, if o < 1, the solution of (30) satisfies
lu(t)i < /Cs Doy, Vi > Ti(p) +1. (45)
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Now, we integrate (14) from ¢ to ¢t + 1 and use (15) and (43). We obtain, Vt > Ti(p) + 1,

t+1 i Oupn(s . 0.
[ (vt + 51255 R) as < (o) D2 + G0

Thus, the uniform Gronwall’s Lemma applied to (17) yields

GuN (t)

T'Q < C; DY vt > Ti(p) + 2. (46)

oy

|Kn(un ()] + 5]

Then, we infer from (27), (46) and Proposition 5 that
% 9 aUN N 1 9
a |V (Bf Vuy)|” + ﬁ(W’ unv)i1 < Cs D) + B 13-

With arguments similar to those used for the derivation of (29), we find the

Proposition 6
If ug satisfies assumption (40) and uy is a solution of (11), then

1
lex (13 < Co (DX + 5 1), VE>Tilp) +2 (47)

Moreover, if 0 < 1 and u is the solution of (30),

1 . ‘
[l < Co(Dopy + 5hiD). V> Tilp) +2. (48)

Remark 4 It can be noticed that the constant C introduced in Lemma 1, as well as C}
introduced in Proposition 3, are independent of |Q2|. Moreover, it is well known that Cs
and Cj (Poincaré-like constants) remain bounded (and can be chosen greater than a strictly
positive constant) whenever || is. Consequently, it can be shown that it is also the case for
the constants Cy, ..., Cy.

4.2 Existence and dimension of the global attractor

Propositions 4, 5, 6 lead to the existence of bounded absorbing sets in V7,0 < 1, and
s = 0,1,2 for Equation (30). Thanks to the compact injections Vo < V; < 1}, we thus
have (cf. [10]) the

Theorem 2 The semigroup S(t) possesses the global attractor A, in Vy and in V{7, o < 1.
Furthermore, this attractor is bounded in V5.
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In the last part of this section, we prove that, when () is small, the global attractor A, has
finite fractal dimension by proving the existence of an exponential attractor. To do so, we
proceed as in [6], but we first need some preliminary results. We denote by By, a bounded
absorbing set in V57, and set

X, = |J S(t)Bay,

t>Th

where T is such that S(t) Bo, C Ba,, Vt > Ty. By construction, X, is clearly positively
invariant by S(t) and compact in L*(Q2). Moreover, we have the

Proposition 7 Let o belong to | — 1,1[. If || is small, there exists a constant 0 < § < 1
such that
lu)||lpe <0 <1, Vu e X,.

Proof: Thanks to Proposition 6, Remark 2 and Remark 4, we know that the right hand side
of (48) tends to 0 when 2| tends to 0. Thus, we deduce that if || is small enough, there
exists 0 < 6 < 1 such that

lu@)ll= < Cllu@®llz <6 <1, Vi>Ti(p) +2,

where C depends on 2 and is bounded if €2 is bounded.

Next, we set L = I — [ div (B, Vu) and note that

L(u— Au) = fdiv(ByVAu) + u — Au — fdiv(By Vu).

Thus, equation (2) can be rewritten as

OLu a Q@ ,
P + EL(’U — Au) + 3 (Au —u) + adiv(By Vu)
_dZU(BOVfI<u>) + dZU(BO V’)/) = 07
or, equivalently
Jdu «@ o I 1 ‘
5 + E(u— Au) + EL (Au —u) + a L™ div(By Vu)

— L' div(By V f'(u)) + L™" div(By V) = 0.

0 0 i
The operators L and 5 clearly commute, so do L~! and . Thus, equation (2) can be
xX; Z;
rewritten in the form Z
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ra,
—;‘+Au+R(u) =0,

B
J A== (49
R(u) = %(AL‘lu — L) + adiv(ByV (L™ 'u))

— div(By V (L7 f' (u)) + div(By V (L™'7)).
We have the
Proposition 8 If || is small enough, we have, for every u, v € X,
[R(u) = R(v)| < e(0)]A? (u—0)]
Proof:
For u, v € X,, we have
REu) = R@)] < FIALT = v) = L7 (=)

+ a|div(ByV (L™ ) — div(By V(L))
+ |div(BoV(L 7 (u))) = div(By V(L (v)))]

IN

L7 =)l + LT () = £ ()l
Since
ol < e|Lv|, Yo € H,.(9Q),

which yields
L7 0|2 < clv|, Vv € L),

we find
|R(u) = R(v)| < ¢ |u—of + ¢ [f (u) = [ (v)].

Since u and v are in X,, Proposition 7 holds as soon as |{2| is small enough. We then have
lulpe <8 < 1and |v|ge <0 < 1. Thus, we infer

|1 (w) = f ()] < elo)[u—u,

and consequently

[R(w) ~R@)| < ¢(0)u—vl

< ()]} (w—v)|

We then have the
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Theorem 3 We assume that || is small enough. Then, the semigroup associated with (30)
possesses an exponential attractor M, in X,. Consequently, the global attractor A,, 0 < 1,
has finite fractal dimension.

Proof: The existence of an exponential attractor M, C X, follows from Proposition 8 and
the arguments of [6]. Moreover, since an exponential attractor M, contains A, and, by
definition, has finite fractal dimension, we see that A, has finite fractal dimension.

Remark 5 We can obtain similar results for the polynomial nonlinearity fy as in [4]. How-
ever, we are not able to obtain here, as in [4], an upper bound on the dimension of the global
attractor that is uniform with respect to the degree of the polynomial.

Remark 6 We note that the result of Theorem 3 cannot be extended to the classical Cahn-
Hilliard equation (for which § = 0) studied in [4]. In that case, we can only study the finite
dimensionality of the global attractor on spaces of the form V? = {u € V7 m(u) = o},
which is less interesting from the physical point of view.

Remark 7 Proceeding as in [4], we can prove the upper semicontinuity of the attractor AY
(corresponding to the polynomial free energy fy) to A, as N — +oo.

Remark 8 We note that since § < 6,, f(0) < 0. Therefore, D, = {2z €]—o0, o[, f (z) <
0}, o <1, is nonempty, and, proceeding as in [9], we can prove that the dimension of the

global attractor is bounded from below by sup card {k, Ay < _f—(x) }. We thus deduce
z€ Dy «

that the dimension of the global attractor A,, ¢ < 1, tends to +00 as « tends to 0 (for a
fixed domain ).

5 Comments on Neumann-like boundary conditions

Another classical set of boundary conditions for the Cahn-Hilliard equation (see for instance
[10]), of Neumann type, reads
(Byv).Vu = (Byv).VAu =0 on 09, (50)

where v is the unit outer normal vector to 9€2. We assume here that €2 is a bounded regular
domain of R", n =1, 2 or 3.

The main difference with the previous case concerns the norm on V5. Indeed, we only have,
for the boundary conditions (50), assuming that u and v are regular enough
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(div(By VAu), v) = (Au, div(By Vo). (51)

If we wanted to proceed as in the periodic case, we would find

| 1 : O(BEVu) 1
(div(By VAu), v) = (VBEVu, VBZVv) — / ABIVY) | BEGe) do,

99 ov
and we would not be able to get rid of nor absorb the boundary term.

Now, the difficulty is that the term (Au, div(ByVu)) is not positive in general (it is positive
however when By = koI, ko > 0). We shall write instead By = koI + B('), ko > 0 (for the

sake of simplicity, we take kg = 1) and

(Au, div(ByVu)) = |Aul> = (Au, div(B,Vu)), (52)
and we shall absorb, assuming that By is small and that its diagonal terms vanish, the second
term in the right-hand-side of (52). To do so, we need to prove that (|Au|? + ¢|u[?)z, ¢ > 0,
is a norm on Vo = {u € H?*(Q), (Bor).Vu = 0 on 92} that is equivalent to the usual
H?-norm, with constants that are independent on By (the functions belonging to V5 depend

on By through the boundary conditions). We set
by = bi;
o = max [by],

where By = (b;j). Thanks to classical regularity results on second order elliptic problems,
we see that the norm (|div(ByV.)|* 4 ¢|.|?)2 is a norm on Vj that is equivalent to the usual
H?-norm. A careful look at the proofs (see [1]) shows that all the constants depend either
on the coercivity constant of By or on max |b;;|. Therefore, if by is small enough, we can
take all the constants independent of by. We then write, for u € V5,

Aul> + clul*> = |div(ByVu) — div(ByVau)|* + ¢ |ul?

1 /
> 5 |div(ByVu)|* + clu* — |div(B,Vu)|”

> cllullfzq),
¢ > 0 being independent of by (and thus of By) if by is small enough.

Now, when by = 0, we proceed exactly as in the previous sections, except that when con-
sidering the equivalence of norms on V5, we are not able to prove that the constants do not
depend on || (except for n = 1). Thus, the results of subsection 4.2 will only be valid in
one space dimension.

When by # 0 and is small (in particular as above), we can obtain the same estimates as
in subsection 3.1. In particular, we are then able to obtain the existence of solutions for
the logarithmic nonlinearity (3). Unfortunately, we are not able to prove the uniqueness of
solutions, the reason being that we cannot integrate by parts in the term (Au, v) (to obtain

—(Vu, Vv)).
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